wav2vec2-xls-r-1b-faroese-100h-30-epochs_20250126_v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1065
  • Wer: 18.8527
  • Cer: 4.1045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.4856 0.4877 1000 0.8786 82.4118 26.5338
0.6959 0.9754 2000 0.4059 49.6850 13.2626
0.4978 1.4628 3000 0.2672 36.8991 9.6228
0.4215 1.9505 4000 0.2359 33.7005 8.5821
0.3261 2.4379 5000 0.2273 31.9910 8.2815
0.3388 2.9256 6000 0.2162 31.0261 7.9927
0.2987 3.4131 7000 0.1988 29.2814 7.4294
0.2824 3.9008 8000 0.1919 28.5192 7.1311
0.257 4.3882 9000 0.1861 27.9861 7.1059
0.2668 4.8759 10000 0.1758 27.2679 6.8108
0.2438 5.3633 11000 0.1699 26.8450 6.6419
0.2218 5.8510 12000 0.1704 26.7040 6.6222
0.194 6.3385 13000 0.1623 25.9638 6.3760
0.1997 6.8261 14000 0.1550 25.5805 6.3216
0.186 7.3136 15000 0.1493 25.5584 6.1243
0.1686 7.8013 16000 0.1597 25.3998 6.2198
0.1433 8.2887 17000 0.1493 24.6552 5.8813
0.1581 8.7764 18000 0.1459 24.7962 5.9847
0.1245 9.2638 19000 0.1425 24.3865 5.8190
0.1396 9.7515 20000 0.1576 24.5407 5.8900
0.1188 10.2390 21000 0.1410 23.7300 5.6407
0.1131 10.7267 22000 0.1373 23.4524 5.5586
0.1267 11.2141 23000 0.1397 23.7741 5.6075
0.1192 11.7018 24000 0.1346 23.4084 5.4482
0.1073 12.1892 25000 0.1325 22.8312 5.3811
0.098 12.6769 26000 0.1227 22.3642 5.1681
0.0939 13.1644 27000 0.1307 22.7695 5.2856
0.0929 13.6520 28000 0.1274 22.2629 5.1854
0.0787 14.1395 29000 0.1265 21.9853 5.0268
0.0805 14.6272 30000 0.1239 22.1131 5.0923
0.0766 15.1146 31000 0.1226 21.7386 4.9905
0.0745 15.6023 32000 0.1189 21.4786 4.9124
0.0663 16.0897 33000 0.1224 21.7650 4.9250
0.0638 16.5774 34000 0.1188 21.0689 4.8185
0.0609 17.0649 35000 0.1177 20.9058 4.7420
0.0677 17.5525 36000 0.1140 21.0116 4.7546
0.0516 18.0400 37000 0.1180 20.8794 4.7025
0.0488 18.5277 38000 0.1177 20.4653 4.6307
0.0512 19.0151 39000 0.1135 20.1789 4.5447
0.0464 19.5028 40000 0.1163 20.2758 4.5013
0.0465 19.9905 41000 0.1125 20.1877 4.4635
0.0536 20.4779 42000 0.1129 20.0247 4.4477
0.0417 20.9656 43000 0.1131 19.7383 4.3830
0.038 21.4531 44000 0.1117 19.8881 4.4027
0.0454 21.9407 45000 0.1105 19.6942 4.3514
0.031 22.4282 46000 0.1130 19.6193 4.3388
0.0373 22.9159 47000 0.1100 19.4563 4.2788
0.0319 23.4033 48000 0.1107 19.4519 4.2717
0.035 23.8910 49000 0.1112 19.2933 4.2299
0.0327 24.3784 50000 0.1111 19.1964 4.1999
0.0261 24.8661 51000 0.1056 19.0906 4.1842
0.0321 25.3536 52000 0.1059 18.9496 4.1447
0.0301 25.8413 53000 0.1058 19.0906 4.1558
0.0281 26.3287 54000 0.1091 18.9893 4.1344
0.0246 26.8164 55000 0.1062 18.8836 4.1100
0.0238 27.3038 56000 0.1064 18.8615 4.1076
0.0305 27.7915 57000 0.1068 18.9188 4.1195
0.0293 28.2790 58000 0.1067 18.8791 4.1060
0.0288 28.7666 59000 0.1066 18.8836 4.1131
0.0345 29.2541 60000 0.1065 18.8439 4.1029
0.0365 29.7418 61000 0.1065 18.8527 4.1045

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
24
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-1b-faroese-100h-30-epochs_20250126_v2

Finetuned
(107)
this model