SpirinEgor commited on
Commit
30f1c8d
·
verified ·
1 Parent(s): 1bc68f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -170
README.md CHANGED
@@ -1,199 +1,109 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - deepvk/LLaVA-Instruct-ru
6
+ - Lin-Chen/ShareGPT4V
7
+ - deepvk/GQA-ru
8
+ language:
9
+ - ru
10
+ - en
11
+ base_model: google/gemma-2b-it
12
+ pipeline_tag: image-text-to-text
13
  ---
14
 
15
+ # LLaVA-Gemma-2b-LORA
16
 
17
+ LLaVA-Gemma-2b-LORA is a Vision-Language Model (VLM) based on [`google/gemma-2b-it`](https://huggingface.co/google/gemma-2b-it) model
18
+ and trained in original LLaVA setup using LORA. This model is primarily adapted to work with Russian, but still capable to work with English.
19
 
20
+ ## Usage
21
 
22
+ Model usage is simple via `transformers` API
23
 
24
+ ```python
25
+ import requests
26
 
27
+ from PIL import Image
28
+ from transformers import AutoProcessor, AutoTokenizer, LlavaForConditionalGeneration
29
 
30
+ model_name = "deepvk/llava-gemma-2b-lora"
31
 
32
+ model = LlavaForConditionalGeneration.from_pretrained(model_name)
33
+ processor = AutoProcessor.from_pretrained(model_name)
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
35
 
36
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
37
+ img = Image.open(requests.get(url, stream=True).raw)
38
+ messages = [
39
+ {"role": "user", "content": "<image>\nОпиши картинку несколькими словами."}
40
+ ]
 
 
41
 
42
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
43
+ inputs = processor(images=[img], text=text, return_tensors="pt")
44
 
45
+ generate_ids = model.generate(**inputs, max_new_tokens=30)
46
+ answer = tokenizer.decode(generate_ids[0, inputs.input_ids.shape[1]:], skip_special_tokens=True)
47
+ print(answer)
48
+ ```
49
 
50
+ Use the `<image>` tag to point to an image in the text and follow the chat template for a multi-turn conversation.
51
+ The model is capable of chatting without any images or working with multiple images in a conversation, but this behavior has not been tested.
 
52
 
53
+ The model format allows it to be directly used in popular frameworks,
54
+ e.g. you can test the model using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), see Results section for details.
55
 
 
56
 
57
+ ## Train
58
 
59
+ To train this model, we follow the original LLaVA pipeline and reuse [`haotian-liu/LLaVA`](https://github.com/haotian-liu/LLaVA) framework.
60
 
61
+ The model was trained in two stages:
62
+ 1. The adapter was trained using pre-training data from [`ShareGPT4V`](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V).
63
+ 2. Instruction tuning included training the LLM and the adapter, for this we use:
64
+ * [`deepvk/LLaVA-Instruct-ru`](https://huggingface.co/datasets/deepvk/LLaVA-Instruct-ru) — our new dataset of VLM instructions in Russian
65
+ * [`deepvk/GQA-ru`](https://huggingface.co/datasets/deepvk/GQA-ru) — the training part of the popular GQA test, translated into Russian, we used the post-prompt "Ответь одним словом. ".
66
+ * We also used instruction data from ShareGPT4V.
67
 
68
+ The entire training process took 3 days on a single A100 40GB.
69
 
70
+ ## Results
71
 
72
+ The model's performance was evaluated using [`lmms-eval`](https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main) framework
73
+ ```bash
74
+ accelerate launch -m lmms_eval --model llava_hf --model_args pretrained="deepvk/llava-gemma-2b-lora" \
75
+ --tasks gqa-ru,mmbench_ru_dev,gqa,mmbench_en_dev --batch_size 1 \
76
+ --log_samples --log_samples_suffix llava-saiga-8b --output_path ./logs/
77
+ ```
78
 
79
+ | Model | GQA | GQA-ru | MMBench | MMBench-ru |
80
+ | ----------------------------------------------------------------------------------------------- |:------------:|:------------:|:------------:|:------------:|
81
+ | `deepvk/llava-gemma-2b-lora` [this model] | 56.39 | <u>46.37</u> | <u>51.72</u> | <u>40.19</u> |
82
+ | [`Intel/llava-gemma-2b`](https://huggingface.co/Intel/llava-gemma-2b) | <u>59.80</u> | 0.20 | 39.40 | 28.30 |
83
+ | [`deepvk/llava-saiga-8b`](https://huggingface.co/deepvk/llava-saiga-8b) | 62.00 | **51.44** | 64.26 | **56.65** |
84
+ | [`llava-hf/llava-1.5-7b-hf`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) | 61.31 | 28.39 | 62.97 | 52.25 |
85
+ | [`llava-hf/llava-v1.6-mistral-7b-hf`](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) | **64.65** | 6.65 | **67.70** | 48.80 |
86
 
87
+ *Note*: for MMBench we didn't use OpenAI API for finding quantifier in generated string. Therefore, the score is similar to Exact Match as in GQA benchmark.
88
 
89
+ ## Citation
90
 
91
+ ```
92
+ @misc{liu2023llava,
93
+ title={Visual Instruction Tuning},
94
+ author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
95
+ publisher={NeurIPS},
96
+ year={2023},
97
+ }
98
+ ```
99
 
100
+ ```
101
+ @misc{deepvk2024llava-gemma-2b-lora,
102
+ title={LLaVA-Gemma-2b-LORA},
103
+ author={Belopolskih, Daniil and Spirin, Egor},
104
+ url={https://huggingface.co/deepvk/llava-gemma-2b-lora},
105
+ publisher={Hugging Face}
106
+ year={2024},
107
+ }
108
+ ```
109