ddkk11's picture
My first try
36b75fb verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8200137760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82001377f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8200137880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8200137910>", "_build": "<function ActorCriticPolicy._build at 0x7f82001379a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8200137a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8200137ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8200137b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8200137be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8200137c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8200137d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8200137d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8200126e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726568942238141778, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHoCK76c5Di8MtkwvYqhfrvalaU9EpFRPAAAgD8AAIA/zeuevMNBaboSN308JgNuPKHWJbpIVlG9AACAPwAAgD+z66k9Pq+WPyk6uT52N/y+kbzTPcDQij4AAAAAAAAAAKag1D1SdLS7ip1Nuwx2mDxK3Aq9fuaAPQAAgD8AAIA/mse2Pe2vZT42cLS95hwxvp0Ls7y2CYg9AAAAAAAAAACa0n89dOGGvI1I0DxBGPu9Aybgunnsp7sAAIA/AACAP4DWBr5kJzM/T/jJPT+krL4AbZy6gcmgPQAAAAAAAAAAwIP+PaTECrtHHjA6DtuEPLaTnrxu4mU9AACAPwAAgD/NxiI9NS9WPx7lSbuQeb2+QB3EPCUIp7oAAAAAAAAAACYVub33Lz4/QgwIPaSEmL5U5+28J7+ZPQAAAAAAAAAA5giuvVmmCz7i7yM+bvRpvvKImTxjq/08AAAAAAAAAACzDWo93Bo1vApDer3u7hq9Dj2VPWdZAD4AAIA/AACAP2b0tj3hfJi6zLmWu9JcmjijF2q606fvOQAAgD8AAAAAyiBRvncz7j7eKVg+055cvmxBFjzU/o28AAAAAAAAAACaiD29INq3P2iMk74ANuW9dpJ3va2lFL4AAAAAAAAAAM2slLvuMjg/23wkvV5Vub4yKKy81e92ugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5oDhUBGQWMAWyUTSQBjAF0lEdAmhF8EidJ8XV9lChoBkdAcpBwNb1RL2gHTUgCaAhHQJoRuMXJo011fZQoaAZHQHAnbQHAymBoB00vAWgIR0CaE+eyzHCGdX2UKGgGR0BuW7ADaGpNaAdNYAFoCEdAmhTtkBjnWHV9lChoBkdAbWXpKSPluGgHTQ8BaAhHQJoWEBT4tYl1fZQoaAZHQHE1rLQokRloB00fAWgIR0CaFlcbiqACdX2UKGgGR0ByT+RRuTA4aAdNWAFoCEdAmhfogJTl1nV9lChoBkdAbkG163RXwWgHTTABaAhHQJoYz3K0UoN1fZQoaAZHQHGOpwXIlt1oB01BAWgIR0CaGilvqC6IdX2UKGgGR0Bw7u2CuloEaAdNdwFoCEdAmhsC925hB3V9lChoBkdAbqtXhfjS5WgHTVABaAhHQJoczHLidat1fZQoaAZHQGzdYHxBmf5oB00/AWgIR0CaHP/0ulGgdX2UKGgGR0BxLqQ+2VmjaAdNRAFoCEdAmh09l/Yra3V9lChoBkdAccydmxt52WgHTTMBaAhHQJodahxo7FN1fZQoaAZHQHITH2qT8pFoB01BAWgIR0CaHbE4ecQRdX2UKGgGR0Br9i8WbgCPaAdNYgFoCEdAmh6rn9vS+nV9lChoBkdAcFmm/WUbDWgHTX8BaAhHQJofyQHRkVh1fZQoaAZHQGAw+qR2bG5oB03oA2gIR0CaIEuZTho/dX2UKGgGR0Bx+ax0MgEEaAdNRwFoCEdAmiByXhOxjnV9lChoBkdAbU5U+cH4XWgHTSIBaAhHQJojKFTNt651fZQoaAZHQE5bJOFg2IhoB0vdaAhHQJojaf4AS391fZQoaAZHQHAXyHVPN3ZoB01gAWgIR0CaI77L+xW1dX2UKGgGR0BwiNwgkka/aAdNJwFoCEdAmiQ+evpyInV9lChoBkdAcDoyPuG9H2gHTU0BaAhHQJonaO+7Dl51fZQoaAZHQG/wxekYXO5oB03hAWgIR0CaJ+kD6nBMdX2UKGgGR0Bx8TzwtrbhaAdNIgFoCEdAmig5s9B8hXV9lChoBkdAb8O7OmixmmgHTSABaAhHQJoojBO58Sh1fZQoaAZHQG6Ld74SHuZoB00cAWgIR0CaKJewcHW0dX2UKGgGR0BwsDNVzZHvaAdNMQFoCEdAmirq+SKWLXV9lChoBkdAbEqCyQgcLmgHTWEBaAhHQJor2HEdeY51fZQoaAZHQHFUvVI7NjdoB00VAWgIR0CaK+an752ydX2UKGgGR0BuGV1jiGWVaAdNSAFoCEdAmi0Vb/wRXnV9lChoBkdAcZ+X+VC5VmgHTZwBaAhHQJotao4uK4x1fZQoaAZHQHC/wBcRlH1oB01pAWgIR0CaLxXsgMc7dX2UKGgGR0Bw920OVgQZaAdNDwFoCEdAmi+Ue+23KHV9lChoBkdAcaBMFUyYX2gHTScBaAhHQJovsD5j6N51fZQoaAZHQHAMJkoWpIdoB00xAWgIR0CaMFCgK4QSdX2UKGgGR0BwoCakRBeHaAdNTQFoCEdAmjC/Nqxkd3V9lChoBkdAMZTENvwVkGgHS+NoCEdAmjD+fEn9enV9lChoBkdAcWY82rGR3mgHS/1oCEdAmjIBcE/0NHV9lChoBkdAcC3PRRdhRmgHTTUBaAhHQJo1GPzWf9R1fZQoaAZHQHHR5oTPBzpoB01UAWgIR0CaNT+F10T2dX2UKGgGR0BxVh0hePaMaAdNEQFoCEdAmjYWgzxgA3V9lChoBkdAcIJxAB1cMWgHTVABaAhHQJo2kFPi1iR1fZQoaAZHQHBf9KAavRtoB00LAWgIR0CaNx0rK/21dX2UKGgGR0BwWAc6vJRwaAdNJgFoCEdAmjhc2Jiy6nV9lChoBkdAQVjL6k6902gHS9poCEdAmjldalk6LnV9lChoBkdAcLnhM8HObGgHTTYBaAhHQJpQ29tdiUh1fZQoaAZHQFEVE8aGYa5oB0vcaAhHQJpRC4LCvX91fZQoaAZHQHC0JWBBiTdoB00VAWgIR0CaUWO8TSLJdX2UKGgGR0BwEHbxmTTwaAdNSQFoCEdAmlHRJul41XV9lChoBkdAcg0TfixVyWgHTUgBaAhHQJpTvnxJ/Xp1fZQoaAZHQG2Aiqp97WxoB00wAWgIR0CaVFbyH2ytdX2UKGgGR0BTeu8kD6nBaAdN6ANoCEdAmlVD7/GVA3V9lChoBkdAcDlJNj9XLmgHTS0BaAhHQJpVZxJd0JZ1fZQoaAZHQG+tGY0EX+FoB01yAWgIR0CaVfHxSYPYdX2UKGgGR0A2Xlw97ngYaAdL+GgIR0CaVxquKXOXdX2UKGgGR0BxJSX2M85kaAdNMAFoCEdAmliNWQwK0HV9lChoBkdAccEfShJyyWgHTUkBaAhHQJpYxutOmBR1fZQoaAZHQHCqHXqZ+hJoB00zAWgIR0CaWO889wFUdX2UKGgGR0BxFaTRplBhaAdNUwFoCEdAmlkrEP1+RnV9lChoBkdAa0BSDyvs7mgHTSIBaAhHQJpZecf/3nJ1fZQoaAZHQHEUoXj2i+NoB000AWgIR0CaXHokiUxEdX2UKGgGR0BwzLRv3rUtaAdNPgFoCEdAml1erZJ04nV9lChoBkdAcVYqkM1CPmgHTVoBaAhHQJpdjEZR8+l1fZQoaAZHQDo516mfoRtoB0vyaAhHQJpeBvjwQUZ1fZQoaAZHQG43j4593KVoB00PAWgIR0CaXitcv/R3dX2UKGgGR0BwgqQ3gk1NaAdNcAFoCEdAml4rVe8f3nV9lChoBkdAcRX3s5XEImgHTT4BaAhHQJpfRtqHoHN1fZQoaAZHQG0Tr6k6901oB02vAWgIR0CaX3Fd9lVcdX2UKGgGR0Byn4bQ1JlKaAdNMgFoCEdAmmDLRjSXt3V9lChoBkdAcRasOoYNzGgHTS4BaAhHQJphuojv/ip1fZQoaAZHQHFcK1G9YfZoB01oAWgIR0CaYgtoi9qUdX2UKGgGR0BuIZGYrrgPaAdNHgFoCEdAmmMxMi8nNXV9lChoBkdAbsH5ULlV+GgHTTcBaAhHQJpjZvR7Z391fZQoaAZHQHLO5TIeYD1oB008AWgIR0CaY8UdaMaTdX2UKGgGR0BwO8Jx//edaAdNOQFoCEdAmmPN+5OJtXV9lChoBkdAPKcR6F/QSmgHS+JoCEdAmmWa6J66a3V9lChoBkdAbu73X7Lt/mgHTSkBaAhHQJpm2kwevIR1fZQoaAZHQHGXtszl90BoB02FAWgIR0CaZ0xxkupTdX2UKGgGR0Bsw2mBOHnEaAdNFgFoCEdAmmfOxnnMdXV9lChoBkdAcPawNLDhtWgHTS0BaAhHQJpoEESuhbp1fZQoaAZHQHFI//7zkIZoB006AWgIR0CaaFRhMJyAdX2UKGgGR0Bwukhouf29aAdNMQFoCEdAmmjBeokzGnV9lChoBkdAbzk5yU9py2gHTSYBaAhHQJpplD5TIeZ1fZQoaAZHQHDdUW2w3YNoB000AWgIR0CaagylvZRLdX2UKGgGR0BvOJNqQA+7aAdNJAFoCEdAmmvO5avA5HV9lChoBkdAcKet9QXQ+mgHTQ0BaAhHQJpsELPUrkN1fZQoaAZHQE20gV45cTtoB0vdaAhHQJpsEZIg/1R1fZQoaAZHQHCfR6OYIB1oB00LAWgIR0CabGPFefI0dX2UKGgGR0A5C64lQdjoaAdL9WgIR0CabNDRMN+cdX2UKGgGR0BwlCyGBWgfaAdNEwFoCEdAmm7EOVgQYnV9lChoBkdAT7TBfrrxAmgHS+RoCEdAmm8dQwblzXV9lChoBkdAbtbT3qRlpWgHTUYBaAhHQJpxOUbDMvB1fZQoaAZHQHBIBHG0eEJoB00SAWgIR0Cacv4dIXj3dX2UKGgGR0By7iD28IzFaAdNEgFoCEdAmnQ8ujASF3V9lChoBkdAcGY6j3225WgHTSQBaAhHQJp0csWfseJ1fZQoaAZHQHA8IyfthNNoB00QAWgIR0CadH3cYZVGdX2UKGgGR0BsBskpqh11aAdNOQFoCEdAmndjwlSjxnV9lChoBkdAcZhVMVUMomgHTRwBaAhHQJp3k/iYLLJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 296, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9991, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}