from typing import Dict, List, Any from tangoflux import TangoFluxInference import torchaudio from huggingface_inference_toolkit.logging import logger import io import base64 class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. # pseudo: # self.model= load_model(path) self.model = TangoFluxInference(name='declare-lab/TangoFlux',device='cuda') def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ logger.info(f"Received incoming request with {data=}") if "inputs" in data and isinstance(data["inputs"], str): prompt = data.pop("inputs") elif "prompt" in data and isinstance(data["prompt"], str): prompt = data.pop("prompt") else: raise ValueError( "Provided input body must contain either the key `inputs` or `prompt` with the" " prompt to use for the audio generation, and it needs to be a non-empty string." ) parameters = data.pop("parameters", {}) num_inference_steps = parameters.get("num_inference_steps", 50) duration = parameters.get("duration", 10) guidance_scale = parameters.get("guidance_scale", 3.5) audio= self.model.generate(prompt,steps=num_inference_steps, duration=duration, guidance_scale=guidance_scale) buffer = io.BytesIO() torchaudio.save(buffer, audio, 44100, format="wav") buffer.seek(0) audio_base64 = base64.b64encode(buffer.read()).decode('utf-8') return audio_base64