de-coder commited on
Commit
c2281bb
·
1 Parent(s): 7d6ee03

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +99 -8
  2. gitattributes +35 -0
  3. readme_template.md +103 -0
README.md CHANGED
@@ -1,12 +1,103 @@
1
  ---
2
- license: apache-2.0
3
- datasets:
4
- - swahili
5
  language:
6
- - sw
7
- metrics:
8
- - accuracy
9
  library_name: nemo
 
 
 
10
  tags:
11
- - asr
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  language:
3
+ - rw
4
+ license: cc-by-4.0
 
5
  library_name: nemo
6
+ datasets:
7
+ - mozilla-foundation/common_voice_11_0
8
+ thumbnail: null
9
  tags:
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - Swahili
13
+ - audio
14
+ - CTC
15
+ - Conformer
16
+ - Transformer
17
+ - NeMo
18
+ - pytorch
19
+ model-index:
20
+ - name: stt_sw_conformer_ctc_large
21
+ results: []
22
+
23
+ ---
24
+
25
+
26
+ ## Model Overview
27
+
28
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
29
+
30
+ ## NVIDIA NeMo: Training
31
+
32
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
33
+ ```
34
+ pip install nemo_toolkit['all']
35
+ ```
36
+
37
+ ## How to Use this Model
38
+
39
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
40
+
41
+ ### Automatically instantiate the model
42
+
43
+ ```python
44
+ import nemo.collections.asr as nemo_asr
45
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("decoder/STT_SW_Model")
46
+ ```
47
+
48
+ ### Transcribing using Python
49
+ First, let's get a sample
50
+ ```
51
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
52
+ ```
53
+ Then simply do:
54
+ ```
55
+ asr_model.transcribe(['2086-149220-0033.wav'])
56
+ ```
57
+
58
+ ### Transcribing many audio files
59
+
60
+ ```shell
61
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="de-coder/stt_rw_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
62
+ ```
63
+
64
+ ### Input
65
+
66
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
67
+
68
+ ### Output
69
+
70
+ This model provides transcribed speech as a string for a given audio sample.
71
+
72
+ ## Model Architecture
73
+
74
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
75
+
76
+ ## Training
77
+
78
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
79
+
80
+ ### Datasets
81
+
82
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
83
+
84
+ ## Performance
85
+
86
+ <LIST THE SCORES OF THE MODEL -
87
+ OR
88
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
89
+
90
+ ## Limitations
91
+
92
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
93
+
94
+ Eg:
95
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
96
+
97
+
98
+ ## References
99
+
100
+ <ADD ANY REFERENCES HERE AS NEEDED>
101
+
102
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
103
+
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ stt_sw_conformer_ctc_large.nemo filter=lfs diff=lfs merge=lfs -text
readme_template.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - rw
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - mozilla-foundation/common_voice_11_0
8
+ thumbnail: null
9
+ tags:
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - Kinyarwanda
13
+ - audio
14
+ - CTC
15
+ - Conformer
16
+ - Transformer
17
+ - NeMo
18
+ - pytorch
19
+ model-index:
20
+ - name: stt_rw_conformer_ctc_large
21
+ results: []
22
+
23
+ ---
24
+
25
+
26
+ ## Model Overview
27
+
28
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
29
+
30
+ ## NVIDIA NeMo: Training
31
+
32
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
33
+ ```
34
+ pip install nemo_toolkit['all']
35
+ ```
36
+
37
+ ## How to Use this Model
38
+
39
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
40
+
41
+ ### Automatically instantiate the model
42
+
43
+ ```python
44
+ import nemo.collections.asr as nemo_asr
45
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("yonas/stt_rw_conformer_ctc_large")
46
+ ```
47
+
48
+ ### Transcribing using Python
49
+ First, let's get a sample
50
+ ```
51
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
52
+ ```
53
+ Then simply do:
54
+ ```
55
+ asr_model.transcribe(['2086-149220-0033.wav'])
56
+ ```
57
+
58
+ ### Transcribing many audio files
59
+
60
+ ```shell
61
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="yonas/stt_rw_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
62
+ ```
63
+
64
+ ### Input
65
+
66
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
67
+
68
+ ### Output
69
+
70
+ This model provides transcribed speech as a string for a given audio sample.
71
+
72
+ ## Model Architecture
73
+
74
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
75
+
76
+ ## Training
77
+
78
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
79
+
80
+ ### Datasets
81
+
82
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
83
+
84
+ ## Performance
85
+
86
+ <LIST THE SCORES OF THE MODEL -
87
+ OR
88
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
89
+
90
+ ## Limitations
91
+
92
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
93
+
94
+ Eg:
95
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
96
+
97
+
98
+ ## References
99
+
100
+ <ADD ANY REFERENCES HERE AS NEEDED>
101
+
102
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
103
+