julianrisch
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -29,7 +29,7 @@ model-index:
|
|
29 |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ
|
30 |
---
|
31 |
|
32 |
-
# Multilingual XLM-RoBERTa large for QA on various languages
|
33 |
|
34 |
## Overview
|
35 |
**Language model:** xlm-roberta-large
|
@@ -38,6 +38,7 @@ model-index:
|
|
38 |
**Training data:** SQuAD 2.0
|
39 |
**Eval data:** SQuAD dev set - German MLQA - German XQuAD
|
40 |
**Training run:** [MLFlow link](https://public-mlflow.deepset.ai/#/experiments/124/runs/3a540e3f3ecf4dd98eae8fc6d457ff20)
|
|
|
41 |
**Infrastructure**: 4x Tesla v100
|
42 |
|
43 |
## Hyperparameters
|
@@ -52,7 +53,51 @@ lr_schedule = LinearWarmup
|
|
52 |
warmup_proportion = 0.2
|
53 |
doc_stride=128
|
54 |
max_query_length=64
|
55 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
## Performance
|
58 |
Evaluated on the SQuAD 2.0 English dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
@@ -118,6 +163,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
118 |
**Tanay Soni:** [email protected]
|
119 |
|
120 |
## About us
|
|
|
121 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
122 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
123 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
@@ -127,13 +173,12 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
127 |
</div>
|
128 |
</div>
|
129 |
|
130 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
131 |
-
|
132 |
|
133 |
Some of our other work:
|
134 |
-
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](
|
135 |
-
- [German BERT
|
136 |
-
- [
|
137 |
|
138 |
## Get in touch and join the Haystack community
|
139 |
|
@@ -141,6 +186,6 @@ Some of our other work:
|
|
141 |
|
142 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
143 |
|
144 |
-
[Twitter](https://twitter.com/
|
145 |
|
146 |
-
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
29 |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE5MWJmZGUxMGMwNWFhYzVhZjQwZGEwOWQ4N2Q2Yjg5NzdjNDFiNDhiYTQ1Y2E5ZWJkOTFhYmI1Y2Q2ZGYwOCIsInZlcnNpb24iOjF9.TIdH-tOx3kEMDs5wK1r6iwZqqSjNGlBrpawrsE917j1F3UFJVnQ7wJwaj0OIgmC4iw8OQeLZL56ucBcLApa-AQ
|
30 |
---
|
31 |
|
32 |
+
# Multilingual XLM-RoBERTa large for Extractive QA on various languages
|
33 |
|
34 |
## Overview
|
35 |
**Language model:** xlm-roberta-large
|
|
|
38 |
**Training data:** SQuAD 2.0
|
39 |
**Eval data:** SQuAD dev set - German MLQA - German XQuAD
|
40 |
**Training run:** [MLFlow link](https://public-mlflow.deepset.ai/#/experiments/124/runs/3a540e3f3ecf4dd98eae8fc6d457ff20)
|
41 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
42 |
**Infrastructure**: 4x Tesla v100
|
43 |
|
44 |
## Hyperparameters
|
|
|
53 |
warmup_proportion = 0.2
|
54 |
doc_stride=128
|
55 |
max_query_length=64
|
56 |
+
```
|
57 |
+
|
58 |
+
## Usage
|
59 |
+
|
60 |
+
### In Haystack
|
61 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
62 |
+
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
|
63 |
+
```python
|
64 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
65 |
+
|
66 |
+
from haystack import Document
|
67 |
+
from haystack.components.readers import ExtractiveReader
|
68 |
+
|
69 |
+
docs = [
|
70 |
+
Document(content="Python is a popular programming language"),
|
71 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
72 |
+
]
|
73 |
+
|
74 |
+
reader = ExtractiveReader(model="deepset/xlm-roberta-large-squad2")
|
75 |
+
reader.warm_up()
|
76 |
+
|
77 |
+
question = "What is a popular programming language?"
|
78 |
+
result = reader.run(query=question, documents=docs)
|
79 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
80 |
+
```
|
81 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
82 |
+
|
83 |
+
### In Transformers
|
84 |
+
```python
|
85 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
86 |
+
|
87 |
+
model_name = "deepset/xlm-roberta-large-squad2"
|
88 |
+
|
89 |
+
# a) Get predictions
|
90 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
91 |
+
QA_input = {
|
92 |
+
'question': 'Why is model conversion important?',
|
93 |
+
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
94 |
+
}
|
95 |
+
res = nlp(QA_input)
|
96 |
+
|
97 |
+
# b) Load model & tokenizer
|
98 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
+
```
|
101 |
|
102 |
## Performance
|
103 |
Evaluated on the SQuAD 2.0 English dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
|
|
163 |
**Tanay Soni:** [email protected]
|
164 |
|
165 |
## About us
|
166 |
+
|
167 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
168 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
169 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
|
|
173 |
</div>
|
174 |
</div>
|
175 |
|
176 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
177 |
|
178 |
Some of our other work:
|
179 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
180 |
+
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
|
181 |
+
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
|
182 |
|
183 |
## Get in touch and join the Haystack community
|
184 |
|
|
|
186 |
|
187 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
188 |
|
189 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
|
190 |
|
191 |
+
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|