Text-to-Audio
Inference Endpoints
TangoFlux / model.py
hungchiayu's picture
Create model.py
881a418 verified
from transformers import T5EncoderModel,T5TokenizerFast
import torch
from diffusers import FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.training_utils import compute_density_for_timestep_sampling
import copy
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from typing import Optional,Union,List
from datasets import load_dataset, Audio
from math import pi
import inspect
import yaml
class StableAudioPositionalEmbedding(nn.Module):
"""Used for continuous time
Adapted from stable audio open.
"""
def __init__(self, dim: int):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, times: torch.Tensor) -> torch.Tensor:
times = times[..., None]
freqs = times * self.weights[None] * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((times, fouriered), dim=-1)
return fouriered
class DurationEmbedder(nn.Module):
"""
A simple linear projection model to map numbers to a latent space.
Code is adapted from
https://github.com/Stability-AI/stable-audio-tools
Args:
number_embedding_dim (`int`):
Dimensionality of the number embeddings.
min_value (`int`):
The minimum value of the seconds number conditioning modules.
max_value (`int`):
The maximum value of the seconds number conditioning modules
internal_dim (`int`):
Dimensionality of the intermediate number hidden states.
"""
def __init__(
self,
number_embedding_dim,
min_value,
max_value,
internal_dim: Optional[int] = 256,
):
super().__init__()
self.time_positional_embedding = nn.Sequential(
StableAudioPositionalEmbedding(internal_dim),
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
)
self.number_embedding_dim = number_embedding_dim
self.min_value = min_value
self.max_value = max_value
self.dtype = torch.float32
def forward(
self,
floats: torch.Tensor,
):
floats = floats.clamp(self.min_value, self.max_value)
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
# Cast floats to same type as embedder
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
embedding = self.time_positional_embedding(normalized_floats)
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
return float_embeds
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class TangoFlux(nn.Module):
def __init__(self,config,initialize_reference_model=False):
super().__init__()
self.num_layers = config.get('num_layers', 6)
self.num_single_layers = config.get('num_single_layers', 18)
self.in_channels = config.get('in_channels', 64)
self.attention_head_dim = config.get('attention_head_dim', 128)
self.joint_attention_dim = config.get('joint_attention_dim', 1024)
self.num_attention_heads = config.get('num_attention_heads', 8)
self.audio_seq_len = config.get('audio_seq_len', 645)
self.max_duration = config.get('max_duration', 30)
self.uncondition = config.get('uncondition', False)
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large")
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
self.max_text_seq_len = 64
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
self.text_embedding_dim = self.text_encoder.config.d_model
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU())
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration)
self.transformer = FluxTransformer2DModel(
in_channels=self.in_channels,
num_layers=self.num_layers,
num_single_layers=self.num_single_layers,
attention_head_dim=self.attention_head_dim,
num_attention_heads=self.num_attention_heads,
joint_attention_dim=self.joint_attention_dim,
pooled_projection_dim=self.text_embedding_dim,
guidance_embeds=False)
self.beta_dpo = 2000 ## this is used for dpo training
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32):
device = self.text_encoder.device
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""]
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
@torch.no_grad()
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt")
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_duration(self,duration):
return self.duration_emebdder(duration)
@torch.no_grad()
def inference_flow(self, prompt,
num_inference_steps=50,
timesteps=None,
guidance_scale=3,
duration=10,
disable_progress=False,
num_samples_per_prompt=1):
'''Only tested for single inference. Haven't test for batch inference'''
bsz = num_samples_per_prompt
device = self.transformer.device
scheduler = self.noise_scheduler
if not isinstance(prompt,list):
prompt = [prompt]
if not isinstance(duration,torch.Tensor):
duration = torch.tensor([duration],device=device)
classifier_free_guidance = guidance_scale > 1.0
duration_hidden_states = self.encode_duration(duration)
if classifier_free_guidance:
bsz = 2 * num_samples_per_prompt
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt)
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt)
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
pooled = torch.nanmean(masked_data, dim=1)
pooled_projection = self.fc(pooled)
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
num_inference_steps,
device,
timesteps,
sigmas
)
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64)
weight_dtype = latents.dtype
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
timesteps = timesteps.to(device)
latents = latents.to(device)
encoder_hidden_states = encoder_hidden_states.to(device)
for i, t in enumerate(timesteps):
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
noise_pred = self.transformer(
hidden_states=latents_input,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=torch.tensor([t/1000],device=device),
guidance = None,
pooled_projections=pooled_projection,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=audio_ids,
return_dict=False,
)[0]
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents
def forward(self,
latents,
prompt,
duration=torch.tensor([10]),
sft=True
):
device = latents.device
audio_seq_length = self.audio_seq_len
bsz = latents.shape[0]
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
duration_hidden_states = self.encode_duration(duration)
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
pooled = torch.nanmean(masked_data, dim=1)
pooled_projection = self.fc(pooled)
## Add duration hidden states to encoder hidden states
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
if sft:
if self.uncondition:
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
noise = torch.randn_like(latents)
u = compute_density_for_timestep_sampling(
weighting_scheme='logit_normal',
batch_size=bsz,
logit_mean=0,
logit_std=1,
mode_scale=None,
)
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
model_pred = self.transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timesteps/1000,
return_dict=False)[0]
target = noise - latents
loss = torch.mean(
( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
raw_model_loss, raw_ref_loss,implicit_acc = 0,0,0 ## default this to 0 if doing sft
else:
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
pooled_projection = pooled_projection.repeat(2,1)
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) ## Have to sample same noise for preferred and rejected
u = compute_density_for_timestep_sampling(
weighting_scheme='logit_normal',
batch_size=bsz//2,
logit_mean=0,
logit_std=1,
mode_scale=None,
)
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
timesteps = timesteps.repeat(2)
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
model_pred = self.transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timesteps/1000,
return_dict=False)[0]
target = noise - latents
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none")
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape))))
model_losses_w, model_losses_l = model_losses.chunk(2)
model_diff = model_losses_w - model_losses_l
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean())
with torch.no_grad():
ref_preds = self.ref_transformer(
hidden_states=noisy_model_input,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projection,
img_ids=audio_ids,
txt_ids=txt_ids,
guidance=None,
timestep=timesteps/1000,
return_dict=False)[0]
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none")
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape))))
ref_losses_w, ref_losses_l = ref_loss.chunk(2)
ref_diff = ref_losses_w - ref_losses_l
raw_ref_loss = ref_loss.mean()
scale_term = -0.5 * self.beta_dpo
inside_term = scale_term * (model_diff - ref_diff)
implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0)
loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean()
## raw_model_loss, raw_ref_loss, implicit_acc is used to help to analyze dpo behaviour.
return loss, raw_model_loss, raw_ref_loss, implicit_acc