deepgai commited on
Commit
ad7d208
·
1 Parent(s): 6e7eeda

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: tweet_eval-sentiment-finetuned
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # tweet_eval-sentiment-finetuned
17
+
18
+ This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8369
21
+ - Accuracy: 0.7305
22
+ - F1: 0.7297
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 8e-05
42
+ - train_batch_size: 128
43
+ - eval_batch_size: 256
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: cosine
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 4
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
+ | 0.7269 | 1.0 | 357 | 0.6057 | 0.733 | 0.7323 |
56
+ | 0.522 | 2.0 | 714 | 0.6115 | 0.7415 | 0.7416 |
57
+ | 0.359 | 3.0 | 1071 | 0.6970 | 0.744 | 0.7445 |
58
+ | 0.2386 | 4.0 | 1428 | 0.8369 | 0.7305 | 0.7297 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.18.0
64
+ - Pytorch 1.9.1
65
+ - Datasets 2.1.0
66
+ - Tokenizers 0.12.1