desaxce's picture
Create handler.py
c8dd61d verified
from typing import Any, Dict, List
import torch
from transformers import AutoTokenizer, Qwen2ForCausalLM, pipeline
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler:
def __init__(self, path=""):
# load the model
self.tokenizer = AutoTokenizer.from_pretrained(path)
model = Qwen2ForCausalLM.from_pretrained(
path, device_map="auto", torch_dtype=dtype
)
# create inference pipeline
self.pipeline = pipeline("text-generation", model=model, tokenizer=self.tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
prediction = self.pipeline(inputs, tokenizer=self.tokenizer, **parameters)
else:
prediction = self.pipeline(inputs)
# postprocess the prediction
return prediction