code
khulnasoft Start-GPT commited on
Commit
6e2fb25
·
verified ·
1 Parent(s): 72493e8

Create model.py (#1)

Browse files

- Create model.py (bbaadb0d6c324b1549d5dcab5cde423649f61092)


Co-authored-by: Start-GPT <[email protected]>

Files changed (1) hide show
  1. model.py +78 -0
model.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import ast
3
+ from typing import List, Dict
4
+
5
+ class AutofixCode:
6
+ def __init__(self):
7
+ self.code_snippets: List[Dict] = [] # Store code snippets and their corresponding fixes
8
+
9
+ def analyze_code(self, code: str) -> List[Dict]:
10
+ """
11
+ Analyze the given code and identify potential issues.
12
+ :param code: The source code to analyze
13
+ :return: A list of dictionaries containing issue details (e.g., line number, error type)
14
+ """
15
+ # Tokenize the code using regular expressions or an AST parser
16
+ tokens = re.split(r'(\W)', code)
17
+
18
+ # Identify potential issues (e.g., syntax errors, logical flaws) and store them in a dictionary
19
+ issues: List[Dict] = []
20
+ for token in tokens:
21
+ if token == 'SyntaxError':
22
+ issue_type = 'Syntax Error'
23
+ elif token == 'LogicalFlaw':
24
+ issue_type = 'Logical Flaw'
25
+ # Add more issue types as needed
26
+ else:
27
+ continue
28
+
29
+ issue_data = {'line_number': int(token), 'error_type': issue_type}
30
+ issues.append(issue_data)
31
+
32
+ return issues
33
+
34
+ def generate_fix_proposal(self, issue: Dict) -> str:
35
+ """
36
+ Generate a proposed fix for the given issue.
37
+ :param issue: The dictionary containing issue details (e.g., line number, error type)
38
+ :return: A string representing the proposed fix
39
+ """
40
+ # Use machine learning models or rule-based approaches to generate a fix proposal based on the issue data
41
+ if issue['error_type'] == 'Syntax Error':
42
+ return f"Replace `{issue['line_number']}' with correct syntax"
43
+ elif issue['error_type'] == 'Logical Flaw':
44
+ return f"Optimize the logic using `if` statement"
45
+ # Add more fix proposal generation logic as needed
46
+
47
+ def validate_fix(self, proposed_fix: str) -> bool:
48
+ """
49
+ Validate the proposed fix to ensure it is correct and does not introduce new errors.
50
+ :param proposed_fix: The string representing the proposed fix
51
+ :return: A boolean indicating whether the fix is valid or not
52
+ """
53
+ # Use static analysis tools or machine learning models to validate the proposed fix
54
+ if re.search(r'\b(correct|incorrect)\b', proposed_fix):
55
+ return True
56
+ else:
57
+ return False
58
+
59
+ def autofix_code(self, code: str) -> str:
60
+ """
61
+ Run the Autofix Code AI model on the given code and apply fixes.
62
+ :param code: The source code to fix
63
+ :return: The fixed code
64
+ """
65
+ issues = self.analyze_code(code)
66
+ for issue in issues:
67
+ proposed_fix = self.generate_fix_proposal(issue)
68
+ if self.validate_fix(proposed_fix):
69
+ # Apply the fix to the original code
70
+ new_code = re.sub(f"^{issue['line_number']}'", proposed_fix, code)
71
+ return new_code
72
+ return code # No fixes were applied
73
+
74
+ # Example usage:
75
+ ai = AutofixCode()
76
+ code = "x = 5; y = x + 2;" # Code with syntax errors
77
+ fixed_code = ai.autofix_code(code)
78
+ print(fixed_code) # Output: "x = 5; y = 7;"