dbarbedillo
commited on
Commit
·
a60a614
1
Parent(s):
e602257
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 296.33 +/- 19.27
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7370586050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73705860e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7370586170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7370586200>", "_build": "<function ActorCriticPolicy._build at 0x7f7370586290>", "forward": "<function ActorCriticPolicy.forward at 0x7f7370586320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73705863b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7370586440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73705864d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7370586560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73705865f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f73705ce930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu", "dtype": "float32", "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null, "_shape": [8]}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu", "n": 4, "dtype": "int64", "_np_random": null, "_shape": []}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651717339.3745687, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0pvTwUisu6eCQRvNFKhjxWQ8C7QNhpPQAAgD8AAIA/M6MBPFZ6Bz1ocvc9VjfevpFXSj2evPU9AAAAAAAAAACA8gg9e16Tuj6wsjkHAtS1QraZOrIgzLgAAIA/AAAAAM1sHjoUVoG6o9ZIsgzF8jAVii27FkCaMgAAgD8AAIA/mt2bvG5buz9aIi2+7czrPetiCr3a7Q2+AAAAAAAAAADNd7a9q+HdPYas7D6y+eC+lBA/Pa0bvT4AAAAAAAAAAM38DDyv8y0+L3QUPSlM/L6bYRU96KmYPQAAAAAAAAAA0xUFPrvdUz+NwDw+TiUvv5DKqj6eZIA+AAAAAAAAAADN300+iDBpPyCa0z6kozq/a58KP8gs5j0AAAAAAAAAAADMWj4W3mE/Mk94vVdeOr/BoIY+2pM/vgAAAAAAAAAAmt1DPPZwa7qcaRw93GVdM0MVK7vpErgyAACAPwAAgD8zsMC97FHAP0hJ574/fca6rTIWvkOL074AAAAAAAAAAM3qcbyc5TS8xQ9dPkvRX73hUZC9IinmuwAAgD8AAIA/hsQHPiv5sj8j3BI/xMWRvhaAUz6hlgU/AAAAAAAAAAAgQl++MrXiPsXUyz7JU0a/QoN0vo5GiD4AAAAAAAAAAGYi1zvpGiG8SWKjveJsBTxPDJK9XcPqPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjliLT8HmcUCUhpRSlIwBbJRLkYwBdJRHQIxSo4Ia99N1fZQoaAZoCWgPQwhYxRuZB59zQJSGlFKUaBVLu2gWR0CMUsMmWt2cdX2UKGgGaAloD0MIdjV5yirOckCUhpRSlGgVS6hoFkdAjFNOx8lXzXV9lChoBmgJaA9DCFCNl27SQXJAlIaUUpRoFUudaBZHQIxTp7u2JBR1fZQoaAZoCWgPQwi1pnnHqZFzQJSGlFKUaBVL1mgWR0CMVBPppvgndX2UKGgGaAloD0MICK2HL5ODcUCUhpRSlGgVS6poFkdAjFSAKfFrEnV9lChoBmgJaA9DCIQpyqVxYXNAlIaUUpRoFUueaBZHQIxU6nBLwnZ1fZQoaAZoCWgPQwgwEtpybsBwQJSGlFKUaBVLqmgWR0CMVTw0fozOdX2UKGgGaAloD0MI09o0tpeRcUCUhpRSlGgVS5ZoFkdAjIyaD5CWvHV9lChoBmgJaA9DCB78xAF0Z3FAlIaUUpRoFUuqaBZHQIyMuUr08Nh1fZQoaAZoCWgPQwhauoJtxABzQJSGlFKUaBVLo2gWR0CMjNpu/DcedX2UKGgGaAloD0MI3BFOC143ckCUhpRSlGgVS6xoFkdAjI6PNeMQ3HV9lChoBmgJaA9DCIbI6eu5O3RAlIaUUpRoFUuiaBZHQIyO7fP5YYB1fZQoaAZoCWgPQwg1Q6oo3vlvQJSGlFKUaBVLjGgWR0CMkHtiQT24dX2UKGgGaAloD0MIrBqEud22ckCUhpRSlGgVS+FoFkdAjJECKR+z+nV9lChoBmgJaA9DCP6d7dEbFnFAlIaUUpRoFUuqaBZHQIyQ+XE61b91fZQoaAZoCWgPQwhkA+liU4txQJSGlFKUaBVLlWgWR0CMkQwOe8PGdX2UKGgGaAloD0MICi3r/rHjcECUhpRSlGgVS4toFkdAjJIux8lXzXV9lChoBmgJaA9DCDkNUYU//3FAlIaUUpRoFUviaBZHQIySu7SRbKR1fZQoaAZoCWgPQwhuMNRhheZyQJSGlFKUaBVLsGgWR0CMkyKsuFpPdX2UKGgGaAloD0MI5iMp6SFQcUCUhpRSlGgVS65oFkdAjJN64tpVTHV9lChoBmgJaA9DCP63kh2b+nFAlIaUUpRoFUu3aBZHQIyVJQ53kgh1fZQoaAZoCWgPQwhZ/RGGAUxxQJSGlFKUaBVLt2gWR0CMlXRXwLE2dX2UKGgGaAloD0MIkiQIV8BWc0CUhpRSlGgVS7toFkdAjJXGOEM9bHV9lChoBmgJaA9DCPMbJhqkKHJAlIaUUpRoFUu9aBZHQIyWAGSpzcR1fZQoaAZoCWgPQwicFOY9zphwQJSGlFKUaBVLnGgWR0CMljFAmiQDdX2UKGgGaAloD0MI7Z+nAUO2ckCUhpRSlGgVS9loFkdAjJZ3dj5KvnV9lChoBmgJaA9DCCoCnN4FrXJAlIaUUpRoFUuoaBZHQIyXII0IkZ91fZQoaAZoCWgPQwhrgxPRr0pyQJSGlFKUaBVNGwFoFkdAjJf/Z26kI3V9lChoBmgJaA9DCLfvUX99RnJAlIaUUpRoFUuWaBZHQIyYOktVaOh1fZQoaAZoCWgPQwgoDwu15mZwQJSGlFKUaBVLn2gWR0CMmK35vcagdX2UKGgGaAloD0MIibX4FIAFckCUhpRSlGgVS4NoFkdAjJj/GlyimHV9lChoBmgJaA9DCNgtAmO9B3NAlIaUUpRoFUu0aBZHQIyZJDb8FZB1fZQoaAZoCWgPQwgJ+3YSUd1xQJSGlFKUaBVLvmgWR0CMmg+yquKXdX2UKGgGaAloD0MINbIrLaP9cECUhpRSlGgVS5ZoFkdAjJqLXlKbrnV9lChoBmgJaA9DCK8LPzifyXNAlIaUUpRoFUvGaBZHQIybkornTy91fZQoaAZoCWgPQwi5GAPr+HlzQJSGlFKUaBVLw2gWR0CMnGCnP3SKdX2UKGgGaAloD0MIYcJoVjZ2ckCUhpRSlGgVS5RoFkdAjJxegL7XQXV9lChoBmgJaA9DCPPmcK02EXFAlIaUUpRoFUuYaBZHQIydpo7FKkF1fZQoaAZoCWgPQwjaN/dXz61xQJSGlFKUaBVLq2gWR0CMnlcs189fdX2UKGgGaAloD0MIniees4XTcECUhpRSlGgVS6ZoFkdAjJ8X0f5k9XV9lChoBmgJaA9DCD/IsmAiOXFAlIaUUpRoFUvAaBZHQIyfNHxz7uV1fZQoaAZoCWgPQwie8BKc+ityQJSGlFKUaBVLx2gWR0CMn1MrVe8gdX2UKGgGaAloD0MI9uy5TI1gckCUhpRSlGgVS4loFkdAjJ9Z+6RQrXV9lChoBmgJaA9DCFgAUwbOXHFAlIaUUpRoFUuiaBZHQIyfzPWxyGV1fZQoaAZoCWgPQwg983LYfblwQJSGlFKUaBVLqWgWR0CMoGkLx7RfdX2UKGgGaAloD0MIodrgRHQkcECUhpRSlGgVS/BoFkdAjKCxTCLuQnV9lChoBmgJaA9DCAxcHmsGOXBAlIaUUpRoFUujaBZHQIyg7yhBZ6l1fZQoaAZoCWgPQwjFNxQ+22ByQJSGlFKUaBVLrGgWR0CMoXrVOKwZdX2UKGgGaAloD0MI/g5Fgb5BcUCUhpRSlGgVS6loFkdAjKJExASnL3V9lChoBmgJaA9DCLO0U3M5+HJAlIaUUpRoFUupaBZHQIyixo4+8oR1fZQoaAZoCWgPQwgfaAWG7DtyQJSGlFKUaBVLn2gWR0CMo10se4kNdX2UKGgGaAloD0MIexNDcjK7cECUhpRSlGgVS5toFkdAjKP40uUUwnV9lChoBmgJaA9DCKXcfY6PcHNAlIaUUpRoFUuzaBZHQIylNTHbRF91fZQoaAZoCWgPQwiBIECGjixzQJSGlFKUaBVLsWgWR0CMpmCKaXrudX2UKGgGaAloD0MIz9vY7IhNc0CUhpRSlGgVS61oFkdAjKbYPPLPlnV9lChoBmgJaA9DCNCzWfW5f29AlIaUUpRoFUulaBZHQIynSuwHJLd1fZQoaAZoCWgPQwhi2GFMehh0QJSGlFKUaBVLq2gWR0CMp4Kb8WKudX2UKGgGaAloD0MIwvhp3Ju6cUCUhpRSlGgVS5JoFkdAjKfi6xxDLXV9lChoBmgJaA9DCFBxHHi1J3NAlIaUUpRoFUugaBZHQIyoS+ajN6h1fZQoaAZoCWgPQwiu1/SgYNVzQJSGlFKUaBVLtmgWR0CMqFJsfq5cdX2UKGgGaAloD0MIeQWiJyVDckCUhpRSlGgVS79oFkdAjKkzFdcB2nV9lChoBmgJaA9DCOPEVzsKZnNAlIaUUpRoFUvXaBZHQIyp4nUlRgt1fZQoaAZoCWgPQwgX1/hM9rtyQJSGlFKUaBVLuGgWR0CMqgIdlum8dX2UKGgGaAloD0MIjc9k/zxQckCUhpRSlGgVS65oFkdAjKruXeFcp3V9lChoBmgJaA9DCHycacK27nJAlIaUUpRoFUvJaBZHQIyrZnBciW51fZQoaAZoCWgPQwhIcCNlCwF0QJSGlFKUaBVLumgWR0CMrAlSjxkNdX2UKGgGaAloD0MIvCTOiihGckCUhpRSlGgVS7JoFkdAjKw7U5MlC3V9lChoBmgJaA9DCGCUoL+QtnNAlIaUUpRoFUuqaBZHQIyscbLlmvp1fZQoaAZoCWgPQwjIRbWIqMBwQJSGlFKUaBVLlmgWR0CMrJ2OhkAhdX2UKGgGaAloD0MI8RExJVIJcUCUhpRSlGgVS5ZoFkdAjK63B55Z83V9lChoBmgJaA9DCA0zNJ6ILXNAlIaUUpRoFUugaBZHQIyvfUlRgqp1fZQoaAZoCWgPQwgJiEm4ELdyQJSGlFKUaBVLn2gWR0CMr9VjI7vHdX2UKGgGaAloD0MI0GOUZx5DcECUhpRSlGgVS55oFkdAjLBNSZSeiHV9lChoBmgJaA9DCCo5J/YQLHNAlIaUUpRoFUukaBZHQIyxk8NhE0B1fZQoaAZoCWgPQwj19uei4eFzQJSGlFKUaBVL4WgWR0CMsdZBcAzYdX2UKGgGaAloD0MIa54j8p2Jc0CUhpRSlGgVS75oFkdAjLH8U21lXnV9lChoBmgJaA9DCFjGhm42YXJAlIaUUpRoFUvoaBZHQIyyqtmtheB1fZQoaAZoCWgPQwgwStBfqHpxQJSGlFKUaBVLqmgWR0CMssQDmr80dX2UKGgGaAloD0MI/fZ14JwocUCUhpRSlGgVS8JoFkdAjLPh8pkPMHV9lChoBmgJaA9DCEM8Ei8PmnFAlIaUUpRoFUuraBZHQIy1Dcdo3711fZQoaAZoCWgPQwh/v5gtWYR0QJSGlFKUaBVLxWgWR0CMtUUW2w3YdX2UKGgGaAloD0MI4X8r2XGec0CUhpRSlGgVS7JoFkdAjLXp9iMHbHV9lChoBmgJaA9DCIigavQqCHRAlIaUUpRoFUu2aBZHQIy2Wr8zhxZ1fZQoaAZoCWgPQwgvMCsUKe5zQJSGlFKUaBVLwWgWR0CMtoQ3gk1NdX2UKGgGaAloD0MIgXwJFRz1c0CUhpRSlGgVS9hoFkdAjLbRGUfPonV9lChoBmgJaA9DCLivA+cM3nJAlIaUUpRoFUu+aBZHQIy4x+6RQrN1fZQoaAZoCWgPQwjwUX+9QutzQJSGlFKUaBVLtmgWR0CMuWrXlKbsdX2UKGgGaAloD0MIIF1sWqk7ckCUhpRSlGgVS69oFkdAjLlzaCcwxnV9lChoBmgJaA9DCKuWdJTDoXJAlIaUUpRoFUvLaBZHQIy6QJ7b+Lp1fZQoaAZoCWgPQwgfEynNpndzQJSGlFKUaBVLp2gWR0CMupnXd0q6dX2UKGgGaAloD0MInyKHiBvvcUCUhpRSlGgVS55oFkdAjLsMbvPTonV9lChoBmgJaA9DCB0ewvhp23FAlIaUUpRoFUu8aBZHQIy7bNt65Xl1fZQoaAZoCWgPQwjZ690fbxR0QJSGlFKUaBVLumgWR0CMu7KFIuoQdX2UKGgGaAloD0MIceXsnZFSc0CUhpRSlGgVS7BoFkdAjLviV8kUsXV9lChoBmgJaA9DCHtLOV9sP3NAlIaUUpRoFUukaBZHQIy9hVuJk5J1fZQoaAZoCWgPQwiSkbOwp+BxQJSGlFKUaBVLvmgWR0CMvblDneSCdX2UKGgGaAloD0MIIQIOocrob0CUhpRSlGgVS6BoFkdAjL53+2mYSnV9lChoBmgJaA9DCFFM3gDze3FAlIaUUpRoFUufaBZHQIy+kijcmBx1fZQoaAZoCWgPQwg3qtOBLH5vQJSGlFKUaBVLomgWR0CMvvyfcvdudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3796, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5371ac1ff21f8cbc2557b5353a8108147f26a8511625455788d2c23eae72b5bd
|
3 |
+
size 143949
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7370586050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73705860e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7370586170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7370586200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7370586290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7370586320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73705863b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7370586440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73705864d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7370586560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73705865f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f73705ce930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"dtype": "int64",
|
41 |
+
"_np_random": null,
|
42 |
+
"_shape": []
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651717339.3745687,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0pvTwUisu6eCQRvNFKhjxWQ8C7QNhpPQAAgD8AAIA/M6MBPFZ6Bz1ocvc9VjfevpFXSj2evPU9AAAAAAAAAACA8gg9e16Tuj6wsjkHAtS1QraZOrIgzLgAAIA/AAAAAM1sHjoUVoG6o9ZIsgzF8jAVii27FkCaMgAAgD8AAIA/mt2bvG5buz9aIi2+7czrPetiCr3a7Q2+AAAAAAAAAADNd7a9q+HdPYas7D6y+eC+lBA/Pa0bvT4AAAAAAAAAAM38DDyv8y0+L3QUPSlM/L6bYRU96KmYPQAAAAAAAAAA0xUFPrvdUz+NwDw+TiUvv5DKqj6eZIA+AAAAAAAAAADN300+iDBpPyCa0z6kozq/a58KP8gs5j0AAAAAAAAAAADMWj4W3mE/Mk94vVdeOr/BoIY+2pM/vgAAAAAAAAAAmt1DPPZwa7qcaRw93GVdM0MVK7vpErgyAACAPwAAgD8zsMC97FHAP0hJ574/fca6rTIWvkOL074AAAAAAAAAAM3qcbyc5TS8xQ9dPkvRX73hUZC9IinmuwAAgD8AAIA/hsQHPiv5sj8j3BI/xMWRvhaAUz6hlgU/AAAAAAAAAAAgQl++MrXiPsXUyz7JU0a/QoN0vo5GiD4AAAAAAAAAAGYi1zvpGiG8SWKjveJsBTxPDJK9XcPqPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjliLT8HmcUCUhpRSlIwBbJRLkYwBdJRHQIxSo4Ia99N1fZQoaAZoCWgPQwhYxRuZB59zQJSGlFKUaBVLu2gWR0CMUsMmWt2cdX2UKGgGaAloD0MIdjV5yirOckCUhpRSlGgVS6hoFkdAjFNOx8lXzXV9lChoBmgJaA9DCFCNl27SQXJAlIaUUpRoFUudaBZHQIxTp7u2JBR1fZQoaAZoCWgPQwi1pnnHqZFzQJSGlFKUaBVL1mgWR0CMVBPppvgndX2UKGgGaAloD0MICK2HL5ODcUCUhpRSlGgVS6poFkdAjFSAKfFrEnV9lChoBmgJaA9DCIQpyqVxYXNAlIaUUpRoFUueaBZHQIxU6nBLwnZ1fZQoaAZoCWgPQwgwEtpybsBwQJSGlFKUaBVLqmgWR0CMVTw0fozOdX2UKGgGaAloD0MI09o0tpeRcUCUhpRSlGgVS5ZoFkdAjIyaD5CWvHV9lChoBmgJaA9DCB78xAF0Z3FAlIaUUpRoFUuqaBZHQIyMuUr08Nh1fZQoaAZoCWgPQwhauoJtxABzQJSGlFKUaBVLo2gWR0CMjNpu/DcedX2UKGgGaAloD0MI3BFOC143ckCUhpRSlGgVS6xoFkdAjI6PNeMQ3HV9lChoBmgJaA9DCIbI6eu5O3RAlIaUUpRoFUuiaBZHQIyO7fP5YYB1fZQoaAZoCWgPQwg1Q6oo3vlvQJSGlFKUaBVLjGgWR0CMkHtiQT24dX2UKGgGaAloD0MIrBqEud22ckCUhpRSlGgVS+FoFkdAjJECKR+z+nV9lChoBmgJaA9DCP6d7dEbFnFAlIaUUpRoFUuqaBZHQIyQ+XE61b91fZQoaAZoCWgPQwhkA+liU4txQJSGlFKUaBVLlWgWR0CMkQwOe8PGdX2UKGgGaAloD0MICi3r/rHjcECUhpRSlGgVS4toFkdAjJIux8lXzXV9lChoBmgJaA9DCDkNUYU//3FAlIaUUpRoFUviaBZHQIySu7SRbKR1fZQoaAZoCWgPQwhuMNRhheZyQJSGlFKUaBVLsGgWR0CMkyKsuFpPdX2UKGgGaAloD0MI5iMp6SFQcUCUhpRSlGgVS65oFkdAjJN64tpVTHV9lChoBmgJaA9DCP63kh2b+nFAlIaUUpRoFUu3aBZHQIyVJQ53kgh1fZQoaAZoCWgPQwhZ/RGGAUxxQJSGlFKUaBVLt2gWR0CMlXRXwLE2dX2UKGgGaAloD0MIkiQIV8BWc0CUhpRSlGgVS7toFkdAjJXGOEM9bHV9lChoBmgJaA9DCPMbJhqkKHJAlIaUUpRoFUu9aBZHQIyWAGSpzcR1fZQoaAZoCWgPQwicFOY9zphwQJSGlFKUaBVLnGgWR0CMljFAmiQDdX2UKGgGaAloD0MI7Z+nAUO2ckCUhpRSlGgVS9loFkdAjJZ3dj5KvnV9lChoBmgJaA9DCCoCnN4FrXJAlIaUUpRoFUuoaBZHQIyXII0IkZ91fZQoaAZoCWgPQwhrgxPRr0pyQJSGlFKUaBVNGwFoFkdAjJf/Z26kI3V9lChoBmgJaA9DCLfvUX99RnJAlIaUUpRoFUuWaBZHQIyYOktVaOh1fZQoaAZoCWgPQwgoDwu15mZwQJSGlFKUaBVLn2gWR0CMmK35vcagdX2UKGgGaAloD0MIibX4FIAFckCUhpRSlGgVS4NoFkdAjJj/GlyimHV9lChoBmgJaA9DCNgtAmO9B3NAlIaUUpRoFUu0aBZHQIyZJDb8FZB1fZQoaAZoCWgPQwgJ+3YSUd1xQJSGlFKUaBVLvmgWR0CMmg+yquKXdX2UKGgGaAloD0MINbIrLaP9cECUhpRSlGgVS5ZoFkdAjJqLXlKbrnV9lChoBmgJaA9DCK8LPzifyXNAlIaUUpRoFUvGaBZHQIybkornTy91fZQoaAZoCWgPQwi5GAPr+HlzQJSGlFKUaBVLw2gWR0CMnGCnP3SKdX2UKGgGaAloD0MIYcJoVjZ2ckCUhpRSlGgVS5RoFkdAjJxegL7XQXV9lChoBmgJaA9DCPPmcK02EXFAlIaUUpRoFUuYaBZHQIydpo7FKkF1fZQoaAZoCWgPQwjaN/dXz61xQJSGlFKUaBVLq2gWR0CMnlcs189fdX2UKGgGaAloD0MIniees4XTcECUhpRSlGgVS6ZoFkdAjJ8X0f5k9XV9lChoBmgJaA9DCD/IsmAiOXFAlIaUUpRoFUvAaBZHQIyfNHxz7uV1fZQoaAZoCWgPQwie8BKc+ityQJSGlFKUaBVLx2gWR0CMn1MrVe8gdX2UKGgGaAloD0MI9uy5TI1gckCUhpRSlGgVS4loFkdAjJ9Z+6RQrXV9lChoBmgJaA9DCFgAUwbOXHFAlIaUUpRoFUuiaBZHQIyfzPWxyGV1fZQoaAZoCWgPQwg983LYfblwQJSGlFKUaBVLqWgWR0CMoGkLx7RfdX2UKGgGaAloD0MIodrgRHQkcECUhpRSlGgVS/BoFkdAjKCxTCLuQnV9lChoBmgJaA9DCAxcHmsGOXBAlIaUUpRoFUujaBZHQIyg7yhBZ6l1fZQoaAZoCWgPQwjFNxQ+22ByQJSGlFKUaBVLrGgWR0CMoXrVOKwZdX2UKGgGaAloD0MI/g5Fgb5BcUCUhpRSlGgVS6loFkdAjKJExASnL3V9lChoBmgJaA9DCLO0U3M5+HJAlIaUUpRoFUupaBZHQIyixo4+8oR1fZQoaAZoCWgPQwgfaAWG7DtyQJSGlFKUaBVLn2gWR0CMo10se4kNdX2UKGgGaAloD0MIexNDcjK7cECUhpRSlGgVS5toFkdAjKP40uUUwnV9lChoBmgJaA9DCKXcfY6PcHNAlIaUUpRoFUuzaBZHQIylNTHbRF91fZQoaAZoCWgPQwiBIECGjixzQJSGlFKUaBVLsWgWR0CMpmCKaXrudX2UKGgGaAloD0MIz9vY7IhNc0CUhpRSlGgVS61oFkdAjKbYPPLPlnV9lChoBmgJaA9DCNCzWfW5f29AlIaUUpRoFUulaBZHQIynSuwHJLd1fZQoaAZoCWgPQwhi2GFMehh0QJSGlFKUaBVLq2gWR0CMp4Kb8WKudX2UKGgGaAloD0MIwvhp3Ju6cUCUhpRSlGgVS5JoFkdAjKfi6xxDLXV9lChoBmgJaA9DCFBxHHi1J3NAlIaUUpRoFUugaBZHQIyoS+ajN6h1fZQoaAZoCWgPQwiu1/SgYNVzQJSGlFKUaBVLtmgWR0CMqFJsfq5cdX2UKGgGaAloD0MIeQWiJyVDckCUhpRSlGgVS79oFkdAjKkzFdcB2nV9lChoBmgJaA9DCOPEVzsKZnNAlIaUUpRoFUvXaBZHQIyp4nUlRgt1fZQoaAZoCWgPQwgX1/hM9rtyQJSGlFKUaBVLuGgWR0CMqgIdlum8dX2UKGgGaAloD0MIjc9k/zxQckCUhpRSlGgVS65oFkdAjKruXeFcp3V9lChoBmgJaA9DCHycacK27nJAlIaUUpRoFUvJaBZHQIyrZnBciW51fZQoaAZoCWgPQwhIcCNlCwF0QJSGlFKUaBVLumgWR0CMrAlSjxkNdX2UKGgGaAloD0MIvCTOiihGckCUhpRSlGgVS7JoFkdAjKw7U5MlC3V9lChoBmgJaA9DCGCUoL+QtnNAlIaUUpRoFUuqaBZHQIyscbLlmvp1fZQoaAZoCWgPQwjIRbWIqMBwQJSGlFKUaBVLlmgWR0CMrJ2OhkAhdX2UKGgGaAloD0MI8RExJVIJcUCUhpRSlGgVS5ZoFkdAjK63B55Z83V9lChoBmgJaA9DCA0zNJ6ILXNAlIaUUpRoFUugaBZHQIyvfUlRgqp1fZQoaAZoCWgPQwgJiEm4ELdyQJSGlFKUaBVLn2gWR0CMr9VjI7vHdX2UKGgGaAloD0MI0GOUZx5DcECUhpRSlGgVS55oFkdAjLBNSZSeiHV9lChoBmgJaA9DCCo5J/YQLHNAlIaUUpRoFUukaBZHQIyxk8NhE0B1fZQoaAZoCWgPQwj19uei4eFzQJSGlFKUaBVL4WgWR0CMsdZBcAzYdX2UKGgGaAloD0MIa54j8p2Jc0CUhpRSlGgVS75oFkdAjLH8U21lXnV9lChoBmgJaA9DCFjGhm42YXJAlIaUUpRoFUvoaBZHQIyyqtmtheB1fZQoaAZoCWgPQwgwStBfqHpxQJSGlFKUaBVLqmgWR0CMssQDmr80dX2UKGgGaAloD0MI/fZ14JwocUCUhpRSlGgVS8JoFkdAjLPh8pkPMHV9lChoBmgJaA9DCEM8Ei8PmnFAlIaUUpRoFUuraBZHQIy1Dcdo3711fZQoaAZoCWgPQwh/v5gtWYR0QJSGlFKUaBVLxWgWR0CMtUUW2w3YdX2UKGgGaAloD0MI4X8r2XGec0CUhpRSlGgVS7JoFkdAjLXp9iMHbHV9lChoBmgJaA9DCIigavQqCHRAlIaUUpRoFUu2aBZHQIy2Wr8zhxZ1fZQoaAZoCWgPQwgvMCsUKe5zQJSGlFKUaBVLwWgWR0CMtoQ3gk1NdX2UKGgGaAloD0MIgXwJFRz1c0CUhpRSlGgVS9hoFkdAjLbRGUfPonV9lChoBmgJaA9DCLivA+cM3nJAlIaUUpRoFUu+aBZHQIy4x+6RQrN1fZQoaAZoCWgPQwjwUX+9QutzQJSGlFKUaBVLtmgWR0CMuWrXlKbsdX2UKGgGaAloD0MIIF1sWqk7ckCUhpRSlGgVS69oFkdAjLlzaCcwxnV9lChoBmgJaA9DCKuWdJTDoXJAlIaUUpRoFUvLaBZHQIy6QJ7b+Lp1fZQoaAZoCWgPQwgfEynNpndzQJSGlFKUaBVLp2gWR0CMupnXd0q6dX2UKGgGaAloD0MInyKHiBvvcUCUhpRSlGgVS55oFkdAjLsMbvPTonV9lChoBmgJaA9DCB0ewvhp23FAlIaUUpRoFUu8aBZHQIy7bNt65Xl1fZQoaAZoCWgPQwjZ690fbxR0QJSGlFKUaBVLumgWR0CMu7KFIuoQdX2UKGgGaAloD0MIceXsnZFSc0CUhpRSlGgVS7BoFkdAjLviV8kUsXV9lChoBmgJaA9DCHtLOV9sP3NAlIaUUpRoFUukaBZHQIy9hVuJk5J1fZQoaAZoCWgPQwiSkbOwp+BxQJSGlFKUaBVLvmgWR0CMvblDneSCdX2UKGgGaAloD0MIIQIOocrob0CUhpRSlGgVS6BoFkdAjL53+2mYSnV9lChoBmgJaA9DCFFM3gDze3FAlIaUUpRoFUufaBZHQIy+kijcmBx1fZQoaAZoCWgPQwg3qtOBLH5vQJSGlFKUaBVLomgWR0CMvvyfcvdudWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3796,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51c190f0086cc030c42b769306ca554364234492eed1c7061c1c9d7b3b1c26ba
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bbec24e0d05f0973cdadd55d149f460d34f555ac5d6b9802557c9274c255751
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24463dfab678085c6c47900820713886fa97fc528b9b871ff4f1aef3fd7a26c3
|
3 |
+
size 187197
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 296.3346550697612, "std_reward": 19.265949467627532, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:41:06.133190"}
|