File size: 2,871 Bytes
3c32c17
 
 
 
 
 
 
 
 
9211a0d
 
3c32c17
 
 
fa19596
 
3c32c17
 
 
9211a0d
 
 
28f6377
3c32c17
 
 
 
 
 
 
 
58f79b0
 
3c32c17
 
 
 
 
 
28f6377
 
a28f3a0
 
fb3c0ae
 
46c5386
fb3c0ae
 
a28f3a0
 
 
28f6377
fb3c0ae
 
 
 
 
 
 
 
 
 
 
 
 
a28f3a0
 
 
 
9211a0d
a28f3a0
 
 
58f79b0
 
 
 
 
fb3c0ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- en
- am
- bn
- sw
- uz
- es
- pl
- fr
- de
multilinguality:
- multilingual
tags:
- words
- word
- embedding
- phonetic
- phonological
- cognates
- rhyme
- analogy
pretty_name: PWESuite Evaluation v1
size_categories:
- 100K<n<1M
dataset_info:
  features:
  - name: token_ort
    dtype: string
  - name: token_ipa
    dtype: string
  - name: token_arp
    dtype: string
  - name: lang
    dtype: string
  - name: purpose
    dtype: string
  splits:
  - name: train
    num_examples: 1738008
license: apache-2.0
---


<p align="center">
  <img src="https://github.com/zouharvi/pwesuite/assets/7661193/e8db7af0-cccf-425a-8a3c-4f260d5abab7" width="500em">
</p>

# PWESuite-Eval

Dataset composed of multiple smaller datasets used for the evaluation of phonetic word embeddings.
See code for evaluation [here](https://github.com/zouharvi/pwesuite).
If you use this dataset/evaluation, please cite the [paper at LREC-COLING 2024](https://arxiv.org/abs/2304.02541):

```
@article{zouhar2023pwesuite,
  title={{PWESuite}: {P}honetic Word Embeddings and Tasks They Facilitate},
  author={Zouhar, Vil{\'e}m and Chang, Kalvin and Cui, Chenxuan and Carlson, Nathaniel and Robinson, Nathaniel and Sachan, Mrinmaya and Mortensen, David},
  journal={arXiv preprint arXiv:2304.02541},
  year={2023},
  url={https://arxiv.org/abs/2304.02541}
}
```

> **Abstract:** Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.

Used datasets:
- [CMU Pronunciation dictionary](http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
- [CC-100](https://data.statmt.org/cc-100/)
- [CogNet v0](https://aclanthology.org/P19-1302/)
- [Vitz and Winkler (1973)](https://www.sciencedirect.com/science/article/pii/S0022537173800167)

Authors:
- Vilém Zouhar (ETH Zürich, [contact](mailto:[email protected]))
- Kalvin Chang (CMU LTI, [contact](mailto:[email protected]))
- Chenxuan Cui (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Robinson (CMU LTI, [contact](mailto:[email protected]))
- Nathaniel Carlson (BYU, [contact](mailto:[email protected]))
- David Mortensen (CMU LTI, [contact](mailto:[email protected]))