File size: 1,702 Bytes
eec8765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572d746
 
eec8765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572d746
 
 
 
 
eec8765
 
 
 
67e421e
eec8765
 
67e421e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-cased-document-casual
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased-document-casual

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2732
- F1-score: 0.9033

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1376        | 0.97  | 15   | 0.6716          | 0.7342   |
| 0.0517        | 2.0   | 31   | 0.3222          | 0.9350   |
| 0.0075        | 2.97  | 46   | 0.2732          | 0.9033   |
| 0.0032        | 4.0   | 62   | 0.2932          | 0.9033   |
| 0.0024        | 4.84  | 75   | 0.2914          | 0.9033   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2