File size: 2,698 Bytes
85804ae 0c14673 85804ae 94f98d1 85804ae 0c14673 85804ae 0c14673 84b6a85 0c14673 217de36 5f0bae5 85804ae 94f98d1 85804ae 94f98d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-base
datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: Whisper Medium en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: en
split: test
args: en
metrics:
- type: wer
value: 19.93890124498
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: en_us
split: test
metrics:
- type: wer
value: 11.25
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: en
split: test
metrics:
- type: wer
value: 11.28
name: WER
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper base mixed-English
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the "en" datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- facebook/voxpopuli
It achieves the following results on the evaluation set:
- Loss: 0.5065
- Wer: 19.9389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2909 | 0.2 | 1000 | 0.5348 | 21.1519 |
| 0.2316 | 0.4 | 2000 | 0.5255 | 20.7474 |
| 0.2351 | 0.6 | 3000 | 0.5132 | 20.3192 |
| 0.1924 | 0.8 | 4000 | 0.5097 | 20.0584 |
| 0.1984 | 1.0 | 5000 | 0.5065 | 19.9389 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |