Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mlabonne/Marcoro14-7B-slerp
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- argilla/distilabel-intel-orca-dpo-pairs
|
6 |
+
---
|
7 |
+
|
8 |
+
# Model Card for decruz07/kellemar-DPO-Orca-Distilled-7B
|
9 |
+
|
10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
+
|
12 |
+
This model was created using mlabonne/Marcoro14-7B-slerp as the base, and finetuned with argilla/distilabel-intel-orca-dpo-pairs
|
13 |
+
|
14 |
+
These are the GGUF versions. Both qk4m and qk5m variations are available for download.
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
Finetuned with these specific parameters:
|
19 |
+
Steps: 200
|
20 |
+
Learning Rate: 5e5
|
21 |
+
Beta: 0.1
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
|
25 |
+
<!-- Provide a longer summary of what this model is. -->
|
26 |
+
|
27 |
+
- **Developed by:** @decruz
|
28 |
+
- **Funded by [optional]:** my full-time job
|
29 |
+
- **Finetuned from model [optional]:** mlabonne/Marcoro14-7B-slerp
|
30 |
+
|
31 |
+
## Benchmarks
|
32 |
+
Top 5 in OpenLLM Benchmarks as of 2024/01/17
|
33 |
+
|
34 |
+
**OpenLLM**
|
35 |
+
|Model| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|
36 |
+
|---|---|---|---|---|---|---|---|
|
37 |
+
|**kellemar-DPO-Orca-Distilled-7B-SLERP**| 73.71 | 70.48 | 87.56 | 65.33 |64.97 | 81.93 | 72.02 |
|
38 |
+
|
39 |
+
**Nous**
|
40 |
+
Model| AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|
41 |
+
|---|---|---|---|---|---|
|
42 |
+
|**kellemar-DPO-Orca-Distilled-7B-SLERP**| 45.27 | 76.42 | 65.48 | 47.21 |58.6 |
|
43 |
+
|Marcoro14-7B-slerp| 44.66 | 76.24 | 64.15 | 45.64 |57.67 |
|
44 |
+
|kellemar-DPO-Orca-Distilled-7B| 43.61 | 73.14 | 55.73 | 42.28 |53.69 |
|
45 |
+
|kellemar-Orca-DPO-7B| 43.35 | 73.43 | 54.02 | 42.24 |53.26 |
|
46 |
+
|OpenHermes-2.5-Mistral-7B| 43.07 | 73.12 | 53.04 | 40.96 |52.38 |
|
47 |
+
|
48 |
+
## Uses
|
49 |
+
|
50 |
+
You can use this for basic inference. You could probably finetune with this if you want to.
|
51 |
+
|
52 |
+
|
53 |
+
## How to Get Started with the Model
|
54 |
+
|
55 |
+
You can create a space out of this, or use basic python code to call the model directly and make inferences to it.
|
56 |
+
|
57 |
+
[More Information Needed]
|
58 |
+
|
59 |
+
## Training Details
|
60 |
+
|
61 |
+
The following was used:
|
62 |
+
`training_args = TrainingArguments(
|
63 |
+
per_device_train_batch_size=4,
|
64 |
+
gradient_accumulation_steps=4,
|
65 |
+
gradient_checkpointing=True,
|
66 |
+
learning_rate=5e-5,
|
67 |
+
lr_scheduler_type="cosine",
|
68 |
+
max_steps=200,
|
69 |
+
save_strategy="no",
|
70 |
+
logging_steps=1,
|
71 |
+
output_dir=new_model,
|
72 |
+
optim="paged_adamw_32bit",
|
73 |
+
warmup_steps=100,
|
74 |
+
bf16=True,
|
75 |
+
report_to="wandb",
|
76 |
+
)
|
77 |
+
|
78 |
+
# Create DPO trainer
|
79 |
+
dpo_trainer = DPOTrainer(
|
80 |
+
model,
|
81 |
+
ref_model,
|
82 |
+
args=training_args,
|
83 |
+
train_dataset=dataset,
|
84 |
+
tokenizer=tokenizer,
|
85 |
+
peft_config=peft_config,
|
86 |
+
beta=0.1,
|
87 |
+
max_prompt_length=1024,
|
88 |
+
max_length=1536,
|
89 |
+
)`
|
90 |
+
|
91 |
+
### Training Data
|
92 |
+
|
93 |
+
This was trained with https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
|
94 |
+
|
95 |
+
### Training Procedure
|
96 |
+
|
97 |
+
Trained with Labonne's Google Colab Notebook on Finetuning Mistral 7B with DPO.
|
98 |
+
|
99 |
+
## Model Card Authors [optional]
|
100 |
+
|
101 |
+
@decruz
|
102 |
+
|
103 |
+
## Model Card Contact
|
104 |
+
|
105 |
+
@decruz on X/Twitter
|