Text-to-Audio
Inference Endpoints
TangoFlux / tangoflux
hungchiayu's picture
Create tangoflux
2b70cbe verified
from diffusers import AutoencoderOobleck
import torch
from transformers import T5EncoderModel,T5TokenizerFast
from diffusers import FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
from src.model import TangoFlux
from huggingface_hub import snapshot_download
from tqdm import tqdm
from typing import Optional,Union,List
from datasets import load_dataset, Audio
from math import pi
import json
import inspect
import yaml
from safetensors.torch import load_file
class TangoFluxInference:
def __init__(self,name='declare-lab/TangoFlux',device="cuda"):
self.vae = AutoencoderOobleck()
paths = snapshot_download(repo_id=name)
vae_weights = load_file("{}/vae.safetensors".format(paths))
self.vae.load_state_dict(vae_weights)
weights = load_file("{}/tangoflux.safetensors".format(paths))
with open('{}/config.json'.format(paths),'r') as f:
config = json.load(f)
self.model = TangoFlux(config)
self.model.load_state_dict(weights,strict=False)
# _IncompatibleKeys(missing_keys=['text_encoder.encoder.embed_tokens.weight'], unexpected_keys=[]) this behaviour is expected
self.vae.to(device)
self.model.to(device)
def generate(self,prompt,steps=25,duration=10,guidance_scale=4.5):
with torch.no_grad():
latents = self.model.inference_flow(prompt,
duration=duration,
num_inference_steps=steps,
guidance_scale=guidance_scale)
wave = self.vae.decode(latents.transpose(2,1)).sample.cpu()[0]
waveform_end = int(duration * self.vae.config.sampling_rate)
wave = wave[:, :waveform_end]
return wave