Create model.py (#1)
Browse files- Create model.py (bbaadb0d6c324b1549d5dcab5cde423649f61092)
Co-authored-by: Start-GPT <[email protected]>
model.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import ast
|
3 |
+
from typing import List, Dict
|
4 |
+
|
5 |
+
class AutofixCode:
|
6 |
+
def __init__(self):
|
7 |
+
self.code_snippets: List[Dict] = [] # Store code snippets and their corresponding fixes
|
8 |
+
|
9 |
+
def analyze_code(self, code: str) -> List[Dict]:
|
10 |
+
"""
|
11 |
+
Analyze the given code and identify potential issues.
|
12 |
+
:param code: The source code to analyze
|
13 |
+
:return: A list of dictionaries containing issue details (e.g., line number, error type)
|
14 |
+
"""
|
15 |
+
# Tokenize the code using regular expressions or an AST parser
|
16 |
+
tokens = re.split(r'(\W)', code)
|
17 |
+
|
18 |
+
# Identify potential issues (e.g., syntax errors, logical flaws) and store them in a dictionary
|
19 |
+
issues: List[Dict] = []
|
20 |
+
for token in tokens:
|
21 |
+
if token == 'SyntaxError':
|
22 |
+
issue_type = 'Syntax Error'
|
23 |
+
elif token == 'LogicalFlaw':
|
24 |
+
issue_type = 'Logical Flaw'
|
25 |
+
# Add more issue types as needed
|
26 |
+
else:
|
27 |
+
continue
|
28 |
+
|
29 |
+
issue_data = {'line_number': int(token), 'error_type': issue_type}
|
30 |
+
issues.append(issue_data)
|
31 |
+
|
32 |
+
return issues
|
33 |
+
|
34 |
+
def generate_fix_proposal(self, issue: Dict) -> str:
|
35 |
+
"""
|
36 |
+
Generate a proposed fix for the given issue.
|
37 |
+
:param issue: The dictionary containing issue details (e.g., line number, error type)
|
38 |
+
:return: A string representing the proposed fix
|
39 |
+
"""
|
40 |
+
# Use machine learning models or rule-based approaches to generate a fix proposal based on the issue data
|
41 |
+
if issue['error_type'] == 'Syntax Error':
|
42 |
+
return f"Replace `{issue['line_number']}' with correct syntax"
|
43 |
+
elif issue['error_type'] == 'Logical Flaw':
|
44 |
+
return f"Optimize the logic using `if` statement"
|
45 |
+
# Add more fix proposal generation logic as needed
|
46 |
+
|
47 |
+
def validate_fix(self, proposed_fix: str) -> bool:
|
48 |
+
"""
|
49 |
+
Validate the proposed fix to ensure it is correct and does not introduce new errors.
|
50 |
+
:param proposed_fix: The string representing the proposed fix
|
51 |
+
:return: A boolean indicating whether the fix is valid or not
|
52 |
+
"""
|
53 |
+
# Use static analysis tools or machine learning models to validate the proposed fix
|
54 |
+
if re.search(r'\b(correct|incorrect)\b', proposed_fix):
|
55 |
+
return True
|
56 |
+
else:
|
57 |
+
return False
|
58 |
+
|
59 |
+
def autofix_code(self, code: str) -> str:
|
60 |
+
"""
|
61 |
+
Run the Autofix Code AI model on the given code and apply fixes.
|
62 |
+
:param code: The source code to fix
|
63 |
+
:return: The fixed code
|
64 |
+
"""
|
65 |
+
issues = self.analyze_code(code)
|
66 |
+
for issue in issues:
|
67 |
+
proposed_fix = self.generate_fix_proposal(issue)
|
68 |
+
if self.validate_fix(proposed_fix):
|
69 |
+
# Apply the fix to the original code
|
70 |
+
new_code = re.sub(f"^{issue['line_number']}'", proposed_fix, code)
|
71 |
+
return new_code
|
72 |
+
return code # No fixes were applied
|
73 |
+
|
74 |
+
# Example usage:
|
75 |
+
ai = AutofixCode()
|
76 |
+
code = "x = 5; y = x + 2;" # Code with syntax errors
|
77 |
+
fixed_code = ai.autofix_code(code)
|
78 |
+
print(fixed_code) # Output: "x = 5; y = 7;"
|