My third try
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_dkv5.zip +3 -0
- ppo-LunarLander-v2_dkv5/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_dkv5/data +99 -0
- ppo-LunarLander-v2_dkv5/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_dkv5/policy.pth +3 -0
- ppo-LunarLander-v2_dkv5/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_dkv5/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.62 +/- 25.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78c82b828550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c82b8285e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c82b828670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c82b828700>", "_build": "<function ActorCriticPolicy._build at 0x78c82b828790>", "forward": "<function ActorCriticPolicy.forward at 0x78c82b828820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c82b8288b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c82b828940>", "_predict": "<function ActorCriticPolicy._predict at 0x78c82b8289d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c82b828a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c82b828af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c82b828b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c82b7cf900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1612800, "_total_timesteps": 1600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726810908401000077, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1MJT3hWrS4r/EROO+uMK9/lwW8/i8wtwAAgD8AAIA/qOSQvgAfWj9qGmm+Iibwvi41Bb+dshS9AAAAAAAAAAD66QO+8rE/P+MBzz4pceW+JOb/vMKogD4AAAAAAAAAAGYQET1qXa8/qiMxP5RD1b7OP8C8x7cKvAAAAAAAAAAAzXjCPUizuLotmDs4RD8yM5HD/jlly1W3AAAAAAAAgD9QP2m+X02EP8DdIb4ZX9++xpMDv1NFp70AAAAAAAAAACbbvb0NDag/wCKVvnTi9r4rIGS+lvQ8vgAAAAAAAAAA7c12PhBYUD9yBbA96tjTvkirZD5ANLC9AAAAAAAAAAAanxI+pQifP+Y1CD8ustu+FHFTPlumtz4AAAAAAAAAAE1rML0gMZk/rO4Cvn9FAb8CmUi+B5pEvgAAAAAAAAAA5pZQPSnoQ7pHREi1xAU5r+cMSLuDcUI0AACAPwAAgD8zcHU9LFZTPth2Ur6LcZG+/7epvY4IXD0AAAAAAAAAADPZPD1oOrY/R0ukPlr2B76H+Z25fTsJPQAAAAAAAAAAZicfPSro2D5KpTg+W1K6vrzbDT0MrDU+AAAAAAAAAADjCoo+xl9FPy7or71FjLK+DWVBPqUKW74AAAAAAAAAAM3AFD0pBHC6BSdeND5ioC/8t+s6y8KPswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFTGE4//vSMAWyUS/SMAXSUR0CjtLa0IC2ddX2UKGgGR0BxsIYl6Z6VaAdL9WgIR0CjtL+w1R+CdX2UKGgGR0BzHqpiqhlEaAdL32gIR0CjtNL/0dzXdX2UKGgGR0Bw0KvfTCtSaAdL82gIR0CjtTmwqy4XdX2UKGgGR0Bt3xDLKV6eaAdL+WgIR0CjtY6Rhc7hdX2UKGgGR0ByKNZFG5MDaAdL6WgIR0CjtcDhtLtedX2UKGgGR0BykPOs1baAaAdL/WgIR0Cjtfg/1QIldX2UKGgGR0Bxh2g/TspoaAdL2WgIR0CjthLGza9LdX2UKGgGR0BvqWVRk3CLaAdL+GgIR0Cjthl0PpY+dX2UKGgGR0Bxy/JGOMl1aAdL22gIR0Cjtl3Hq/ucdX2UKGgGR0BxUCJ/G2kSaAdNAwFoCEdAo7ceOGTLXHV9lChoBkdAcaDLzPKMemgHTRABaAhHQKO3GSWZ7Xx1fZQoaAZHQHHtV05lvqFoB00LAWgIR0Cjt9CN83MqdX2UKGgGR0BvGxfa6BiDaAdL4GgIR0CjuILTpgTidX2UKGgGR0Buau3Sa3I/aAdL8GgIR0CjuJr8zhxYdX2UKGgGR0BwMJsi0OVgaAdL+mgIR0CjuNHktEofdX2UKGgGR0Bv65NTLns+aAdL6mgIR0CjuQVdHDrJdX2UKGgGR0Bt3FCZ4Oc2aAdL7WgIR0CjuSJvHcUNdX2UKGgGR0Byp0HzH0btaAdL8GgIR0CjuUduxbB5dX2UKGgGR0BxeoyzollcaAdL4mgIR0CjuXJcHGCJdX2UKGgGR0BwSaTxG2CvaAdL6GgIR0CjybyP+4smdX2UKGgGR0Bw/bQUpNKzaAdL3WgIR0CjybTV2A5JdX2UKGgGR0BylWLCN0eVaAdL4mgIR0CjyfrcsUZfdX2UKGgGR0BxVsvTPSlWaAdL3WgIR0CjygbjtG/fdX2UKGgGR0BxRIwL3K0VaAdL3mgIR0CjygVYZEUkdX2UKGgGR0BzAP7Lt/nXaAdL02gIR0CjysUwi7kGdX2UKGgGR0ByJHvYvnKXaAdNEAFoCEdAo8sNHH3lCHV9lChoBkdAbnq2tuDSPWgHS/9oCEdAo8uhx3mmtXV9lChoBkdAbwbwDNhVl2gHS+FoCEdAo8u6WJJoTXV9lChoBkdAcGrrJbMX8GgHS9hoCEdAo8wy0v4/NnV9lChoBkdAcDqf16E8JWgHS95oCEdAo8xiUA1ejXV9lChoBkdAc6YVFQVKw2gHS9doCEdAo8x3+dbxE3V9lChoBkdAcSF02tMfzWgHS9FoCEdAo8zC8OCoTHV9lChoBkdAcyxqaw2VFGgHS/NoCEdAo80hzDGcWnV9lChoBkdAcg+Vlf7aZmgHS/BoCEdAo80sf9xZMnV9lChoBkdAb5alANXo1WgHS/BoCEdAo816d8RcvHV9lChoBkdAbz5QnhKlHmgHS91oCEdAo82HwRXfZXV9lChoBkdAcVUJCSidrmgHS9poCEdAo83G7aqS5nV9lChoBkdAbmOTC+De02gHS+1oCEdAo83LkdV/+nV9lChoBkdAcLBR/mT1TWgHS+doCEdAo83/YWcjJXV9lChoBkdAcXUhw2l2vGgHS/JoCEdAo84uRRuTA3V9lChoBkdAcDdItUXHimgHTQMBaAhHQKPPaJ0nw5N1fZQoaAZHQHAVbqhUR4BoB0v5aAhHQKPPmB6rvLJ1fZQoaAZHQHEBe/xlQMxoB00AAWgIR0Cj0EMjeKsNdX2UKGgGR0BwsfUExIrfaAdL/GgIR0Cj0EnAymALdX2UKGgGR0Bu0lCTlkpaaAdL6WgIR0Cj0LAuh9LIdX2UKGgGR0By+6LvTgEVaAdL/mgIR0Cj0Ofx2B8QdX2UKGgGR0By4pjLB9CvaAdL4GgIR0Cj0OyvkiljdX2UKGgGR0Bs/Sb6P8yfaAdL9mgIR0Cj0QM5GSZCdX2UKGgGR0BxbujsUqQSaAdLzGgIR0Cj0Z8TakAQdX2UKGgGR0BwusUHpr1vaAdL+mgIR0Cj0dn8jzI4dX2UKGgGR0BxNZ+DvmYCaAdNAwFoCEdAo9INyWAwwnV9lChoBkdAcDn3Ux20RmgHS/RoCEdAo9IPnOjZc3V9lChoBkdAcXfaAWi1zGgHS/VoCEdAo9ImgezUqnV9lChoBkdAcPfy57PY4GgHS9poCEdAo9Io371qWXV9lChoBkdAcFQKujh1kmgHS/BoCEdAo9JJBPbfxnV9lChoBkdAca7tr9ETg2gHS+VoCEdAo9J9LHuJDXV9lChoBkdAbaHA0sOG02gHS+9oCEdAo9Pct/WlM3V9lChoBkdAcieM495hSmgHS/RoCEdAo9Qakl/pdXV9lChoBkdAcbMmmce8w2gHS9toCEdAo9TeiN83M3V9lChoBkdAcTHVea8Yh2gHTQEBaAhHQKPVDHNorWl1fZQoaAZHQHE6lJxvNvBoB00IAWgIR0Cj1SjMeOn3dX2UKGgGR0Busr+Lm6oVaAdL7mgIR0Cj1XSXMQmNdX2UKGgGR0BxnTPVurIYaAdL/2gIR0Cj1XTwMH8kdX2UKGgGR0BwcFJmNBGAaAdL4GgIR0Cj1c5MlC1JdX2UKGgGR0Bw3k+X7cfvaAdNCwFoCEdAo9X2oo/iYXV9lChoBkdAcURgNgBtDWgHS9toCEdAo9X0R+SbIHV9lChoBkdAcf4f9gnc+WgHS+poCEdAo9Zo7q6e5HV9lChoBkdAbgfZDiOvMmgHS/BoCEdAo9aYC8vmHXV9lChoBkdAczzid8RcvGgHS+9oCEdAo9bPQ2MsH3V9lChoBkdAbZecNpdrwmgHTQABaAhHQKPXAH6/IsB1fZQoaAZHQGz8UKJEYwZoB0v0aAhHQKPXPvVEuxt1fZQoaAZHQHKPrlRxcVxoB00dAWgIR0Cj15OwHJLedX2UKGgGR0Bx8pUsFt9AaAdL9mgIR0Cj2TPYWcjJdX2UKGgGR0Bx5D9BKL88aAdNCgFoCEdAo9oheAuqWHV9lChoBkdAcc5Ss8xKx2gHS+xoCEdAo9pia7VawHV9lChoBkdAcoW42CNCJGgHS+hoCEdAo9q7qlgtvnV9lChoBkdAcsg88s+V1WgHS/ZoCEdAo9r2hkAggXV9lChoBkdAcxhtP557gWgHS91oCEdAo9sqGN70F3V9lChoBkdAcqQefqX4TWgHS/RoCEdAo9tmryUcGXV9lChoBkdAczsysjmjkGgHS91oCEdAo9tm7+T/yXV9lChoBkdAcg6Hc1wYL2gHS/doCEdAo9t8DwH7g3V9lChoBkdAcqpsz2vjfmgHS99oCEdAo9wu2iL2pXV9lChoBkdAcNhlImPYF2gHS/1oCEdAo9xDXlKbrnV9lChoBkdAcWniBGx2S2gHS8xoCEdAo9xYT7EYO3V9lChoBkdAbaO1og3cYmgHS+toCEdAo9zU1IiC8XV9lChoBkdAbmSl8gIQe2gHS/JoCEdAo91mzhP0qnV9lChoBkdAckUf/WDpT2gHTQ8BaAhHQKPdcW1twaR1fZQoaAZHQHG4ddVvMr5oB0vfaAhHQKPe1MINVip1fZQoaAZHQHAbZQk5ZKZoB0vkaAhHQKPfqJF9a2Z1fZQoaAZHQHAAXDiwSrZoB0vhaAhHQKPfyt7rs0J1fZQoaAZHQHAW6NhmXgNoB0vkaAhHQKPgOjyFwkx1fZQoaAZHQG20IDoyKvVoB0vdaAhHQKPgPW7voeR1fZQoaAZHQHEB3qVyFPBoB00HAWgIR0Cj4MOsT37DdX2UKGgGR0Bxudl9Sde6aAdL92gIR0Cj4Oqp97WvdX2UKGgGR0ByOHDrJKaoaAdNBAFoCEdAo+FGQ0XP7nV9lChoBkdAc0K2SdOIqWgHTQwBaAhHQKPhZi97F851fZQoaAZHQGtYkYO2AoZoB02cAWgIR0Cj4Wbz9S/CdX2UKGgGR0ByhxQTEit8aAdL22gIR0Cj4aGcOLBLdX2UKGgGR0BwCpiH6/IsaAdL/2gIR0Cj4cmCI1tPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 336, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1200, "gamma": 0.9985, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_dkv5.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af8c71b0d21131df5c5451121c9a1dc3581042f3043ff1a7c4ffa70c076949ed
|
3 |
+
size 147466
|
ppo-LunarLander-v2_dkv5/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2_dkv5/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78c82b828550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c82b8285e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c82b828670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c82b828700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78c82b828790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78c82b828820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78c82b8288b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c82b828940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78c82b8289d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c82b828a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c82b828af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78c82b828b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78c82b7cf900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1612800,
|
25 |
+
"_total_timesteps": 1600000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1726810908401000077,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1MJT3hWrS4r/EROO+uMK9/lwW8/i8wtwAAgD8AAIA/qOSQvgAfWj9qGmm+Iibwvi41Bb+dshS9AAAAAAAAAAD66QO+8rE/P+MBzz4pceW+JOb/vMKogD4AAAAAAAAAAGYQET1qXa8/qiMxP5RD1b7OP8C8x7cKvAAAAAAAAAAAzXjCPUizuLotmDs4RD8yM5HD/jlly1W3AAAAAAAAgD9QP2m+X02EP8DdIb4ZX9++xpMDv1NFp70AAAAAAAAAACbbvb0NDag/wCKVvnTi9r4rIGS+lvQ8vgAAAAAAAAAA7c12PhBYUD9yBbA96tjTvkirZD5ANLC9AAAAAAAAAAAanxI+pQifP+Y1CD8ustu+FHFTPlumtz4AAAAAAAAAAE1rML0gMZk/rO4Cvn9FAb8CmUi+B5pEvgAAAAAAAAAA5pZQPSnoQ7pHREi1xAU5r+cMSLuDcUI0AACAPwAAgD8zcHU9LFZTPth2Ur6LcZG+/7epvY4IXD0AAAAAAAAAADPZPD1oOrY/R0ukPlr2B76H+Z25fTsJPQAAAAAAAAAAZicfPSro2D5KpTg+W1K6vrzbDT0MrDU+AAAAAAAAAADjCoo+xl9FPy7or71FjLK+DWVBPqUKW74AAAAAAAAAAM3AFD0pBHC6BSdeND5ioC/8t+s6y8KPswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.008000000000000007,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFTGE4//vSMAWyUS/SMAXSUR0CjtLa0IC2ddX2UKGgGR0BxsIYl6Z6VaAdL9WgIR0CjtL+w1R+CdX2UKGgGR0BzHqpiqhlEaAdL32gIR0CjtNL/0dzXdX2UKGgGR0Bw0KvfTCtSaAdL82gIR0CjtTmwqy4XdX2UKGgGR0Bt3xDLKV6eaAdL+WgIR0CjtY6Rhc7hdX2UKGgGR0ByKNZFG5MDaAdL6WgIR0CjtcDhtLtedX2UKGgGR0BykPOs1baAaAdL/WgIR0Cjtfg/1QIldX2UKGgGR0Bxh2g/TspoaAdL2WgIR0CjthLGza9LdX2UKGgGR0BvqWVRk3CLaAdL+GgIR0Cjthl0PpY+dX2UKGgGR0Bxy/JGOMl1aAdL22gIR0Cjtl3Hq/ucdX2UKGgGR0BxUCJ/G2kSaAdNAwFoCEdAo7ceOGTLXHV9lChoBkdAcaDLzPKMemgHTRABaAhHQKO3GSWZ7Xx1fZQoaAZHQHHtV05lvqFoB00LAWgIR0Cjt9CN83MqdX2UKGgGR0BvGxfa6BiDaAdL4GgIR0CjuILTpgTidX2UKGgGR0Buau3Sa3I/aAdL8GgIR0CjuJr8zhxYdX2UKGgGR0BwMJsi0OVgaAdL+mgIR0CjuNHktEofdX2UKGgGR0Bv65NTLns+aAdL6mgIR0CjuQVdHDrJdX2UKGgGR0Bt3FCZ4Oc2aAdL7WgIR0CjuSJvHcUNdX2UKGgGR0Byp0HzH0btaAdL8GgIR0CjuUduxbB5dX2UKGgGR0BxeoyzollcaAdL4mgIR0CjuXJcHGCJdX2UKGgGR0BwSaTxG2CvaAdL6GgIR0CjybyP+4smdX2UKGgGR0Bw/bQUpNKzaAdL3WgIR0CjybTV2A5JdX2UKGgGR0BylWLCN0eVaAdL4mgIR0CjyfrcsUZfdX2UKGgGR0BxVsvTPSlWaAdL3WgIR0CjygbjtG/fdX2UKGgGR0BxRIwL3K0VaAdL3mgIR0CjygVYZEUkdX2UKGgGR0BzAP7Lt/nXaAdL02gIR0CjysUwi7kGdX2UKGgGR0ByJHvYvnKXaAdNEAFoCEdAo8sNHH3lCHV9lChoBkdAbnq2tuDSPWgHS/9oCEdAo8uhx3mmtXV9lChoBkdAbwbwDNhVl2gHS+FoCEdAo8u6WJJoTXV9lChoBkdAcGrrJbMX8GgHS9hoCEdAo8wy0v4/NnV9lChoBkdAcDqf16E8JWgHS95oCEdAo8xiUA1ejXV9lChoBkdAc6YVFQVKw2gHS9doCEdAo8x3+dbxE3V9lChoBkdAcSF02tMfzWgHS9FoCEdAo8zC8OCoTHV9lChoBkdAcyxqaw2VFGgHS/NoCEdAo80hzDGcWnV9lChoBkdAcg+Vlf7aZmgHS/BoCEdAo80sf9xZMnV9lChoBkdAb5alANXo1WgHS/BoCEdAo816d8RcvHV9lChoBkdAbz5QnhKlHmgHS91oCEdAo82HwRXfZXV9lChoBkdAcVUJCSidrmgHS9poCEdAo83G7aqS5nV9lChoBkdAbmOTC+De02gHS+1oCEdAo83LkdV/+nV9lChoBkdAcLBR/mT1TWgHS+doCEdAo83/YWcjJXV9lChoBkdAcXUhw2l2vGgHS/JoCEdAo84uRRuTA3V9lChoBkdAcDdItUXHimgHTQMBaAhHQKPPaJ0nw5N1fZQoaAZHQHAVbqhUR4BoB0v5aAhHQKPPmB6rvLJ1fZQoaAZHQHEBe/xlQMxoB00AAWgIR0Cj0EMjeKsNdX2UKGgGR0BwsfUExIrfaAdL/GgIR0Cj0EnAymALdX2UKGgGR0Bu0lCTlkpaaAdL6WgIR0Cj0LAuh9LIdX2UKGgGR0By+6LvTgEVaAdL/mgIR0Cj0Ofx2B8QdX2UKGgGR0By4pjLB9CvaAdL4GgIR0Cj0OyvkiljdX2UKGgGR0Bs/Sb6P8yfaAdL9mgIR0Cj0QM5GSZCdX2UKGgGR0BxbujsUqQSaAdLzGgIR0Cj0Z8TakAQdX2UKGgGR0BwusUHpr1vaAdL+mgIR0Cj0dn8jzI4dX2UKGgGR0BxNZ+DvmYCaAdNAwFoCEdAo9INyWAwwnV9lChoBkdAcDn3Ux20RmgHS/RoCEdAo9IPnOjZc3V9lChoBkdAcXfaAWi1zGgHS/VoCEdAo9ImgezUqnV9lChoBkdAcPfy57PY4GgHS9poCEdAo9Io371qWXV9lChoBkdAcFQKujh1kmgHS/BoCEdAo9JJBPbfxnV9lChoBkdAca7tr9ETg2gHS+VoCEdAo9J9LHuJDXV9lChoBkdAbaHA0sOG02gHS+9oCEdAo9Pct/WlM3V9lChoBkdAcieM495hSmgHS/RoCEdAo9Qakl/pdXV9lChoBkdAcbMmmce8w2gHS9toCEdAo9TeiN83M3V9lChoBkdAcTHVea8Yh2gHTQEBaAhHQKPVDHNorWl1fZQoaAZHQHE6lJxvNvBoB00IAWgIR0Cj1SjMeOn3dX2UKGgGR0Busr+Lm6oVaAdL7mgIR0Cj1XSXMQmNdX2UKGgGR0BxnTPVurIYaAdL/2gIR0Cj1XTwMH8kdX2UKGgGR0BwcFJmNBGAaAdL4GgIR0Cj1c5MlC1JdX2UKGgGR0Bw3k+X7cfvaAdNCwFoCEdAo9X2oo/iYXV9lChoBkdAcURgNgBtDWgHS9toCEdAo9X0R+SbIHV9lChoBkdAcf4f9gnc+WgHS+poCEdAo9Zo7q6e5HV9lChoBkdAbgfZDiOvMmgHS/BoCEdAo9aYC8vmHXV9lChoBkdAczzid8RcvGgHS+9oCEdAo9bPQ2MsH3V9lChoBkdAbZecNpdrwmgHTQABaAhHQKPXAH6/IsB1fZQoaAZHQGz8UKJEYwZoB0v0aAhHQKPXPvVEuxt1fZQoaAZHQHKPrlRxcVxoB00dAWgIR0Cj15OwHJLedX2UKGgGR0Bx8pUsFt9AaAdL9mgIR0Cj2TPYWcjJdX2UKGgGR0Bx5D9BKL88aAdNCgFoCEdAo9oheAuqWHV9lChoBkdAcc5Ss8xKx2gHS+xoCEdAo9pia7VawHV9lChoBkdAcoW42CNCJGgHS+hoCEdAo9q7qlgtvnV9lChoBkdAcsg88s+V1WgHS/ZoCEdAo9r2hkAggXV9lChoBkdAcxhtP557gWgHS91oCEdAo9sqGN70F3V9lChoBkdAcqQefqX4TWgHS/RoCEdAo9tmryUcGXV9lChoBkdAczsysjmjkGgHS91oCEdAo9tm7+T/yXV9lChoBkdAcg6Hc1wYL2gHS/doCEdAo9t8DwH7g3V9lChoBkdAcqpsz2vjfmgHS99oCEdAo9wu2iL2pXV9lChoBkdAcNhlImPYF2gHS/1oCEdAo9xDXlKbrnV9lChoBkdAcWniBGx2S2gHS8xoCEdAo9xYT7EYO3V9lChoBkdAbaO1og3cYmgHS+toCEdAo9zU1IiC8XV9lChoBkdAbmSl8gIQe2gHS/JoCEdAo91mzhP0qnV9lChoBkdAckUf/WDpT2gHTQ8BaAhHQKPdcW1twaR1fZQoaAZHQHG4ddVvMr5oB0vfaAhHQKPe1MINVip1fZQoaAZHQHAbZQk5ZKZoB0vkaAhHQKPfqJF9a2Z1fZQoaAZHQHAAXDiwSrZoB0vhaAhHQKPfyt7rs0J1fZQoaAZHQHAW6NhmXgNoB0vkaAhHQKPgOjyFwkx1fZQoaAZHQG20IDoyKvVoB0vdaAhHQKPgPW7voeR1fZQoaAZHQHEB3qVyFPBoB00HAWgIR0Cj4MOsT37DdX2UKGgGR0Bxudl9Sde6aAdL92gIR0Cj4Oqp97WvdX2UKGgGR0ByOHDrJKaoaAdNBAFoCEdAo+FGQ0XP7nV9lChoBkdAc0K2SdOIqWgHTQwBaAhHQKPhZi97F851fZQoaAZHQGtYkYO2AoZoB02cAWgIR0Cj4Wbz9S/CdX2UKGgGR0ByhxQTEit8aAdL22gIR0Cj4aGcOLBLdX2UKGgGR0BwCpiH6/IsaAdL/2gIR0Cj4cmCI1tPdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 336,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1200,
|
81 |
+
"gamma": 0.9985,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2_dkv5/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07538008b115c175015737e607823fb44e66792b16d1288b2d0338d2bee0b081
|
3 |
+
size 87978
|
ppo-LunarLander-v2_dkv5/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2e6179956d91dcb746d2db7a7b283907df206ec3081fade6e4e67bd6d90d4ba
|
3 |
+
size 43634
|
ppo-LunarLander-v2_dkv5/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2_dkv5/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.6222479, "std_reward": 25.655954763250588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-20T06:25:54.294221"}
|