dayvidwang
commited on
Commit
·
6ec09f6
1
Parent(s):
7bb459a
update model card README.md
Browse files
README.md
CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# bert-finetuned-ner
|
19 |
|
20 |
-
This model is a fine-tuned version of [distilbert-base-
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -42,21 +42,26 @@ More information needed
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate:
|
46 |
-
- train_batch_size:
|
47 |
- eval_batch_size: 64
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log | 1.0 |
|
58 |
-
|
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
17 |
|
18 |
# bert-finetuned-ner
|
19 |
|
20 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1592
|
23 |
+
- Precision: 0.7852
|
24 |
+
- Recall: 0.8012
|
25 |
+
- F1: 0.7931
|
26 |
+
- Accuracy: 0.9701
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 8e-05
|
46 |
+
- train_batch_size: 64
|
47 |
- eval_batch_size: 64
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 131 | 0.1607 | 0.6254 | 0.6801 | 0.6516 | 0.9538 |
|
58 |
+
| No log | 2.0 | 262 | 0.1188 | 0.7437 | 0.7695 | 0.7564 | 0.9670 |
|
59 |
+
| No log | 3.0 | 393 | 0.1264 | 0.7556 | 0.7750 | 0.7652 | 0.9675 |
|
60 |
+
| 0.0923 | 4.0 | 524 | 0.1344 | 0.7622 | 0.7858 | 0.7738 | 0.9680 |
|
61 |
+
| 0.0923 | 5.0 | 655 | 0.1442 | 0.7741 | 0.7835 | 0.7788 | 0.9694 |
|
62 |
+
| 0.0923 | 6.0 | 786 | 0.1501 | 0.7892 | 0.8104 | 0.7997 | 0.9703 |
|
63 |
+
| 0.0923 | 7.0 | 917 | 0.1584 | 0.7750 | 0.7964 | 0.7856 | 0.9694 |
|
64 |
+
| 0.0133 | 8.0 | 1048 | 0.1592 | 0.7852 | 0.8012 | 0.7931 | 0.9701 |
|
65 |
|
66 |
|
67 |
### Framework versions
|