File size: 10,170 Bytes
51cf2ab
8d2b0ff
 
f5219e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de9a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cf2ab
8d2b0ff
51cf2ab
8d2b0ff
51cf2ab
8d2b0ff
51cf2ab
8d2b0ff
51cf2ab
 
8d2b0ff
51cf2ab
8d2b0ff
51cf2ab
8d2b0ff
51cf2ab
8d2b0ff
 
 
fe4f3ca
 
51cf2ab
fe4f3ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40bd979
fe4f3ca
 
f5219e7
 
 
 
 
 
 
 
 
 
 
 
 
8de9a25
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
---
language:
- en
license: apache-2.0
library_name: transformers
model-index:
- name: Rhea-72b-v0.5
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 79.78
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 91.15
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 74.5
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 87.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.12
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 1.45
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 3.67
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.51
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.34
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.32
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=davidkim205/Rhea-72b-v0.5
      name: Open LLM Leaderboard
---
# Rhea-72b-v0.5

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64241c3d774cc340797429fc/97nXDuEhQUom3vaVcEvV-.jpeg)

The Rhea project is a project that conducts research on various learning methods to improve llm model performance.  We fine-tuned the existing model using the [nox](https://github.com/davidkim205/nox) framework. We built a dataset for SFT learning based on the currently open dataset, and created a dataset using SGD (Self-Generated Dataset Creation Method for DPO Learning) for DPO learning.

Our model ranked first on HuggingFace's Open LLM leaderboard.


## SGD : A Study on Self-Generated Dataset creation method for DPO Learning

This method proposes a novel method for generating datasets for DPO (Self-supervised Learning) models. We suggest a technique where sentences generated by the model are compared with the actual correct answers from an existing dataset, and sentences where the model's generated results do not match the correct answers are added. This enables the model to autonomously create training data, thereby enhancing the performance of DPO models.

## Model Details

* **Model Developers** :  davidkim(changyeon kim)
* **Repository** : [https://github.com/davidkim205/nox](https://github.com/davidkim205/nox)
* **base mode** : abacusai/Smaug-72B-v0.1
* **sft dataset** : datasets_enconv_4m
* **dpo dataset** : datasets_encomp_151k

## sft dataset info : datasets_enconv_4m
### 100k random shuffle datasets
- stack-exchange-preferences 
- SlimOrca             
- alpaca-gpt4          
- SHP                  
- HC3                  
- databricks-dolly-15k 
- orca-dpo-pairs       
- us-stockname
- OpenHermes2.5-dpo-binarized-alpha 
- distilabel-math-preference-dpo 
- Neural-DPO           
- truthy-dpo-v0.1      
- distilabel-capybara-dpo-7k-binarized 
- us-sentiment         
- contextual-dpo-v0.1  

### 1k random shuffle datasets
- bigbench             
- glue_mnli            
- glue_qqp             
- xnli                 
- codexglue_code2text_go 
- trivia_qa            
- medmcqa              
- hendrycks_ethics     
- super_glue_record    
- glue_qnli            
- anli_r3              
- swag                 
- squad_v2             
- nq_open              
- drop                 
- glue_sst2            
- blimp                
- paws-x               
- unscramble           
- anli_r2              
- babi                 
- math_qa              
- social_i_qa          
- piqa                 
- arithmetic           
- anli_r1              
- prost                
- sciq                 
- mc_taco              
- medqa                
- super_glue_boolq     
- hendrycks_math       
- lambada              
- toxigen-data         
- glue_cola            
- pubmed_qa            
- logiqa               
- mutual               
- headqa               
- bbh                  
- super_glue_wic       
- openbookqa           
- glue_mrpc            
- web_questions        
- qasper               
- super_glue_multirc   
- story_cloze          
- super_glue_rte       
- glue_rte             
- race                 
- xwinograd            
- asdiv                
- xstory_cloze         
- crows_pairs_multilingual 
- belebele             
- glue_wnli            
- super_glue_wsc       
- coqa                 
- super_glue_copa      
- super_glue_cb        
- winograd_wsc         
- mgsm                 
- scrolls_contract_nli 

* If the data set cannot be found, it is internal company data and cannot be made public.

## dpo dataset info : datasets_encomp_151k
Randomly selecting data from each category within the training dataset, we constructed a DPO (Direct Preference Optimization) dataset using sentences with logits lower than the mean within the model-generated sentences.
* I'm sorry I can't reveal it.
  
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_davidkim205__Rhea-72b-v0.5)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |81.22|
|AI2 Reasoning Challenge (25-Shot)|79.78|
|HellaSwag (10-Shot)              |91.15|
|MMLU (5-Shot)                    |77.95|
|TruthfulQA (0-shot)              |74.50|
|Winogrande (5-shot)              |87.85|
|GSM8k (5-shot)                   |76.12|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_davidkim205__Rhea-72b-v0.5)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 4.02|
|IFEval (0-Shot)    | 1.45|
|BBH (3-Shot)       | 3.67|
|MATH Lvl 5 (4-Shot)| 5.51|
|GPQA (0-shot)      | 0.34|
|MuSR (0-shot)      |11.32|
|MMLU-PRO (5-shot)  | 1.85|