|
from transformers import T5EncoderModel,T5TokenizerFast |
|
import torch |
|
from diffusers import FluxTransformer2DModel |
|
from torch import nn |
|
|
|
from typing import List |
|
from diffusers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.training_utils import compute_density_for_timestep_sampling |
|
import copy |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
from typing import Optional,Union,List |
|
from datasets import load_dataset, Audio |
|
from math import pi |
|
import inspect |
|
import yaml |
|
|
|
|
|
|
|
class StableAudioPositionalEmbedding(nn.Module): |
|
"""Used for continuous time |
|
|
|
Adapted from stable audio open. |
|
|
|
""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
assert (dim % 2) == 0 |
|
half_dim = dim // 2 |
|
self.weights = nn.Parameter(torch.randn(half_dim)) |
|
|
|
def forward(self, times: torch.Tensor) -> torch.Tensor: |
|
times = times[..., None] |
|
freqs = times * self.weights[None] * 2 * pi |
|
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) |
|
fouriered = torch.cat((times, fouriered), dim=-1) |
|
return fouriered |
|
|
|
class DurationEmbedder(nn.Module): |
|
""" |
|
A simple linear projection model to map numbers to a latent space. |
|
|
|
Code is adapted from |
|
https://github.com/Stability-AI/stable-audio-tools |
|
|
|
Args: |
|
number_embedding_dim (`int`): |
|
Dimensionality of the number embeddings. |
|
min_value (`int`): |
|
The minimum value of the seconds number conditioning modules. |
|
max_value (`int`): |
|
The maximum value of the seconds number conditioning modules |
|
internal_dim (`int`): |
|
Dimensionality of the intermediate number hidden states. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
number_embedding_dim, |
|
min_value, |
|
max_value, |
|
internal_dim: Optional[int] = 256, |
|
): |
|
super().__init__() |
|
self.time_positional_embedding = nn.Sequential( |
|
StableAudioPositionalEmbedding(internal_dim), |
|
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim), |
|
) |
|
|
|
self.number_embedding_dim = number_embedding_dim |
|
self.min_value = min_value |
|
self.max_value = max_value |
|
self.dtype = torch.float32 |
|
|
|
def forward( |
|
self, |
|
floats: torch.Tensor, |
|
): |
|
floats = floats.clamp(self.min_value, self.max_value) |
|
|
|
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value) |
|
|
|
|
|
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype |
|
normalized_floats = normalized_floats.to(embedder_dtype) |
|
|
|
embedding = self.time_positional_embedding(normalized_floats) |
|
float_embeds = embedding.view(-1, 1, self.number_embedding_dim) |
|
|
|
return float_embeds |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
|
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TangoFlux(nn.Module): |
|
|
|
|
|
def __init__(self,config,initialize_reference_model=False): |
|
|
|
super().__init__() |
|
|
|
|
|
|
|
self.num_layers = config.get('num_layers', 6) |
|
self.num_single_layers = config.get('num_single_layers', 18) |
|
self.in_channels = config.get('in_channels', 64) |
|
self.attention_head_dim = config.get('attention_head_dim', 128) |
|
self.joint_attention_dim = config.get('joint_attention_dim', 1024) |
|
self.num_attention_heads = config.get('num_attention_heads', 8) |
|
self.audio_seq_len = config.get('audio_seq_len', 645) |
|
self.max_duration = config.get('max_duration', 30) |
|
self.uncondition = config.get('uncondition', False) |
|
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large") |
|
|
|
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000) |
|
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler) |
|
self.max_text_seq_len = 64 |
|
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) |
|
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name) |
|
self.text_embedding_dim = self.text_encoder.config.d_model |
|
|
|
|
|
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU()) |
|
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration) |
|
|
|
self.transformer = FluxTransformer2DModel( |
|
in_channels=self.in_channels, |
|
num_layers=self.num_layers, |
|
num_single_layers=self.num_single_layers, |
|
attention_head_dim=self.attention_head_dim, |
|
num_attention_heads=self.num_attention_heads, |
|
joint_attention_dim=self.joint_attention_dim, |
|
pooled_projection_dim=self.text_embedding_dim, |
|
guidance_embeds=False) |
|
|
|
self.beta_dpo = 2000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32): |
|
device = self.text_encoder.device |
|
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype) |
|
|
|
|
|
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device) |
|
timesteps = timesteps.to(device) |
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < n_dim: |
|
sigma = sigma.unsqueeze(-1) |
|
return sigma |
|
|
|
|
|
|
|
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
uncond_tokens = [""] |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_batch = self.tokenizer( |
|
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt", |
|
) |
|
uncond_input_ids = uncond_batch.input_ids.to(device) |
|
uncond_attention_mask = uncond_batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
negative_prompt_embeds = self.text_encoder( |
|
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask |
|
)[0] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) |
|
boolean_prompt_mask = (prompt_mask == 1).to(device) |
|
|
|
return prompt_embeds, boolean_prompt_mask |
|
|
|
@torch.no_grad() |
|
def encode_text(self, prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt") |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
|
|
|
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask)[0] |
|
|
|
boolean_encoder_mask = (attention_mask == 1).to(device) |
|
|
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
|
|
def encode_duration(self,duration): |
|
return self.duration_emebdder(duration) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def inference_flow(self, prompt, |
|
num_inference_steps=50, |
|
timesteps=None, |
|
guidance_scale=3, |
|
duration=10, |
|
disable_progress=False, |
|
num_samples_per_prompt=1): |
|
|
|
'''Only tested for single inference. Haven't test for batch inference''' |
|
|
|
bsz = num_samples_per_prompt |
|
device = self.transformer.device |
|
scheduler = self.noise_scheduler |
|
|
|
if not isinstance(prompt,list): |
|
prompt = [prompt] |
|
if not isinstance(duration,torch.Tensor): |
|
duration = torch.tensor([duration],device=device) |
|
classifier_free_guidance = guidance_scale > 1.0 |
|
duration_hidden_states = self.encode_duration(duration) |
|
if classifier_free_guidance: |
|
bsz = 2 * num_samples_per_prompt |
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt) |
|
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1) |
|
|
|
|
|
else: |
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt) |
|
|
|
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states) |
|
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan'))) |
|
|
|
pooled = torch.nanmean(masked_data, dim=1) |
|
pooled_projection = self.fc(pooled) |
|
|
|
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) |
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas |
|
) |
|
|
|
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64) |
|
weight_dtype = latents.dtype |
|
|
|
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress) |
|
|
|
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device) |
|
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device) |
|
|
|
|
|
timesteps = timesteps.to(device) |
|
latents = latents.to(device) |
|
encoder_hidden_states = encoder_hidden_states.to(device) |
|
|
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents |
|
|
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents_input, |
|
|
|
timestep=torch.tensor([t/1000],device=device), |
|
guidance = None, |
|
pooled_projections=pooled_projection, |
|
encoder_hidden_states=encoder_hidden_states, |
|
txt_ids=txt_ids, |
|
img_ids=audio_ids, |
|
return_dict=False, |
|
)[0] |
|
|
|
if classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
return latents |
|
|
|
def forward(self, |
|
latents, |
|
prompt, |
|
duration=torch.tensor([10]), |
|
sft=True |
|
): |
|
|
|
|
|
device = latents.device |
|
audio_seq_length = self.audio_seq_len |
|
bsz = latents.shape[0] |
|
|
|
|
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) |
|
duration_hidden_states = self.encode_duration(duration) |
|
|
|
|
|
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states) |
|
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan'))) |
|
pooled = torch.nanmean(masked_data, dim=1) |
|
pooled_projection = self.fc(pooled) |
|
|
|
|
|
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) |
|
|
|
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device) |
|
audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device) |
|
|
|
if sft: |
|
|
|
if self.uncondition: |
|
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] |
|
if len(mask_indices) > 0: |
|
encoder_hidden_states[mask_indices] = 0 |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
|
|
|
|
u = compute_density_for_timestep_sampling( |
|
weighting_scheme='logit_normal', |
|
batch_size=bsz, |
|
logit_mean=0, |
|
logit_std=1, |
|
mode_scale=None, |
|
) |
|
|
|
|
|
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long() |
|
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device) |
|
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype) |
|
|
|
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise |
|
|
|
|
|
|
|
model_pred = self.transformer( |
|
hidden_states=noisy_model_input, |
|
encoder_hidden_states=encoder_hidden_states, |
|
pooled_projections=pooled_projection, |
|
img_ids=audio_ids, |
|
txt_ids=txt_ids, |
|
guidance=None, |
|
|
|
timestep=timesteps/1000, |
|
return_dict=False)[0] |
|
|
|
|
|
|
|
target = noise - latents |
|
loss = torch.mean( |
|
( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), |
|
1, |
|
) |
|
loss = loss.mean() |
|
raw_model_loss, raw_ref_loss,implicit_acc = 0,0,0 |
|
|
|
else: |
|
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1) |
|
pooled_projection = pooled_projection.repeat(2,1) |
|
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) |
|
u = compute_density_for_timestep_sampling( |
|
weighting_scheme='logit_normal', |
|
batch_size=bsz//2, |
|
logit_mean=0, |
|
logit_std=1, |
|
mode_scale=None, |
|
) |
|
|
|
|
|
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long() |
|
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device) |
|
timesteps = timesteps.repeat(2) |
|
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype) |
|
|
|
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise |
|
|
|
model_pred = self.transformer( |
|
hidden_states=noisy_model_input, |
|
encoder_hidden_states=encoder_hidden_states, |
|
pooled_projections=pooled_projection, |
|
img_ids=audio_ids, |
|
txt_ids=txt_ids, |
|
guidance=None, |
|
|
|
timestep=timesteps/1000, |
|
return_dict=False)[0] |
|
target = noise - latents |
|
|
|
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape)))) |
|
model_losses_w, model_losses_l = model_losses.chunk(2) |
|
model_diff = model_losses_w - model_losses_l |
|
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean()) |
|
|
|
|
|
with torch.no_grad(): |
|
ref_preds = self.ref_transformer( |
|
hidden_states=noisy_model_input, |
|
encoder_hidden_states=encoder_hidden_states, |
|
pooled_projections=pooled_projection, |
|
img_ids=audio_ids, |
|
txt_ids=txt_ids, |
|
guidance=None, |
|
timestep=timesteps/1000, |
|
return_dict=False)[0] |
|
|
|
|
|
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none") |
|
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape)))) |
|
|
|
ref_losses_w, ref_losses_l = ref_loss.chunk(2) |
|
ref_diff = ref_losses_w - ref_losses_l |
|
raw_ref_loss = ref_loss.mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scale_term = -0.5 * self.beta_dpo |
|
inside_term = scale_term * (model_diff - ref_diff) |
|
implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0) |
|
loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean() |
|
|
|
|
|
return loss, raw_model_loss, raw_ref_loss, implicit_acc |
|
|
|
|
|
|