zqh11 commited on
Commit
610df21
·
1 Parent(s): df94e67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -36,7 +36,7 @@ import torch
36
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
37
  model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
38
  input_text = "#write a quick sort algorithm"
39
- inputs = tokenizer(input_text, return_tensors="pt").cuda()
40
  outputs = model.generate(**inputs, max_length=128)
41
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
42
  ```
@@ -59,7 +59,7 @@ input_text = """<|fim▁begin|>def quick_sort(arr):
59
  else:
60
  right.append(arr[i])
61
  return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
62
- inputs = tokenizer(input_text, return_tensors="pt").cuda()
63
  outputs = model.generate(**inputs, max_length=128)
64
  print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
65
  ```
@@ -144,7 +144,7 @@ from model import IrisClassifier as Classifier
144
  def main():
145
  # Model training and evaluation
146
  """
147
- inputs = tokenizer(input_text, return_tensors="pt").cuda()
148
  outputs = model.generate(**inputs, max_new_tokens=140)
149
  print(tokenizer.decode(outputs[0]))
150
  ```
 
36
  tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
37
  model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
38
  input_text = "#write a quick sort algorithm"
39
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
40
  outputs = model.generate(**inputs, max_length=128)
41
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
42
  ```
 
59
  else:
60
  right.append(arr[i])
61
  return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
62
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
63
  outputs = model.generate(**inputs, max_length=128)
64
  print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
65
  ```
 
144
  def main():
145
  # Model training and evaluation
146
  """
147
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
148
  outputs = model.generate(**inputs, max_new_tokens=140)
149
  print(tokenizer.decode(outputs[0]))
150
  ```