dbarbedillo commited on
Commit
a60a614
·
1 Parent(s): e602257

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 296.33 +/- 19.27
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7370586050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73705860e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7370586170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7370586200>", "_build": "<function ActorCriticPolicy._build at 0x7f7370586290>", "forward": "<function ActorCriticPolicy.forward at 0x7f7370586320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73705863b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7370586440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73705864d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7370586560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73705865f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f73705ce930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu", "dtype": "float32", "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null, "_shape": [8]}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu", "n": 4, "dtype": "int64", "_np_random": null, "_shape": []}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651717339.3745687, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0pvTwUisu6eCQRvNFKhjxWQ8C7QNhpPQAAgD8AAIA/M6MBPFZ6Bz1ocvc9VjfevpFXSj2evPU9AAAAAAAAAACA8gg9e16Tuj6wsjkHAtS1QraZOrIgzLgAAIA/AAAAAM1sHjoUVoG6o9ZIsgzF8jAVii27FkCaMgAAgD8AAIA/mt2bvG5buz9aIi2+7czrPetiCr3a7Q2+AAAAAAAAAADNd7a9q+HdPYas7D6y+eC+lBA/Pa0bvT4AAAAAAAAAAM38DDyv8y0+L3QUPSlM/L6bYRU96KmYPQAAAAAAAAAA0xUFPrvdUz+NwDw+TiUvv5DKqj6eZIA+AAAAAAAAAADN300+iDBpPyCa0z6kozq/a58KP8gs5j0AAAAAAAAAAADMWj4W3mE/Mk94vVdeOr/BoIY+2pM/vgAAAAAAAAAAmt1DPPZwa7qcaRw93GVdM0MVK7vpErgyAACAPwAAgD8zsMC97FHAP0hJ574/fca6rTIWvkOL074AAAAAAAAAAM3qcbyc5TS8xQ9dPkvRX73hUZC9IinmuwAAgD8AAIA/hsQHPiv5sj8j3BI/xMWRvhaAUz6hlgU/AAAAAAAAAAAgQl++MrXiPsXUyz7JU0a/QoN0vo5GiD4AAAAAAAAAAGYi1zvpGiG8SWKjveJsBTxPDJK9XcPqPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjliLT8HmcUCUhpRSlIwBbJRLkYwBdJRHQIxSo4Ia99N1fZQoaAZoCWgPQwhYxRuZB59zQJSGlFKUaBVLu2gWR0CMUsMmWt2cdX2UKGgGaAloD0MIdjV5yirOckCUhpRSlGgVS6hoFkdAjFNOx8lXzXV9lChoBmgJaA9DCFCNl27SQXJAlIaUUpRoFUudaBZHQIxTp7u2JBR1fZQoaAZoCWgPQwi1pnnHqZFzQJSGlFKUaBVL1mgWR0CMVBPppvgndX2UKGgGaAloD0MICK2HL5ODcUCUhpRSlGgVS6poFkdAjFSAKfFrEnV9lChoBmgJaA9DCIQpyqVxYXNAlIaUUpRoFUueaBZHQIxU6nBLwnZ1fZQoaAZoCWgPQwgwEtpybsBwQJSGlFKUaBVLqmgWR0CMVTw0fozOdX2UKGgGaAloD0MI09o0tpeRcUCUhpRSlGgVS5ZoFkdAjIyaD5CWvHV9lChoBmgJaA9DCB78xAF0Z3FAlIaUUpRoFUuqaBZHQIyMuUr08Nh1fZQoaAZoCWgPQwhauoJtxABzQJSGlFKUaBVLo2gWR0CMjNpu/DcedX2UKGgGaAloD0MI3BFOC143ckCUhpRSlGgVS6xoFkdAjI6PNeMQ3HV9lChoBmgJaA9DCIbI6eu5O3RAlIaUUpRoFUuiaBZHQIyO7fP5YYB1fZQoaAZoCWgPQwg1Q6oo3vlvQJSGlFKUaBVLjGgWR0CMkHtiQT24dX2UKGgGaAloD0MIrBqEud22ckCUhpRSlGgVS+FoFkdAjJECKR+z+nV9lChoBmgJaA9DCP6d7dEbFnFAlIaUUpRoFUuqaBZHQIyQ+XE61b91fZQoaAZoCWgPQwhkA+liU4txQJSGlFKUaBVLlWgWR0CMkQwOe8PGdX2UKGgGaAloD0MICi3r/rHjcECUhpRSlGgVS4toFkdAjJIux8lXzXV9lChoBmgJaA9DCDkNUYU//3FAlIaUUpRoFUviaBZHQIySu7SRbKR1fZQoaAZoCWgPQwhuMNRhheZyQJSGlFKUaBVLsGgWR0CMkyKsuFpPdX2UKGgGaAloD0MI5iMp6SFQcUCUhpRSlGgVS65oFkdAjJN64tpVTHV9lChoBmgJaA9DCP63kh2b+nFAlIaUUpRoFUu3aBZHQIyVJQ53kgh1fZQoaAZoCWgPQwhZ/RGGAUxxQJSGlFKUaBVLt2gWR0CMlXRXwLE2dX2UKGgGaAloD0MIkiQIV8BWc0CUhpRSlGgVS7toFkdAjJXGOEM9bHV9lChoBmgJaA9DCPMbJhqkKHJAlIaUUpRoFUu9aBZHQIyWAGSpzcR1fZQoaAZoCWgPQwicFOY9zphwQJSGlFKUaBVLnGgWR0CMljFAmiQDdX2UKGgGaAloD0MI7Z+nAUO2ckCUhpRSlGgVS9loFkdAjJZ3dj5KvnV9lChoBmgJaA9DCCoCnN4FrXJAlIaUUpRoFUuoaBZHQIyXII0IkZ91fZQoaAZoCWgPQwhrgxPRr0pyQJSGlFKUaBVNGwFoFkdAjJf/Z26kI3V9lChoBmgJaA9DCLfvUX99RnJAlIaUUpRoFUuWaBZHQIyYOktVaOh1fZQoaAZoCWgPQwgoDwu15mZwQJSGlFKUaBVLn2gWR0CMmK35vcagdX2UKGgGaAloD0MIibX4FIAFckCUhpRSlGgVS4NoFkdAjJj/GlyimHV9lChoBmgJaA9DCNgtAmO9B3NAlIaUUpRoFUu0aBZHQIyZJDb8FZB1fZQoaAZoCWgPQwgJ+3YSUd1xQJSGlFKUaBVLvmgWR0CMmg+yquKXdX2UKGgGaAloD0MINbIrLaP9cECUhpRSlGgVS5ZoFkdAjJqLXlKbrnV9lChoBmgJaA9DCK8LPzifyXNAlIaUUpRoFUvGaBZHQIybkornTy91fZQoaAZoCWgPQwi5GAPr+HlzQJSGlFKUaBVLw2gWR0CMnGCnP3SKdX2UKGgGaAloD0MIYcJoVjZ2ckCUhpRSlGgVS5RoFkdAjJxegL7XQXV9lChoBmgJaA9DCPPmcK02EXFAlIaUUpRoFUuYaBZHQIydpo7FKkF1fZQoaAZoCWgPQwjaN/dXz61xQJSGlFKUaBVLq2gWR0CMnlcs189fdX2UKGgGaAloD0MIniees4XTcECUhpRSlGgVS6ZoFkdAjJ8X0f5k9XV9lChoBmgJaA9DCD/IsmAiOXFAlIaUUpRoFUvAaBZHQIyfNHxz7uV1fZQoaAZoCWgPQwie8BKc+ityQJSGlFKUaBVLx2gWR0CMn1MrVe8gdX2UKGgGaAloD0MI9uy5TI1gckCUhpRSlGgVS4loFkdAjJ9Z+6RQrXV9lChoBmgJaA9DCFgAUwbOXHFAlIaUUpRoFUuiaBZHQIyfzPWxyGV1fZQoaAZoCWgPQwg983LYfblwQJSGlFKUaBVLqWgWR0CMoGkLx7RfdX2UKGgGaAloD0MIodrgRHQkcECUhpRSlGgVS/BoFkdAjKCxTCLuQnV9lChoBmgJaA9DCAxcHmsGOXBAlIaUUpRoFUujaBZHQIyg7yhBZ6l1fZQoaAZoCWgPQwjFNxQ+22ByQJSGlFKUaBVLrGgWR0CMoXrVOKwZdX2UKGgGaAloD0MI/g5Fgb5BcUCUhpRSlGgVS6loFkdAjKJExASnL3V9lChoBmgJaA9DCLO0U3M5+HJAlIaUUpRoFUupaBZHQIyixo4+8oR1fZQoaAZoCWgPQwgfaAWG7DtyQJSGlFKUaBVLn2gWR0CMo10se4kNdX2UKGgGaAloD0MIexNDcjK7cECUhpRSlGgVS5toFkdAjKP40uUUwnV9lChoBmgJaA9DCKXcfY6PcHNAlIaUUpRoFUuzaBZHQIylNTHbRF91fZQoaAZoCWgPQwiBIECGjixzQJSGlFKUaBVLsWgWR0CMpmCKaXrudX2UKGgGaAloD0MIz9vY7IhNc0CUhpRSlGgVS61oFkdAjKbYPPLPlnV9lChoBmgJaA9DCNCzWfW5f29AlIaUUpRoFUulaBZHQIynSuwHJLd1fZQoaAZoCWgPQwhi2GFMehh0QJSGlFKUaBVLq2gWR0CMp4Kb8WKudX2UKGgGaAloD0MIwvhp3Ju6cUCUhpRSlGgVS5JoFkdAjKfi6xxDLXV9lChoBmgJaA9DCFBxHHi1J3NAlIaUUpRoFUugaBZHQIyoS+ajN6h1fZQoaAZoCWgPQwiu1/SgYNVzQJSGlFKUaBVLtmgWR0CMqFJsfq5cdX2UKGgGaAloD0MIeQWiJyVDckCUhpRSlGgVS79oFkdAjKkzFdcB2nV9lChoBmgJaA9DCOPEVzsKZnNAlIaUUpRoFUvXaBZHQIyp4nUlRgt1fZQoaAZoCWgPQwgX1/hM9rtyQJSGlFKUaBVLuGgWR0CMqgIdlum8dX2UKGgGaAloD0MIjc9k/zxQckCUhpRSlGgVS65oFkdAjKruXeFcp3V9lChoBmgJaA9DCHycacK27nJAlIaUUpRoFUvJaBZHQIyrZnBciW51fZQoaAZoCWgPQwhIcCNlCwF0QJSGlFKUaBVLumgWR0CMrAlSjxkNdX2UKGgGaAloD0MIvCTOiihGckCUhpRSlGgVS7JoFkdAjKw7U5MlC3V9lChoBmgJaA9DCGCUoL+QtnNAlIaUUpRoFUuqaBZHQIyscbLlmvp1fZQoaAZoCWgPQwjIRbWIqMBwQJSGlFKUaBVLlmgWR0CMrJ2OhkAhdX2UKGgGaAloD0MI8RExJVIJcUCUhpRSlGgVS5ZoFkdAjK63B55Z83V9lChoBmgJaA9DCA0zNJ6ILXNAlIaUUpRoFUugaBZHQIyvfUlRgqp1fZQoaAZoCWgPQwgJiEm4ELdyQJSGlFKUaBVLn2gWR0CMr9VjI7vHdX2UKGgGaAloD0MI0GOUZx5DcECUhpRSlGgVS55oFkdAjLBNSZSeiHV9lChoBmgJaA9DCCo5J/YQLHNAlIaUUpRoFUukaBZHQIyxk8NhE0B1fZQoaAZoCWgPQwj19uei4eFzQJSGlFKUaBVL4WgWR0CMsdZBcAzYdX2UKGgGaAloD0MIa54j8p2Jc0CUhpRSlGgVS75oFkdAjLH8U21lXnV9lChoBmgJaA9DCFjGhm42YXJAlIaUUpRoFUvoaBZHQIyyqtmtheB1fZQoaAZoCWgPQwgwStBfqHpxQJSGlFKUaBVLqmgWR0CMssQDmr80dX2UKGgGaAloD0MI/fZ14JwocUCUhpRSlGgVS8JoFkdAjLPh8pkPMHV9lChoBmgJaA9DCEM8Ei8PmnFAlIaUUpRoFUuraBZHQIy1Dcdo3711fZQoaAZoCWgPQwh/v5gtWYR0QJSGlFKUaBVLxWgWR0CMtUUW2w3YdX2UKGgGaAloD0MI4X8r2XGec0CUhpRSlGgVS7JoFkdAjLXp9iMHbHV9lChoBmgJaA9DCIigavQqCHRAlIaUUpRoFUu2aBZHQIy2Wr8zhxZ1fZQoaAZoCWgPQwgvMCsUKe5zQJSGlFKUaBVLwWgWR0CMtoQ3gk1NdX2UKGgGaAloD0MIgXwJFRz1c0CUhpRSlGgVS9hoFkdAjLbRGUfPonV9lChoBmgJaA9DCLivA+cM3nJAlIaUUpRoFUu+aBZHQIy4x+6RQrN1fZQoaAZoCWgPQwjwUX+9QutzQJSGlFKUaBVLtmgWR0CMuWrXlKbsdX2UKGgGaAloD0MIIF1sWqk7ckCUhpRSlGgVS69oFkdAjLlzaCcwxnV9lChoBmgJaA9DCKuWdJTDoXJAlIaUUpRoFUvLaBZHQIy6QJ7b+Lp1fZQoaAZoCWgPQwgfEynNpndzQJSGlFKUaBVLp2gWR0CMupnXd0q6dX2UKGgGaAloD0MInyKHiBvvcUCUhpRSlGgVS55oFkdAjLsMbvPTonV9lChoBmgJaA9DCB0ewvhp23FAlIaUUpRoFUu8aBZHQIy7bNt65Xl1fZQoaAZoCWgPQwjZ690fbxR0QJSGlFKUaBVLumgWR0CMu7KFIuoQdX2UKGgGaAloD0MIceXsnZFSc0CUhpRSlGgVS7BoFkdAjLviV8kUsXV9lChoBmgJaA9DCHtLOV9sP3NAlIaUUpRoFUukaBZHQIy9hVuJk5J1fZQoaAZoCWgPQwiSkbOwp+BxQJSGlFKUaBVLvmgWR0CMvblDneSCdX2UKGgGaAloD0MIIQIOocrob0CUhpRSlGgVS6BoFkdAjL53+2mYSnV9lChoBmgJaA9DCFFM3gDze3FAlIaUUpRoFUufaBZHQIy+kijcmBx1fZQoaAZoCWgPQwg3qtOBLH5vQJSGlFKUaBVLomgWR0CMvvyfcvdudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3796, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5371ac1ff21f8cbc2557b5353a8108147f26a8511625455788d2c23eae72b5bd
3
+ size 143949
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7370586050>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73705860e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7370586170>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7370586200>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7370586290>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7370586320>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73705863b0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7370586440>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73705864d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7370586560>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73705865f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f73705ce930>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolggAAAAAAAAAAAAAAAAAAACUaB9LCIWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
26
+ "dtype": "float32",
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False]",
30
+ "bounded_above": "[False False False False False False False False]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 8
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZQpdWIu",
39
+ "n": 4,
40
+ "dtype": "int64",
41
+ "_np_random": null,
42
+ "_shape": []
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651717339.3745687,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0pvTwUisu6eCQRvNFKhjxWQ8C7QNhpPQAAgD8AAIA/M6MBPFZ6Bz1ocvc9VjfevpFXSj2evPU9AAAAAAAAAACA8gg9e16Tuj6wsjkHAtS1QraZOrIgzLgAAIA/AAAAAM1sHjoUVoG6o9ZIsgzF8jAVii27FkCaMgAAgD8AAIA/mt2bvG5buz9aIi2+7czrPetiCr3a7Q2+AAAAAAAAAADNd7a9q+HdPYas7D6y+eC+lBA/Pa0bvT4AAAAAAAAAAM38DDyv8y0+L3QUPSlM/L6bYRU96KmYPQAAAAAAAAAA0xUFPrvdUz+NwDw+TiUvv5DKqj6eZIA+AAAAAAAAAADN300+iDBpPyCa0z6kozq/a58KP8gs5j0AAAAAAAAAAADMWj4W3mE/Mk94vVdeOr/BoIY+2pM/vgAAAAAAAAAAmt1DPPZwa7qcaRw93GVdM0MVK7vpErgyAACAPwAAgD8zsMC97FHAP0hJ574/fca6rTIWvkOL074AAAAAAAAAAM3qcbyc5TS8xQ9dPkvRX73hUZC9IinmuwAAgD8AAIA/hsQHPiv5sj8j3BI/xMWRvhaAUz6hlgU/AAAAAAAAAAAgQl++MrXiPsXUyz7JU0a/QoN0vo5GiD4AAAAAAAAAAGYi1zvpGiG8SWKjveJsBTxPDJK9XcPqPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjliLT8HmcUCUhpRSlIwBbJRLkYwBdJRHQIxSo4Ia99N1fZQoaAZoCWgPQwhYxRuZB59zQJSGlFKUaBVLu2gWR0CMUsMmWt2cdX2UKGgGaAloD0MIdjV5yirOckCUhpRSlGgVS6hoFkdAjFNOx8lXzXV9lChoBmgJaA9DCFCNl27SQXJAlIaUUpRoFUudaBZHQIxTp7u2JBR1fZQoaAZoCWgPQwi1pnnHqZFzQJSGlFKUaBVL1mgWR0CMVBPppvgndX2UKGgGaAloD0MICK2HL5ODcUCUhpRSlGgVS6poFkdAjFSAKfFrEnV9lChoBmgJaA9DCIQpyqVxYXNAlIaUUpRoFUueaBZHQIxU6nBLwnZ1fZQoaAZoCWgPQwgwEtpybsBwQJSGlFKUaBVLqmgWR0CMVTw0fozOdX2UKGgGaAloD0MI09o0tpeRcUCUhpRSlGgVS5ZoFkdAjIyaD5CWvHV9lChoBmgJaA9DCB78xAF0Z3FAlIaUUpRoFUuqaBZHQIyMuUr08Nh1fZQoaAZoCWgPQwhauoJtxABzQJSGlFKUaBVLo2gWR0CMjNpu/DcedX2UKGgGaAloD0MI3BFOC143ckCUhpRSlGgVS6xoFkdAjI6PNeMQ3HV9lChoBmgJaA9DCIbI6eu5O3RAlIaUUpRoFUuiaBZHQIyO7fP5YYB1fZQoaAZoCWgPQwg1Q6oo3vlvQJSGlFKUaBVLjGgWR0CMkHtiQT24dX2UKGgGaAloD0MIrBqEud22ckCUhpRSlGgVS+FoFkdAjJECKR+z+nV9lChoBmgJaA9DCP6d7dEbFnFAlIaUUpRoFUuqaBZHQIyQ+XE61b91fZQoaAZoCWgPQwhkA+liU4txQJSGlFKUaBVLlWgWR0CMkQwOe8PGdX2UKGgGaAloD0MICi3r/rHjcECUhpRSlGgVS4toFkdAjJIux8lXzXV9lChoBmgJaA9DCDkNUYU//3FAlIaUUpRoFUviaBZHQIySu7SRbKR1fZQoaAZoCWgPQwhuMNRhheZyQJSGlFKUaBVLsGgWR0CMkyKsuFpPdX2UKGgGaAloD0MI5iMp6SFQcUCUhpRSlGgVS65oFkdAjJN64tpVTHV9lChoBmgJaA9DCP63kh2b+nFAlIaUUpRoFUu3aBZHQIyVJQ53kgh1fZQoaAZoCWgPQwhZ/RGGAUxxQJSGlFKUaBVLt2gWR0CMlXRXwLE2dX2UKGgGaAloD0MIkiQIV8BWc0CUhpRSlGgVS7toFkdAjJXGOEM9bHV9lChoBmgJaA9DCPMbJhqkKHJAlIaUUpRoFUu9aBZHQIyWAGSpzcR1fZQoaAZoCWgPQwicFOY9zphwQJSGlFKUaBVLnGgWR0CMljFAmiQDdX2UKGgGaAloD0MI7Z+nAUO2ckCUhpRSlGgVS9loFkdAjJZ3dj5KvnV9lChoBmgJaA9DCCoCnN4FrXJAlIaUUpRoFUuoaBZHQIyXII0IkZ91fZQoaAZoCWgPQwhrgxPRr0pyQJSGlFKUaBVNGwFoFkdAjJf/Z26kI3V9lChoBmgJaA9DCLfvUX99RnJAlIaUUpRoFUuWaBZHQIyYOktVaOh1fZQoaAZoCWgPQwgoDwu15mZwQJSGlFKUaBVLn2gWR0CMmK35vcagdX2UKGgGaAloD0MIibX4FIAFckCUhpRSlGgVS4NoFkdAjJj/GlyimHV9lChoBmgJaA9DCNgtAmO9B3NAlIaUUpRoFUu0aBZHQIyZJDb8FZB1fZQoaAZoCWgPQwgJ+3YSUd1xQJSGlFKUaBVLvmgWR0CMmg+yquKXdX2UKGgGaAloD0MINbIrLaP9cECUhpRSlGgVS5ZoFkdAjJqLXlKbrnV9lChoBmgJaA9DCK8LPzifyXNAlIaUUpRoFUvGaBZHQIybkornTy91fZQoaAZoCWgPQwi5GAPr+HlzQJSGlFKUaBVLw2gWR0CMnGCnP3SKdX2UKGgGaAloD0MIYcJoVjZ2ckCUhpRSlGgVS5RoFkdAjJxegL7XQXV9lChoBmgJaA9DCPPmcK02EXFAlIaUUpRoFUuYaBZHQIydpo7FKkF1fZQoaAZoCWgPQwjaN/dXz61xQJSGlFKUaBVLq2gWR0CMnlcs189fdX2UKGgGaAloD0MIniees4XTcECUhpRSlGgVS6ZoFkdAjJ8X0f5k9XV9lChoBmgJaA9DCD/IsmAiOXFAlIaUUpRoFUvAaBZHQIyfNHxz7uV1fZQoaAZoCWgPQwie8BKc+ityQJSGlFKUaBVLx2gWR0CMn1MrVe8gdX2UKGgGaAloD0MI9uy5TI1gckCUhpRSlGgVS4loFkdAjJ9Z+6RQrXV9lChoBmgJaA9DCFgAUwbOXHFAlIaUUpRoFUuiaBZHQIyfzPWxyGV1fZQoaAZoCWgPQwg983LYfblwQJSGlFKUaBVLqWgWR0CMoGkLx7RfdX2UKGgGaAloD0MIodrgRHQkcECUhpRSlGgVS/BoFkdAjKCxTCLuQnV9lChoBmgJaA9DCAxcHmsGOXBAlIaUUpRoFUujaBZHQIyg7yhBZ6l1fZQoaAZoCWgPQwjFNxQ+22ByQJSGlFKUaBVLrGgWR0CMoXrVOKwZdX2UKGgGaAloD0MI/g5Fgb5BcUCUhpRSlGgVS6loFkdAjKJExASnL3V9lChoBmgJaA9DCLO0U3M5+HJAlIaUUpRoFUupaBZHQIyixo4+8oR1fZQoaAZoCWgPQwgfaAWG7DtyQJSGlFKUaBVLn2gWR0CMo10se4kNdX2UKGgGaAloD0MIexNDcjK7cECUhpRSlGgVS5toFkdAjKP40uUUwnV9lChoBmgJaA9DCKXcfY6PcHNAlIaUUpRoFUuzaBZHQIylNTHbRF91fZQoaAZoCWgPQwiBIECGjixzQJSGlFKUaBVLsWgWR0CMpmCKaXrudX2UKGgGaAloD0MIz9vY7IhNc0CUhpRSlGgVS61oFkdAjKbYPPLPlnV9lChoBmgJaA9DCNCzWfW5f29AlIaUUpRoFUulaBZHQIynSuwHJLd1fZQoaAZoCWgPQwhi2GFMehh0QJSGlFKUaBVLq2gWR0CMp4Kb8WKudX2UKGgGaAloD0MIwvhp3Ju6cUCUhpRSlGgVS5JoFkdAjKfi6xxDLXV9lChoBmgJaA9DCFBxHHi1J3NAlIaUUpRoFUugaBZHQIyoS+ajN6h1fZQoaAZoCWgPQwiu1/SgYNVzQJSGlFKUaBVLtmgWR0CMqFJsfq5cdX2UKGgGaAloD0MIeQWiJyVDckCUhpRSlGgVS79oFkdAjKkzFdcB2nV9lChoBmgJaA9DCOPEVzsKZnNAlIaUUpRoFUvXaBZHQIyp4nUlRgt1fZQoaAZoCWgPQwgX1/hM9rtyQJSGlFKUaBVLuGgWR0CMqgIdlum8dX2UKGgGaAloD0MIjc9k/zxQckCUhpRSlGgVS65oFkdAjKruXeFcp3V9lChoBmgJaA9DCHycacK27nJAlIaUUpRoFUvJaBZHQIyrZnBciW51fZQoaAZoCWgPQwhIcCNlCwF0QJSGlFKUaBVLumgWR0CMrAlSjxkNdX2UKGgGaAloD0MIvCTOiihGckCUhpRSlGgVS7JoFkdAjKw7U5MlC3V9lChoBmgJaA9DCGCUoL+QtnNAlIaUUpRoFUuqaBZHQIyscbLlmvp1fZQoaAZoCWgPQwjIRbWIqMBwQJSGlFKUaBVLlmgWR0CMrJ2OhkAhdX2UKGgGaAloD0MI8RExJVIJcUCUhpRSlGgVS5ZoFkdAjK63B55Z83V9lChoBmgJaA9DCA0zNJ6ILXNAlIaUUpRoFUugaBZHQIyvfUlRgqp1fZQoaAZoCWgPQwgJiEm4ELdyQJSGlFKUaBVLn2gWR0CMr9VjI7vHdX2UKGgGaAloD0MI0GOUZx5DcECUhpRSlGgVS55oFkdAjLBNSZSeiHV9lChoBmgJaA9DCCo5J/YQLHNAlIaUUpRoFUukaBZHQIyxk8NhE0B1fZQoaAZoCWgPQwj19uei4eFzQJSGlFKUaBVL4WgWR0CMsdZBcAzYdX2UKGgGaAloD0MIa54j8p2Jc0CUhpRSlGgVS75oFkdAjLH8U21lXnV9lChoBmgJaA9DCFjGhm42YXJAlIaUUpRoFUvoaBZHQIyyqtmtheB1fZQoaAZoCWgPQwgwStBfqHpxQJSGlFKUaBVLqmgWR0CMssQDmr80dX2UKGgGaAloD0MI/fZ14JwocUCUhpRSlGgVS8JoFkdAjLPh8pkPMHV9lChoBmgJaA9DCEM8Ei8PmnFAlIaUUpRoFUuraBZHQIy1Dcdo3711fZQoaAZoCWgPQwh/v5gtWYR0QJSGlFKUaBVLxWgWR0CMtUUW2w3YdX2UKGgGaAloD0MI4X8r2XGec0CUhpRSlGgVS7JoFkdAjLXp9iMHbHV9lChoBmgJaA9DCIigavQqCHRAlIaUUpRoFUu2aBZHQIy2Wr8zhxZ1fZQoaAZoCWgPQwgvMCsUKe5zQJSGlFKUaBVLwWgWR0CMtoQ3gk1NdX2UKGgGaAloD0MIgXwJFRz1c0CUhpRSlGgVS9hoFkdAjLbRGUfPonV9lChoBmgJaA9DCLivA+cM3nJAlIaUUpRoFUu+aBZHQIy4x+6RQrN1fZQoaAZoCWgPQwjwUX+9QutzQJSGlFKUaBVLtmgWR0CMuWrXlKbsdX2UKGgGaAloD0MIIF1sWqk7ckCUhpRSlGgVS69oFkdAjLlzaCcwxnV9lChoBmgJaA9DCKuWdJTDoXJAlIaUUpRoFUvLaBZHQIy6QJ7b+Lp1fZQoaAZoCWgPQwgfEynNpndzQJSGlFKUaBVLp2gWR0CMupnXd0q6dX2UKGgGaAloD0MInyKHiBvvcUCUhpRSlGgVS55oFkdAjLsMbvPTonV9lChoBmgJaA9DCB0ewvhp23FAlIaUUpRoFUu8aBZHQIy7bNt65Xl1fZQoaAZoCWgPQwjZ690fbxR0QJSGlFKUaBVLumgWR0CMu7KFIuoQdX2UKGgGaAloD0MIceXsnZFSc0CUhpRSlGgVS7BoFkdAjLviV8kUsXV9lChoBmgJaA9DCHtLOV9sP3NAlIaUUpRoFUukaBZHQIy9hVuJk5J1fZQoaAZoCWgPQwiSkbOwp+BxQJSGlFKUaBVLvmgWR0CMvblDneSCdX2UKGgGaAloD0MIIQIOocrob0CUhpRSlGgVS6BoFkdAjL53+2mYSnV9lChoBmgJaA9DCFFM3gDze3FAlIaUUpRoFUufaBZHQIy+kijcmBx1fZQoaAZoCWgPQwg3qtOBLH5vQJSGlFKUaBVLomgWR0CMvvyfcvdudWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3796,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVoQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxzQzpcVXNlcnNcZGFuaWVcQW5hY29uZGEzXGVudnNcc3RhYmxlYmFzZWxpbmVzLXB5MzczLWh1Z2dpbmdmYWNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51c190f0086cc030c42b769306ca554364234492eed1c7061c1c9d7b3b1c26ba
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bbec24e0d05f0973cdadd55d149f460d34f555ac5d6b9802557c9274c255751
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24463dfab678085c6c47900820713886fa97fc528b9b871ff4f1aef3fd7a26c3
3
+ size 187197
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 296.3346550697612, "std_reward": 19.265949467627532, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:41:06.133190"}