File size: 1,559 Bytes
ee57be3 5ca167a 7039a13 5ca167a fae41d5 5ca167a ad6979a fae41d5 ad6979a 63ef310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
<strong style="font-size: 24px;">"My name is Epicurus, but my friends call me "Epic" for short. "<strong style="font-size: 24px;"></strong>.
<strong style="font-size: 24px;">SageBeluga13B</strong> Stoic assistant fine-tuned by <strong style="font-size: 24px;">dscompounding.com</strong>.
<img src="https://cdn-uploads.huggingface.co/production/uploads/645ba35bbc7518912e2135e6/iAd3EFZptpoE8QzZKnaxT.png" alt="Dave86CH_epic_badass_marcus_aurelius_fighting_0c2c720e-bcff-471e-9a05-89aecb45722a.png" width="500">
Marcus Aurelius
# SageBeluga13 Model README
## Description
The `SageBeluga13` model, hosted on Hugging Face, has been fine-tuned for specific tasks.
To utilize this model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model = "davesoma/SageBeluga13"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float32
)
sequences = pipeline(
"Girafatron is obsessed with giraffes...",
max_length=200,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Example
![SageBeluga13B.jpg]()
<img src="https://cdn-uploads.huggingface.co/production/uploads/645ba35bbc7518912e2135e6/UZLw9vkVCc2nQ56jxVZ4y.jpeg" alt="SageBeluga13.png" width="800">
## Past experiments
https://dscompounding.com/2023/03/31/chapter-iii-digital-marcus-aurelius/
|