wav2vec2-xls-r-1b-faroese-100h-30-epochs_20250126_v2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1065
- Wer: 18.8527
- Cer: 4.1045
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.4856 | 0.4877 | 1000 | 0.8786 | 82.4118 | 26.5338 |
0.6959 | 0.9754 | 2000 | 0.4059 | 49.6850 | 13.2626 |
0.4978 | 1.4628 | 3000 | 0.2672 | 36.8991 | 9.6228 |
0.4215 | 1.9505 | 4000 | 0.2359 | 33.7005 | 8.5821 |
0.3261 | 2.4379 | 5000 | 0.2273 | 31.9910 | 8.2815 |
0.3388 | 2.9256 | 6000 | 0.2162 | 31.0261 | 7.9927 |
0.2987 | 3.4131 | 7000 | 0.1988 | 29.2814 | 7.4294 |
0.2824 | 3.9008 | 8000 | 0.1919 | 28.5192 | 7.1311 |
0.257 | 4.3882 | 9000 | 0.1861 | 27.9861 | 7.1059 |
0.2668 | 4.8759 | 10000 | 0.1758 | 27.2679 | 6.8108 |
0.2438 | 5.3633 | 11000 | 0.1699 | 26.8450 | 6.6419 |
0.2218 | 5.8510 | 12000 | 0.1704 | 26.7040 | 6.6222 |
0.194 | 6.3385 | 13000 | 0.1623 | 25.9638 | 6.3760 |
0.1997 | 6.8261 | 14000 | 0.1550 | 25.5805 | 6.3216 |
0.186 | 7.3136 | 15000 | 0.1493 | 25.5584 | 6.1243 |
0.1686 | 7.8013 | 16000 | 0.1597 | 25.3998 | 6.2198 |
0.1433 | 8.2887 | 17000 | 0.1493 | 24.6552 | 5.8813 |
0.1581 | 8.7764 | 18000 | 0.1459 | 24.7962 | 5.9847 |
0.1245 | 9.2638 | 19000 | 0.1425 | 24.3865 | 5.8190 |
0.1396 | 9.7515 | 20000 | 0.1576 | 24.5407 | 5.8900 |
0.1188 | 10.2390 | 21000 | 0.1410 | 23.7300 | 5.6407 |
0.1131 | 10.7267 | 22000 | 0.1373 | 23.4524 | 5.5586 |
0.1267 | 11.2141 | 23000 | 0.1397 | 23.7741 | 5.6075 |
0.1192 | 11.7018 | 24000 | 0.1346 | 23.4084 | 5.4482 |
0.1073 | 12.1892 | 25000 | 0.1325 | 22.8312 | 5.3811 |
0.098 | 12.6769 | 26000 | 0.1227 | 22.3642 | 5.1681 |
0.0939 | 13.1644 | 27000 | 0.1307 | 22.7695 | 5.2856 |
0.0929 | 13.6520 | 28000 | 0.1274 | 22.2629 | 5.1854 |
0.0787 | 14.1395 | 29000 | 0.1265 | 21.9853 | 5.0268 |
0.0805 | 14.6272 | 30000 | 0.1239 | 22.1131 | 5.0923 |
0.0766 | 15.1146 | 31000 | 0.1226 | 21.7386 | 4.9905 |
0.0745 | 15.6023 | 32000 | 0.1189 | 21.4786 | 4.9124 |
0.0663 | 16.0897 | 33000 | 0.1224 | 21.7650 | 4.9250 |
0.0638 | 16.5774 | 34000 | 0.1188 | 21.0689 | 4.8185 |
0.0609 | 17.0649 | 35000 | 0.1177 | 20.9058 | 4.7420 |
0.0677 | 17.5525 | 36000 | 0.1140 | 21.0116 | 4.7546 |
0.0516 | 18.0400 | 37000 | 0.1180 | 20.8794 | 4.7025 |
0.0488 | 18.5277 | 38000 | 0.1177 | 20.4653 | 4.6307 |
0.0512 | 19.0151 | 39000 | 0.1135 | 20.1789 | 4.5447 |
0.0464 | 19.5028 | 40000 | 0.1163 | 20.2758 | 4.5013 |
0.0465 | 19.9905 | 41000 | 0.1125 | 20.1877 | 4.4635 |
0.0536 | 20.4779 | 42000 | 0.1129 | 20.0247 | 4.4477 |
0.0417 | 20.9656 | 43000 | 0.1131 | 19.7383 | 4.3830 |
0.038 | 21.4531 | 44000 | 0.1117 | 19.8881 | 4.4027 |
0.0454 | 21.9407 | 45000 | 0.1105 | 19.6942 | 4.3514 |
0.031 | 22.4282 | 46000 | 0.1130 | 19.6193 | 4.3388 |
0.0373 | 22.9159 | 47000 | 0.1100 | 19.4563 | 4.2788 |
0.0319 | 23.4033 | 48000 | 0.1107 | 19.4519 | 4.2717 |
0.035 | 23.8910 | 49000 | 0.1112 | 19.2933 | 4.2299 |
0.0327 | 24.3784 | 50000 | 0.1111 | 19.1964 | 4.1999 |
0.0261 | 24.8661 | 51000 | 0.1056 | 19.0906 | 4.1842 |
0.0321 | 25.3536 | 52000 | 0.1059 | 18.9496 | 4.1447 |
0.0301 | 25.8413 | 53000 | 0.1058 | 19.0906 | 4.1558 |
0.0281 | 26.3287 | 54000 | 0.1091 | 18.9893 | 4.1344 |
0.0246 | 26.8164 | 55000 | 0.1062 | 18.8836 | 4.1100 |
0.0238 | 27.3038 | 56000 | 0.1064 | 18.8615 | 4.1076 |
0.0305 | 27.7915 | 57000 | 0.1068 | 18.9188 | 4.1195 |
0.0293 | 28.2790 | 58000 | 0.1067 | 18.8791 | 4.1060 |
0.0288 | 28.7666 | 59000 | 0.1066 | 18.8836 | 4.1131 |
0.0345 | 29.2541 | 60000 | 0.1065 | 18.8439 | 4.1029 |
0.0365 | 29.7418 | 61000 | 0.1065 | 18.8527 | 4.1045 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for davidilag/wav2vec2-xls-r-1b-faroese-100h-30-epochs_20250126_v2
Base model
facebook/wav2vec2-xls-r-1b