denizyuret-shallowai
commited on
Commit
·
1a4de68
1
Parent(s):
1039552
Upload model
Browse files- config.json +32 -0
- modeling_custom4.py +49 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/pythia-160m",
|
3 |
+
"architectures": [
|
4 |
+
"CustomModel4"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModelForCausalLM": "modeling_custom4.CustomModel4"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"classifier_dropout": 0.1,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout": 0.0,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"layer_norm_eps": 1e-05,
|
19 |
+
"max_position_embeddings": 2048,
|
20 |
+
"model_type": "gpt_neox",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rotary_emb_base": 10000,
|
25 |
+
"rotary_pct": 0.25,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float16",
|
28 |
+
"transformers_version": "4.31.0",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_parallel_residual": true,
|
31 |
+
"vocab_size": 50304
|
32 |
+
}
|
modeling_custom4.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/docs/transformers/custom_models
|
2 |
+
|
3 |
+
from transformers import PreTrainedModel, GPTNeoXForCausalLM, AutoModelForCausalLM, AutoTokenizer, LlamaConfig
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from torch.nn.functional import log_softmax
|
6 |
+
from torch.nn.modules.container import ModuleList
|
7 |
+
|
8 |
+
class CustomModel4(PreTrainedModel):
|
9 |
+
config_class = LlamaConfig
|
10 |
+
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
|
14 |
+
def forward(self, *args, labels=None, **kwargs):
|
15 |
+
loss = None
|
16 |
+
logits = None
|
17 |
+
for model, coeff in zip(self.models, self.coeffs):
|
18 |
+
logp = log_softmax(model.forward(*args, **kwargs).logits, dim=-1)
|
19 |
+
logits = coeff * logp if logits is None else logits + coeff * logp
|
20 |
+
# The rest copied from modeling_llama.py:
|
21 |
+
if labels is not None:
|
22 |
+
# Shift so that tokens < n predict n
|
23 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
24 |
+
shift_labels = labels[..., 1:].contiguous()
|
25 |
+
# Flatten the tokens
|
26 |
+
loss_fct = CrossEntropyLoss()
|
27 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
28 |
+
shift_labels = shift_labels.view(-1)
|
29 |
+
# Enable model parallelism
|
30 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
31 |
+
loss = loss_fct(shift_logits, shift_labels)
|
32 |
+
|
33 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits)
|
34 |
+
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def combine_models(cls, *args, coeffs = [], **kwargs):
|
38 |
+
models = []
|
39 |
+
for model in args:
|
40 |
+
models.append(AutoModelForCausalLM.from_pretrained(model, **kwargs).eval())
|
41 |
+
if coeffs == []:
|
42 |
+
coeffs = [1/len(args)] * len(args)
|
43 |
+
m = cls(models[0].config)
|
44 |
+
m.models = ModuleList(models)
|
45 |
+
m.coeffs = coeffs
|
46 |
+
return m
|
47 |
+
|
48 |
+
|
49 |
+
CustomModel4.register_for_auto_class('AutoModelForCausalLM')
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffa03b589263eccf2e09157196fab7b2abdaece84c8ed0f4b18f06540f48fd0
|
3 |
+
size 465579541
|