SpirinEgor
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,109 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- deepvk/LLaVA-Instruct-ru
|
6 |
+
- Lin-Chen/ShareGPT4V
|
7 |
+
- deepvk/GQA-ru
|
8 |
+
language:
|
9 |
+
- ru
|
10 |
+
- en
|
11 |
+
base_model: google/gemma-2b-it
|
12 |
+
pipeline_tag: image-text-to-text
|
13 |
---
|
14 |
|
15 |
+
# LLaVA-Gemma-2b-LORA
|
16 |
|
17 |
+
LLaVA-Gemma-2b-LORA is a Vision-Language Model (VLM) based on [`google/gemma-2b-it`](https://huggingface.co/google/gemma-2b-it) model
|
18 |
+
and trained in original LLaVA setup using LORA. This model is primarily adapted to work with Russian, but still capable to work with English.
|
19 |
|
20 |
+
## Usage
|
21 |
|
22 |
+
Model usage is simple via `transformers` API
|
23 |
|
24 |
+
```python
|
25 |
+
import requests
|
26 |
|
27 |
+
from PIL import Image
|
28 |
+
from transformers import AutoProcessor, AutoTokenizer, LlavaForConditionalGeneration
|
29 |
|
30 |
+
model_name = "deepvk/llava-gemma-2b-lora"
|
31 |
|
32 |
+
model = LlavaForConditionalGeneration.from_pretrained(model_name)
|
33 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
|
36 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
37 |
+
img = Image.open(requests.get(url, stream=True).raw)
|
38 |
+
messages = [
|
39 |
+
{"role": "user", "content": "<image>\nОпиши картинку несколькими словами."}
|
40 |
+
]
|
|
|
|
|
41 |
|
42 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
43 |
+
inputs = processor(images=[img], text=text, return_tensors="pt")
|
44 |
|
45 |
+
generate_ids = model.generate(**inputs, max_new_tokens=30)
|
46 |
+
answer = tokenizer.decode(generate_ids[0, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
47 |
+
print(answer)
|
48 |
+
```
|
49 |
|
50 |
+
Use the `<image>` tag to point to an image in the text and follow the chat template for a multi-turn conversation.
|
51 |
+
The model is capable of chatting without any images or working with multiple images in a conversation, but this behavior has not been tested.
|
|
|
52 |
|
53 |
+
The model format allows it to be directly used in popular frameworks,
|
54 |
+
e.g. you can test the model using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), see Results section for details.
|
55 |
|
|
|
56 |
|
57 |
+
## Train
|
58 |
|
59 |
+
To train this model, we follow the original LLaVA pipeline and reuse [`haotian-liu/LLaVA`](https://github.com/haotian-liu/LLaVA) framework.
|
60 |
|
61 |
+
The model was trained in two stages:
|
62 |
+
1. The adapter was trained using pre-training data from [`ShareGPT4V`](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V).
|
63 |
+
2. Instruction tuning included training the LLM and the adapter, for this we use:
|
64 |
+
* [`deepvk/LLaVA-Instruct-ru`](https://huggingface.co/datasets/deepvk/LLaVA-Instruct-ru) — our new dataset of VLM instructions in Russian
|
65 |
+
* [`deepvk/GQA-ru`](https://huggingface.co/datasets/deepvk/GQA-ru) — the training part of the popular GQA test, translated into Russian, we used the post-prompt "Ответь одним словом. ".
|
66 |
+
* We also used instruction data from ShareGPT4V.
|
67 |
|
68 |
+
The entire training process took 3 days on a single A100 40GB.
|
69 |
|
70 |
+
## Results
|
71 |
|
72 |
+
The model's performance was evaluated using [`lmms-eval`](https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main) framework
|
73 |
+
```bash
|
74 |
+
accelerate launch -m lmms_eval --model llava_hf --model_args pretrained="deepvk/llava-gemma-2b-lora" \
|
75 |
+
--tasks gqa-ru,mmbench_ru_dev,gqa,mmbench_en_dev --batch_size 1 \
|
76 |
+
--log_samples --log_samples_suffix llava-saiga-8b --output_path ./logs/
|
77 |
+
```
|
78 |
|
79 |
+
| Model | GQA | GQA-ru | MMBench | MMBench-ru |
|
80 |
+
| ----------------------------------------------------------------------------------------------- |:------------:|:------------:|:------------:|:------------:|
|
81 |
+
| `deepvk/llava-gemma-2b-lora` [this model] | 56.39 | <u>46.37</u> | <u>51.72</u> | <u>40.19</u> |
|
82 |
+
| [`Intel/llava-gemma-2b`](https://huggingface.co/Intel/llava-gemma-2b) | <u>59.80</u> | 0.20 | 39.40 | 28.30 |
|
83 |
+
| [`deepvk/llava-saiga-8b`](https://huggingface.co/deepvk/llava-saiga-8b) | 62.00 | **51.44** | 64.26 | **56.65** |
|
84 |
+
| [`llava-hf/llava-1.5-7b-hf`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) | 61.31 | 28.39 | 62.97 | 52.25 |
|
85 |
+
| [`llava-hf/llava-v1.6-mistral-7b-hf`](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) | **64.65** | 6.65 | **67.70** | 48.80 |
|
86 |
|
87 |
+
*Note*: for MMBench we didn't use OpenAI API for finding quantifier in generated string. Therefore, the score is similar to Exact Match as in GQA benchmark.
|
88 |
|
89 |
+
## Citation
|
90 |
|
91 |
+
```
|
92 |
+
@misc{liu2023llava,
|
93 |
+
title={Visual Instruction Tuning},
|
94 |
+
author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
|
95 |
+
publisher={NeurIPS},
|
96 |
+
year={2023},
|
97 |
+
}
|
98 |
+
```
|
99 |
|
100 |
+
```
|
101 |
+
@misc{deepvk2024llava-gemma-2b-lora,
|
102 |
+
title={LLaVA-Gemma-2b-LORA},
|
103 |
+
author={Belopolskih, Daniil and Spirin, Egor},
|
104 |
+
url={https://huggingface.co/deepvk/llava-gemma-2b-lora},
|
105 |
+
publisher={Hugging Face}
|
106 |
+
year={2024},
|
107 |
+
}
|
108 |
+
```
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|