deepaksiloka
commited on
Commit
·
8f27514
1
Parent(s):
987585b
update model card README.md
Browse files
README.md
CHANGED
@@ -18,11 +18,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Precision:
|
23 |
-
- Recall:
|
24 |
-
- F1:
|
25 |
-
- Accuracy:
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -47,15 +47,22 @@ The following hyperparameters were used during training:
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
-
- num_epochs:
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1
|
55 |
-
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0862
|
22 |
+
- Precision: 0.9925
|
23 |
+
- Recall: 0.9959
|
24 |
+
- F1: 0.9942
|
25 |
+
- Accuracy: 0.9896
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.1364 | 1.0 | 769 | 0.0832 | 0.9828 | 0.9998 | 0.9912 | 0.9823 |
|
57 |
+
| 0.0533 | 2.0 | 1538 | 0.0631 | 0.9934 | 0.9923 | 0.9928 | 0.9871 |
|
58 |
+
| 0.0329 | 3.0 | 2307 | 0.0651 | 0.9912 | 0.9978 | 0.9945 | 0.9897 |
|
59 |
+
| 0.021 | 4.0 | 3076 | 0.0680 | 0.9937 | 0.9952 | 0.9945 | 0.9899 |
|
60 |
+
| 0.0171 | 5.0 | 3845 | 0.0628 | 0.9928 | 0.9969 | 0.9948 | 0.9906 |
|
61 |
+
| 0.0115 | 6.0 | 4614 | 0.0678 | 0.9930 | 0.9963 | 0.9947 | 0.9903 |
|
62 |
+
| 0.0075 | 7.0 | 5383 | 0.0854 | 0.9928 | 0.9956 | 0.9942 | 0.9896 |
|
63 |
+
| 0.0045 | 8.0 | 6152 | 0.0862 | 0.9919 | 0.9948 | 0.9934 | 0.9890 |
|
64 |
+
| 0.0031 | 9.0 | 6921 | 0.0839 | 0.9919 | 0.9958 | 0.9938 | 0.9896 |
|
65 |
+
| 0.0028 | 10.0 | 7690 | 0.0862 | 0.9925 | 0.9959 | 0.9942 | 0.9896 |
|
66 |
|
67 |
|
68 |
### Framework versions
|