|
import os |
|
import shutil |
|
from argparse import ArgumentParser |
|
from glob import glob |
|
from tqdm import tqdm, trange |
|
|
|
import torch |
|
from safetensors.torch import safe_open, save_file |
|
|
|
|
|
mapping = { |
|
"embed_tokens": ("embed", 0), |
|
"input_layernorm": ("attn_norm", None), |
|
"post_attention_layernorm": ("ffn_norm", None), |
|
"q_proj": ("wq", 0), |
|
"q_a_proj": ("wq_a", None), |
|
"q_a_layernorm": ("q_norm", None), |
|
"q_b_proj": ("wq_b", 0), |
|
"kv_a_proj_with_mqa": ("wkv_a", None), |
|
"kv_a_layernorm": ("kv_norm", None), |
|
"kv_b_proj": ("wkv_b", 0), |
|
"o_proj": ("wo", 1), |
|
"gate": ("gate", None), |
|
"gate_proj": ("w1", 0), |
|
"down_proj": ("w2", 1), |
|
"up_proj": ("w3", 0), |
|
"norm": ("norm", None), |
|
"lm_head": ("head", 0), |
|
"scale": ("scale", None), |
|
} |
|
|
|
|
|
def main(hf_ckpt_path, save_path, n_experts, mp): |
|
torch.set_num_threads(8) |
|
n_local_experts = n_experts // mp |
|
state_dicts = [{} for _ in range(mp)] |
|
|
|
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))): |
|
with safe_open(file_path, framework="pt", device="cpu") as f: |
|
for name in f.keys(): |
|
if "model.layers.61" in name: |
|
continue |
|
param: torch.Tensor = f.get_tensor(name) |
|
if name.startswith("model."): |
|
name = name[len("model."):] |
|
name = name.replace("self_attn", "attn") |
|
name = name.replace("mlp", "ffn") |
|
name = name.replace("weight_scale_inv", "scale") |
|
name = name.replace("e_score_correction_bias", "bias") |
|
key = name.split(".")[-2] |
|
assert key in mapping |
|
new_key, dim = mapping[key] |
|
name = name.replace(key, new_key) |
|
for i in range(mp): |
|
new_param = param |
|
if "experts" in name and "shared_experts" not in name: |
|
idx = int(name.split(".")[-3]) |
|
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts: |
|
continue |
|
elif dim is not None: |
|
assert param.size(dim) % mp == 0 |
|
shard_size = param.size(dim) // mp |
|
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous() |
|
state_dicts[i][name] = new_param |
|
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
for i in trange(mp): |
|
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors")) |
|
|
|
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")): |
|
new_file_path = os.path.join(save_path, os.path.basename(file_path)) |
|
shutil.copyfile(file_path, new_file_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--hf-ckpt-path", type=str, required=True) |
|
parser.add_argument("--save-path", type=str, required=True) |
|
parser.add_argument("--n-experts", type=int, required=True) |
|
parser.add_argument("--model-parallel", type=int, default=1) |
|
args = parser.parse_args() |
|
assert args.n_experts % args.model_parallel == 0 |
|
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel) |
|
|