|
from typing import Dict, List, Any |
|
from tangoflux import TangoFluxInference |
|
import torchaudio |
|
|
|
from huggingface_inference_toolkit.logging import logger |
|
import io |
|
import base64 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
|
|
self.model = TangoFluxInference(name='declare-lab/TangoFlux',device='cuda') |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
logger.info(f"Received incoming request with {data=}") |
|
|
|
if "inputs" in data and isinstance(data["inputs"], str): |
|
prompt = data.pop("inputs") |
|
elif "prompt" in data and isinstance(data["prompt"], str): |
|
prompt = data.pop("prompt") |
|
else: |
|
raise ValueError( |
|
"Provided input body must contain either the key `inputs` or `prompt` with the" |
|
" prompt to use for the audio generation, and it needs to be a non-empty string." |
|
) |
|
|
|
parameters = data.pop("parameters", {}) |
|
|
|
num_inference_steps = parameters.get("num_inference_steps", 50) |
|
duration = parameters.get("duration", 10) |
|
guidance_scale = parameters.get("guidance_scale", 3.5) |
|
|
|
audio= self.model.generate(prompt,steps=num_inference_steps, |
|
duration=duration, |
|
guidance_scale=guidance_scale) |
|
|
|
buffer = io.BytesIO() |
|
torchaudio.save(buffer, audio, 44100, format="wav") |
|
buffer.seek(0) |
|
audio_base64 = base64.b64encode(buffer.read()).decode('utf-8') |
|
return audio_base64 |