path
stringlengths
12
84
imports
sequencelengths
0
4.45k
premises
listlengths
0
625
.lake/packages/lean4/src/lean/Init/Prelude.lean
[]
[ { "full_name": "id", "code": "@[inline] def id {α : Sort u} (a : α) : α := a", "start": [ 21, 1 ], "end": [ 33, 47 ], "kind": "commanddeclaration" }, { "full_name": "Function.comp", "code": "@[inline] def Function.comp {α : Sort u} {β : Sort v} {δ : Sort w} (f : β → δ) (g : α → β) : α → δ :=\n fun x => f (g x)", "start": [ 35, 1 ], "end": [ 53, 19 ], "kind": "commanddeclaration" }, { "full_name": "Function.const", "code": "@[inline] def Function.const {α : Sort u} (β : Sort v) (a : α) : β → α :=\n fun _ => a", "start": [ 55, 1 ], "end": [ 67, 13 ], "kind": "commanddeclaration" }, { "full_name": "letFun", "code": "@[irreducible] def letFun {α : Sort u} {β : α → Sort v} (v : α) (f : (x : α) → β x) : β v := f v", "start": [ 69, 1 ], "end": [ 80, 97 ], "kind": "commanddeclaration" }, { "full_name": "inferInstance", "code": "abbrev inferInstance {α : Sort u} [i : α] : α := i", "start": [ 83, 1 ], "end": [ 99, 51 ], "kind": "commanddeclaration" }, { "full_name": "inferInstanceAs", "code": "abbrev inferInstanceAs (α : Sort u) [i : α] : α := i", "start": [ 102, 1 ], "end": [ 113, 53 ], "kind": "commanddeclaration" }, { "full_name": "PUnit", "code": "inductive PUnit : Sort u where\n \n | unit : PUnit", "start": [ 116, 1 ], "end": [ 124, 17 ], "kind": "commanddeclaration" }, { "full_name": "Unit", "code": "abbrev Unit : Type := PUnit", "start": [ 126, 1 ], "end": [ 142, 28 ], "kind": "commanddeclaration" }, { "full_name": "Unit.unit", "code": "@[match_pattern] abbrev Unit.unit : Unit := PUnit.unit", "start": [ 144, 1 ], "end": [ 148, 55 ], "kind": "commanddeclaration" }, { "full_name": "lcErased", "code": "unsafe axiom lcErased : Type", "start": [ 150, 1 ], "end": [ 151, 29 ], "kind": "commanddeclaration" }, { "full_name": "lcProof", "code": "unsafe axiom lcProof {α : Prop} : α", "start": [ 153, 1 ], "end": [ 162, 36 ], "kind": "commanddeclaration" }, { "full_name": "lcCast", "code": "unsafe axiom lcCast {α : Sort u} {β : Sort v} (a : α) : β", "start": [ 164, 1 ], "end": [ 167, 58 ], "kind": "commanddeclaration" }, { "full_name": "lcUnreachable", "code": "unsafe axiom lcUnreachable {α : Sort u} : α", "start": [ 170, 1 ], "end": [ 182, 44 ], "kind": "commanddeclaration" }, { "full_name": "True", "code": "inductive True : Prop where\n \n | intro : True", "start": [ 184, 1 ], "end": [ 192, 17 ], "kind": "commanddeclaration" }, { "full_name": "False", "code": "inductive False : Prop", "start": [ 194, 1 ], "end": [ 202, 23 ], "kind": "commanddeclaration" }, { "full_name": "Empty", "code": "inductive Empty : Type", "start": [ 204, 1 ], "end": [ 208, 23 ], "kind": "commanddeclaration" }, { "full_name": "PEmpty", "code": "inductive PEmpty : Sort u where", "start": [ 211, 1 ], "end": [ 215, 32 ], "kind": "commanddeclaration" }, { "full_name": "Not", "code": "def Not (a : Prop) : Prop := a → False", "start": [ 217, 1 ], "end": [ 224, 39 ], "kind": "commanddeclaration" }, { "full_name": "False.elim", "code": "@[macro_inline] def False.elim {C : Sort u} (h : False) : C :=\n h.rec", "start": [ 226, 1 ], "end": [ 237, 8 ], "kind": "commanddeclaration" }, { "full_name": "absurd", "code": "@[macro_inline] def absurd {a : Prop} {b : Sort v} (h₁ : a) (h₂ : Not a) : b :=\n (h₂ h₁).rec", "start": [ 239, 1 ], "end": [ 247, 14 ], "kind": "commanddeclaration" }, { "full_name": "Eq", "code": "inductive Eq : α → α → Prop where\n \n | refl (a : α) : Eq a a", "start": [ 249, 1 ], "end": [ 279, 26 ], "kind": "commanddeclaration" }, { "full_name": "Eq.ndrec", "code": "@[simp] abbrev Eq.ndrec.{u1, u2} {α : Sort u2} {a : α} {motive : α → Sort u1} (m : motive a) {b : α} (h : Eq a b) : motive b :=\n h.rec m", "start": [ 281, 1 ], "end": [ 283, 10 ], "kind": "commanddeclaration" }, { "full_name": "rfl", "code": "@[match_pattern] def rfl {α : Sort u} {a : α} : Eq a a := Eq.refl a", "start": [ 285, 1 ], "end": [ 294, 68 ], "kind": "commanddeclaration" }, { "full_name": "id_eq", "code": "@[simp] theorem id_eq (a : α) : Eq (id a) a", "start": [ 296, 1 ], "end": [ 297, 51 ], "kind": "commanddeclaration" }, { "full_name": "Eq.subst", "code": "theorem Eq.subst {α : Sort u} {motive : α → Prop} {a b : α} (h₁ : Eq a b) (h₂ : motive a) : motive b", "start": [ 299, 1 ], "end": [ 313, 17 ], "kind": "commanddeclaration" }, { "full_name": "Eq.symm", "code": "theorem Eq.symm {α : Sort u} {a b : α} (h : Eq a b) : Eq b a", "start": [ 315, 1 ], "end": [ 324, 10 ], "kind": "commanddeclaration" }, { "full_name": "Eq.trans", "code": "theorem Eq.trans {α : Sort u} {a b c : α} (h₁ : Eq a b) (h₂ : Eq b c) : Eq a c", "start": [ 326, 1 ], "end": [ 336, 10 ], "kind": "commanddeclaration" }, { "full_name": "cast", "code": "@[macro_inline] def cast {α β : Sort u} (h : Eq α β) (a : α) : β :=\n h.rec a", "start": [ 338, 1 ], "end": [ 350, 10 ], "kind": "commanddeclaration" }, { "full_name": "congrArg", "code": "theorem congrArg {α : Sort u} {β : Sort v} {a₁ a₂ : α} (f : α → β) (h : Eq a₁ a₂) : Eq (f a₁) (f a₂)", "start": [ 352, 1 ], "end": [ 363, 10 ], "kind": "commanddeclaration" }, { "full_name": "congr", "code": "theorem congr {α : Sort u} {β : Sort v} {f₁ f₂ : α → β} {a₁ a₂ : α} (h₁ : Eq f₁ f₂) (h₂ : Eq a₁ a₂) : Eq (f₁ a₁) (f₂ a₂)", "start": [ 365, 1 ], "end": [ 373, 16 ], "kind": "commanddeclaration" }, { "full_name": "congrFun", "code": "theorem congrFun {α : Sort u} {β : α → Sort v} {f g : (x : α) → β x} (h : Eq f g) (a : α) : Eq (f a) (g a)", "start": [ 375, 1 ], "end": [ 377, 10 ], "kind": "commanddeclaration" }, { "full_name": "Quot.lcInv", "code": "unsafe axiom Quot.lcInv {α : Sort u} {r : α → α → Prop} (q : Quot r) : α", "start": [ 439, 1 ], "end": [ 442, 73 ], "kind": "commanddeclaration" }, { "full_name": "HEq", "code": "inductive HEq : {α : Sort u} → α → {β : Sort u} → β → Prop where\n \n | refl (a : α) : HEq a a", "start": [ 444, 1 ], "end": [ 458, 27 ], "kind": "commanddeclaration" }, { "full_name": "HEq.rfl", "code": "@[match_pattern] protected def HEq.rfl {α : Sort u} {a : α} : HEq a a :=\n HEq.refl a", "start": [ 460, 1 ], "end": [ 462, 13 ], "kind": "commanddeclaration" }, { "full_name": "eq_of_heq", "code": "theorem eq_of_heq {α : Sort u} {a a' : α} (h : HEq a a') : Eq a a'", "start": [ 464, 1 ], "end": [ 468, 22 ], "kind": "commanddeclaration" }, { "full_name": "Prod", "code": "structure Prod (α : Type u) (β : Type v) where\n \n mk ::\n \n fst : α\n \n snd : β", "start": [ 470, 1 ], "end": [ 485, 10 ], "kind": "commanddeclaration" }, { "full_name": "PProd", "code": "@[pp_using_anonymous_constructor]\nstructure PProd (α : Sort u) (β : Sort v) where\n \n fst : α\n \n snd : β", "start": [ 489, 1 ], "end": [ 498, 10 ], "kind": "commanddeclaration" }, { "full_name": "MProd", "code": "structure MProd (α β : Type u) where\n \n fst : α\n \n snd : β", "start": [ 500, 1 ], "end": [ 508, 10 ], "kind": "commanddeclaration" }, { "full_name": "And", "code": "@[pp_using_anonymous_constructor]\nstructure And (a b : Prop) : Prop where\n \n intro ::\n \n left : a\n \n right : b", "start": [ 510, 1 ], "end": [ 524, 12 ], "kind": "commanddeclaration" }, { "full_name": "Or", "code": "inductive Or (a b : Prop) : Prop where\n \n | inl (h : a) : Or a b\n \n | inr (h : b) : Or a b", "start": [ 526, 1 ], "end": [ 536, 25 ], "kind": "commanddeclaration" }, { "full_name": "Or.intro_left", "code": "theorem Or.intro_left (b : Prop) (h : a) : Or a b", "start": [ 538, 1 ], "end": [ 540, 11 ], "kind": "commanddeclaration" }, { "full_name": "Or.intro_right", "code": "theorem Or.intro_right (a : Prop) (h : b) : Or a b", "start": [ 542, 1 ], "end": [ 544, 11 ], "kind": "commanddeclaration" }, { "full_name": "Or.elim", "code": "theorem Or.elim {c : Prop} (h : Or a b) (left : a → c) (right : b → c) : c", "start": [ 546, 1 ], "end": [ 553, 24 ], "kind": "commanddeclaration" }, { "full_name": "Or.resolve_left", "code": "theorem Or.resolve_left (h: Or a b) (na : Not a) : b", "start": [ 555, 1 ], "end": [ 555, 81 ], "kind": "commanddeclaration" }, { "full_name": "Or.resolve_right", "code": "theorem Or.resolve_right (h: Or a b) (nb : Not b) : a", "start": [ 556, 1 ], "end": [ 556, 81 ], "kind": "commanddeclaration" }, { "full_name": "Or.neg_resolve_left", "code": "theorem Or.neg_resolve_left (h : Or (Not a) b) (ha : a) : b", "start": [ 557, 1 ], "end": [ 557, 86 ], "kind": "commanddeclaration" }, { "full_name": "Or.neg_resolve_right", "code": "theorem Or.neg_resolve_right (h : Or a (Not b)) (nb : b) : a", "start": [ 558, 1 ], "end": [ 558, 86 ], "kind": "commanddeclaration" }, { "full_name": "Bool", "code": "inductive Bool : Type where\n \n | false : Bool\n \n | true : Bool", "start": [ 560, 1 ], "end": [ 571, 16 ], "kind": "commanddeclaration" }, { "full_name": "Subtype", "code": "@[pp_using_anonymous_constructor]\nstructure Subtype {α : Sort u} (p : α → Prop) where\n \n val : α\n \n property : p val", "start": [ 575, 1 ], "end": [ 590, 19 ], "kind": "commanddeclaration" }, { "full_name": "optParam", "code": "@[reducible] def optParam (α : Sort u) (default : α) : Sort u := α", "start": [ 593, 1 ], "end": [ 600, 67 ], "kind": "commanddeclaration" }, { "full_name": "outParam", "code": "@[reducible] def outParam (α : Sort u) : Sort u := α", "start": [ 602, 1 ], "end": [ 618, 53 ], "kind": "commanddeclaration" }, { "full_name": "semiOutParam", "code": "@[reducible] def semiOutParam (α : Sort u) : Sort u := α", "start": [ 620, 1 ], "end": [ 641, 57 ], "kind": "commanddeclaration" }, { "full_name": "namedPattern", "code": "@[reducible] def namedPattern {α : Sort u} (x a : α) (h : Eq x a) : α := a", "start": [ 644, 1 ], "end": [ 645, 75 ], "kind": "commanddeclaration" }, { "full_name": "sorryAx", "code": "@[extern \"lean_sorry\", never_extract]\naxiom sorryAx (α : Sort u) (synthetic := false) : α", "start": [ 647, 1 ], "end": [ 664, 52 ], "kind": "commanddeclaration" }, { "full_name": "eq_false_of_ne_true", "code": "theorem eq_false_of_ne_true : {b : Bool} → Not (Eq b true) → Eq b false", "start": [ 666, 1 ], "end": [ 668, 20 ], "kind": "commanddeclaration" }, { "full_name": "eq_true_of_ne_false", "code": "theorem eq_true_of_ne_false : {b : Bool} → Not (Eq b false) → Eq b true", "start": [ 670, 1 ], "end": [ 672, 35 ], "kind": "commanddeclaration" }, { "full_name": "ne_false_of_eq_true", "code": "theorem ne_false_of_eq_true : {b : Bool} → Eq b true → Not (Eq b false)", "start": [ 674, 1 ], "end": [ 676, 35 ], "kind": "commanddeclaration" }, { "full_name": "ne_true_of_eq_false", "code": "theorem ne_true_of_eq_false : {b : Bool} → Eq b false → Not (Eq b true)", "start": [ 678, 1 ], "end": [ 680, 44 ], "kind": "commanddeclaration" }, { "full_name": "Inhabited", "code": "class Inhabited (α : Sort u) where\n \n default : α", "start": [ 682, 1 ], "end": [ 697, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nonempty", "code": "class inductive Nonempty (α : Sort u) : Prop where\n \n | intro (val : α) : Nonempty α", "start": [ 701, 1 ], "end": [ 711, 33 ], "kind": "commanddeclaration" }, { "full_name": "Classical.choice", "code": "axiom Classical.choice {α : Sort u} : Nonempty α → α", "start": [ 713, 1 ], "end": [ 735, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nonempty.elim", "code": "protected theorem Nonempty.elim {α : Sort u} {p : Prop} (h₁ : Nonempty α) (h₂ : α → p) : p", "start": [ 737, 1 ], "end": [ 745, 20 ], "kind": "commanddeclaration" }, { "full_name": "Classical.ofNonempty", "code": "noncomputable def Classical.ofNonempty {α : Sort u} [Nonempty α] : α :=\n Classical.choice inferInstance", "start": [ 750, 1 ], "end": [ 755, 33 ], "kind": "commanddeclaration" }, { "full_name": "PLift", "code": "structure PLift (α : Sort u) : Type u where\n up ::\n down : α", "start": [ 774, 1 ], "end": [ 777, 49 ], "kind": "commanddeclaration" }, { "full_name": "PLift.up_down", "code": "theorem PLift.up_down {α : Sort u} (b : PLift α) : Eq (up (down b)) b", "start": [ 779, 1 ], "end": [ 780, 77 ], "kind": "commanddeclaration" }, { "full_name": "PLift.down_up", "code": "theorem PLift.down_up {α : Sort u} (a : α) : Eq (down (up a)) a", "start": [ 782, 1 ], "end": [ 783, 71 ], "kind": "commanddeclaration" }, { "full_name": "NonemptyType", "code": "def NonemptyType := Subtype fun α : Type u => Nonempty α", "start": [ 785, 1 ], "end": [ 791, 57 ], "kind": "commanddeclaration" }, { "full_name": "NonemptyType.type", "code": "abbrev NonemptyType.type (type : NonemptyType.{u}) : Type u :=\n type.val", "start": [ 793, 1 ], "end": [ 795, 11 ], "kind": "commanddeclaration" }, { "full_name": "ULift", "code": "structure ULift.{r, s} (α : Type s) : Type (max s r) where\n up ::\n down : α", "start": [ 801, 1 ], "end": [ 811, 49 ], "kind": "commanddeclaration" }, { "full_name": "ULift.up_down", "code": "theorem ULift.up_down {α : Type u} (b : ULift.{v} α) : Eq (up (down b)) b", "start": [ 813, 1 ], "end": [ 814, 81 ], "kind": "commanddeclaration" }, { "full_name": "ULift.down_up", "code": "theorem ULift.down_up {α : Type u} (a : α) : Eq (down (up.{v} a)) a", "start": [ 816, 1 ], "end": [ 817, 75 ], "kind": "commanddeclaration" }, { "full_name": "Decidable", "code": "class inductive Decidable (p : Prop) where\n \n | isFalse (h : Not p) : Decidable p\n \n | isTrue (h : p) : Decidable p", "start": [ 819, 1 ], "end": [ 843, 33 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.decide", "code": "@[inline_if_reduce, nospecialize] def Decidable.decide (p : Prop) [h : Decidable p] : Bool :=\n h.casesOn (fun _ => false) (fun _ => true)", "start": [ 845, 1 ], "end": [ 852, 45 ], "kind": "commanddeclaration" }, { "full_name": "DecidablePred", "code": "abbrev DecidablePred {α : Sort u} (r : α → Prop) :=\n (a : α) → Decidable (r a)", "start": [ 856, 1 ], "end": [ 858, 28 ], "kind": "commanddeclaration" }, { "full_name": "DecidableRel", "code": "abbrev DecidableRel {α : Sort u} (r : α → α → Prop) :=\n (a b : α) → Decidable (r a b)", "start": [ 860, 1 ], "end": [ 862, 32 ], "kind": "commanddeclaration" }, { "full_name": "DecidableEq", "code": "abbrev DecidableEq (α : Sort u) :=\n (a b : α) → Decidable (Eq a b)", "start": [ 864, 1 ], "end": [ 869, 33 ], "kind": "commanddeclaration" }, { "full_name": "decEq", "code": "def decEq {α : Sort u} [inst : DecidableEq α] (a b : α) : Decidable (Eq a b) :=\n inst a b", "start": [ 871, 1 ], "end": [ 873, 11 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_true", "code": "theorem decide_eq_true : [inst : Decidable p] → p → Eq (decide p) true", "start": [ 876, 1 ], "end": [ 878, 35 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_false", "code": "theorem decide_eq_false : [Decidable p] → Not p → Eq (decide p) false", "start": [ 880, 1 ], "end": [ 882, 26 ], "kind": "commanddeclaration" }, { "full_name": "of_decide_eq_true", "code": "theorem of_decide_eq_true [inst : Decidable p] : Eq (decide p) true → p", "start": [ 884, 1 ], "end": [ 887, 70 ], "kind": "commanddeclaration" }, { "full_name": "of_decide_eq_false", "code": "theorem of_decide_eq_false [inst : Decidable p] : Eq (decide p) false → Not p", "start": [ 889, 1 ], "end": [ 892, 21 ], "kind": "commanddeclaration" }, { "full_name": "of_decide_eq_self_eq_true", "code": "theorem of_decide_eq_self_eq_true [inst : DecidableEq α] (a : α) : Eq (decide (Eq a a)) true", "start": [ 894, 1 ], "end": [ 897, 32 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decEq", "code": "@[inline] def Bool.decEq (a b : Bool) : Decidable (Eq a b) :=\n match a, b with\n | false, false => isTrue rfl\n | false, true => isFalse (fun h => Bool.noConfusion h)\n | true, false => isFalse (fun h => Bool.noConfusion h)\n | true, true => isTrue rfl", "start": [ 899, 1 ], "end": [ 905, 32 ], "kind": "commanddeclaration" }, { "full_name": "BEq", "code": "class BEq (α : Type u) where\n \n beq : α → α → Bool", "start": [ 910, 1 ], "end": [ 923, 21 ], "kind": "commanddeclaration" }, { "full_name": "dite", "code": "@[macro_inline] def dite {α : Sort u} (c : Prop) [h : Decidable c] (t : c → α) (e : Not c → α) : α :=\n h.casesOn e t", "start": [ 931, 1 ], "end": [ 946, 16 ], "kind": "commanddeclaration" }, { "full_name": "ite", "code": "@[macro_inline] def ite {α : Sort u} (c : Prop) [h : Decidable c] (t e : α) : α :=\n h.casesOn (fun _ => e) (fun _ => t)", "start": [ 950, 1 ], "end": [ 971, 38 ], "kind": "commanddeclaration" }, { "full_name": "cond", "code": "@[macro_inline] def cond {α : Type u} (c : Bool) (x y : α) : α :=\n match c with\n | true => x\n | false => y", "start": [ 1000, 1 ], "end": [ 1009, 15 ], "kind": "commanddeclaration" }, { "full_name": "or", "code": "@[macro_inline] def or (x y : Bool) : Bool :=\n match x with\n | true => true\n | false => y", "start": [ 1011, 1 ], "end": [ 1020, 15 ], "kind": "commanddeclaration" }, { "full_name": "and", "code": "@[macro_inline] def and (x y : Bool) : Bool :=\n match x with\n | false => false\n | true => y", "start": [ 1022, 1 ], "end": [ 1031, 15 ], "kind": "commanddeclaration" }, { "full_name": "not", "code": "@[inline] def not : Bool → Bool\n | true => false\n | false => true", "start": [ 1033, 1 ], "end": [ 1039, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat", "code": "inductive Nat where\n \n | zero : Nat\n \n | succ (n : Nat) : Nat", "start": [ 1041, 1 ], "end": [ 1083, 25 ], "kind": "commanddeclaration" }, { "full_name": "OfNat", "code": "class OfNat (α : Type u) (_ : Nat) where\n \n ofNat : α", "start": [ 1088, 1 ], "end": [ 1105, 12 ], "kind": "commanddeclaration" }, { "full_name": "instOfNatNat", "code": "@[default_instance 100] \ninstance instOfNatNat (n : Nat) : OfNat Nat n where\n ofNat := n", "start": [ 1107, 1 ], "end": [ 1109, 13 ], "kind": "commanddeclaration" }, { "full_name": "LE", "code": "class LE (α : Type u) where\n \n le : α → α → Prop", "start": [ 1111, 1 ], "end": [ 1114, 20 ], "kind": "commanddeclaration" }, { "full_name": "LT", "code": "class LT (α : Type u) where\n \n lt : α → α → Prop", "start": [ 1116, 1 ], "end": [ 1119, 20 ], "kind": "commanddeclaration" }, { "full_name": "GE.ge", "code": "@[reducible] def GE.ge {α : Type u} [LE α] (a b : α) : Prop := LE.le b a", "start": [ 1121, 1 ], "end": [ 1122, 73 ], "kind": "commanddeclaration" }, { "full_name": "GT.gt", "code": "@[reducible] def GT.gt {α : Type u} [LT α] (a b : α) : Prop := LT.lt b a", "start": [ 1123, 1 ], "end": [ 1124, 73 ], "kind": "commanddeclaration" }, { "full_name": "Max", "code": "class Max (α : Type u) where\n \n max : α → α → α", "start": [ 1126, 1 ], "end": [ 1129, 18 ], "kind": "commanddeclaration" }, { "full_name": "maxOfLe", "code": "@[inline]\ndef maxOfLe [LE α] [DecidableRel (@LE.le α _)] : Max α where\n max x y := ite (LE.le x y) y x", "start": [ 1133, 1 ], "end": [ 1137, 33 ], "kind": "commanddeclaration" }, { "full_name": "Min", "code": "class Min (α : Type u) where\n \n min : α → α → α", "start": [ 1139, 1 ], "end": [ 1142, 18 ], "kind": "commanddeclaration" }, { "full_name": "minOfLe", "code": "@[inline]\ndef minOfLe [LE α] [DecidableRel (@LE.le α _)] : Min α where\n min x y := ite (LE.le x y) x y", "start": [ 1146, 1 ], "end": [ 1150, 33 ], "kind": "commanddeclaration" }, { "full_name": "Trans", "code": "class Trans (r : α → β → Sort u) (s : β → γ → Sort v) (t : outParam (α → γ → Sort w)) where\n \n trans : r a b → s b c → t a c", "start": [ 1152, 1 ], "end": [ 1163, 32 ], "kind": "commanddeclaration" }, { "full_name": "HAdd", "code": "class HAdd (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAdd : α → β → γ", "start": [ 1173, 1 ], "end": [ 1180, 19 ], "kind": "commanddeclaration" }, { "full_name": "HSub", "code": "class HSub (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hSub : α → β → γ", "start": [ 1182, 1 ], "end": [ 1190, 19 ], "kind": "commanddeclaration" }, { "full_name": "HMul", "code": "class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hMul : α → β → γ", "start": [ 1192, 1 ], "end": [ 1199, 19 ], "kind": "commanddeclaration" }, { "full_name": "HDiv", "code": "class HDiv (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hDiv : α → β → γ", "start": [ 1201, 1 ], "end": [ 1217, 19 ], "kind": "commanddeclaration" }, { "full_name": "HMod", "code": "class HMod (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hMod : α → β → γ", "start": [ 1219, 1 ], "end": [ 1228, 19 ], "kind": "commanddeclaration" }, { "full_name": "HPow", "code": "class HPow (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hPow : α → β → γ", "start": [ 1230, 1 ], "end": [ 1237, 19 ], "kind": "commanddeclaration" }, { "full_name": "HAppend", "code": "class HAppend (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAppend : α → β → γ", "start": [ 1239, 1 ], "end": [ 1246, 22 ], "kind": "commanddeclaration" }, { "full_name": "HOrElse", "code": "class HOrElse (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hOrElse : α → (Unit → β) → γ", "start": [ 1248, 1 ], "end": [ 1258, 31 ], "kind": "commanddeclaration" }, { "full_name": "HAndThen", "code": "class HAndThen (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAndThen : α → (Unit → β) → γ", "start": [ 1260, 1 ], "end": [ 1270, 32 ], "kind": "commanddeclaration" }, { "full_name": "HAnd", "code": "class HAnd (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAnd : α → β → γ", "start": [ 1272, 1 ], "end": [ 1276, 19 ], "kind": "commanddeclaration" }, { "full_name": "HXor", "code": "class HXor (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hXor : α → β → γ", "start": [ 1278, 1 ], "end": [ 1282, 19 ], "kind": "commanddeclaration" }, { "full_name": "HOr", "code": "class HOr (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hOr : α → β → γ", "start": [ 1284, 1 ], "end": [ 1288, 18 ], "kind": "commanddeclaration" }, { "full_name": "HShiftLeft", "code": "class HShiftLeft (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hShiftLeft : α → β → γ", "start": [ 1290, 1 ], "end": [ 1297, 25 ], "kind": "commanddeclaration" }, { "full_name": "HShiftRight", "code": "class HShiftRight (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hShiftRight : α → β → γ", "start": [ 1299, 1 ], "end": [ 1305, 26 ], "kind": "commanddeclaration" }, { "full_name": "Add", "code": "class Add (α : Type u) where\n \n add : α → α → α", "start": [ 1307, 1 ], "end": [ 1310, 18 ], "kind": "commanddeclaration" }, { "full_name": "Sub", "code": "class Sub (α : Type u) where\n \n sub : α → α → α", "start": [ 1312, 1 ], "end": [ 1315, 18 ], "kind": "commanddeclaration" }, { "full_name": "Mul", "code": "class Mul (α : Type u) where\n \n mul : α → α → α", "start": [ 1317, 1 ], "end": [ 1320, 18 ], "kind": "commanddeclaration" }, { "full_name": "Neg", "code": "class Neg (α : Type u) where\n \n neg : α → α", "start": [ 1322, 1 ], "end": [ 1329, 14 ], "kind": "commanddeclaration" }, { "full_name": "Div", "code": "class Div (α : Type u) where\n \n div : α → α → α", "start": [ 1331, 1 ], "end": [ 1334, 18 ], "kind": "commanddeclaration" }, { "full_name": "Mod", "code": "class Mod (α : Type u) where\n \n mod : α → α → α", "start": [ 1336, 1 ], "end": [ 1339, 18 ], "kind": "commanddeclaration" }, { "full_name": "Dvd", "code": "class Dvd (α : Type _) where\n \n dvd : α → α → Prop", "start": [ 1341, 1 ], "end": [ 1344, 21 ], "kind": "commanddeclaration" }, { "full_name": "Pow", "code": "class Pow (α : Type u) (β : Type v) where\n \n pow : α → β → α", "start": [ 1346, 1 ], "end": [ 1358, 18 ], "kind": "commanddeclaration" }, { "full_name": "NatPow", "code": "class NatPow (α : Type u) where\n \n protected pow : α → Nat → α", "start": [ 1360, 1 ], "end": [ 1368, 30 ], "kind": "commanddeclaration" }, { "full_name": "HomogeneousPow", "code": "class HomogeneousPow (α : Type u) where\n \n protected pow : α → α → α", "start": [ 1370, 1 ], "end": [ 1380, 28 ], "kind": "commanddeclaration" }, { "full_name": "Append", "code": "class Append (α : Type u) where\n \n append : α → α → α", "start": [ 1382, 1 ], "end": [ 1385, 21 ], "kind": "commanddeclaration" }, { "full_name": "OrElse", "code": "class OrElse (α : Type u) where\n \n orElse : α → (Unit → α) → α", "start": [ 1387, 1 ], "end": [ 1394, 31 ], "kind": "commanddeclaration" }, { "full_name": "AndThen", "code": "class AndThen (α : Type u) where\n \n andThen : α → (Unit → α) → α", "start": [ 1396, 1 ], "end": [ 1403, 31 ], "kind": "commanddeclaration" }, { "full_name": "AndOp", "code": "class AndOp (α : Type u) where\n \n and : α → α → α", "start": [ 1405, 1 ], "end": [ 1411, 18 ], "kind": "commanddeclaration" }, { "full_name": "Xor", "code": "class Xor (α : Type u) where\n \n xor : α → α → α", "start": [ 1413, 1 ], "end": [ 1416, 18 ], "kind": "commanddeclaration" }, { "full_name": "OrOp", "code": "class OrOp (α : Type u) where\n \n or : α → α → α", "start": [ 1418, 1 ], "end": [ 1424, 17 ], "kind": "commanddeclaration" }, { "full_name": "Complement", "code": "class Complement (α : Type u) where\n \n complement : α → α", "start": [ 1426, 1 ], "end": [ 1429, 21 ], "kind": "commanddeclaration" }, { "full_name": "ShiftLeft", "code": "class ShiftLeft (α : Type u) where\n \n shiftLeft : α → α → α", "start": [ 1431, 1 ], "end": [ 1434, 24 ], "kind": "commanddeclaration" }, { "full_name": "ShiftRight", "code": "class ShiftRight (α : Type u) where\n \n shiftRight : α → α → α", "start": [ 1436, 1 ], "end": [ 1439, 25 ], "kind": "commanddeclaration" }, { "full_name": "instHAdd", "code": "@[default_instance]\ninstance instHAdd [Add α] : HAdd α α α where\n hAdd a b := Add.add a b", "start": [ 1441, 1 ], "end": [ 1443, 26 ], "kind": "commanddeclaration" }, { "full_name": "instHSub", "code": "@[default_instance]\ninstance instHSub [Sub α] : HSub α α α where\n hSub a b := Sub.sub a b", "start": [ 1445, 1 ], "end": [ 1447, 26 ], "kind": "commanddeclaration" }, { "full_name": "instHMul", "code": "@[default_instance]\ninstance instHMul [Mul α] : HMul α α α where\n hMul a b := Mul.mul a b", "start": [ 1449, 1 ], "end": [ 1451, 26 ], "kind": "commanddeclaration" }, { "full_name": "instHDiv", "code": "@[default_instance]\ninstance instHDiv [Div α] : HDiv α α α where\n hDiv a b := Div.div a b", "start": [ 1453, 1 ], "end": [ 1455, 26 ], "kind": "commanddeclaration" }, { "full_name": "instHMod", "code": "@[default_instance]\ninstance instHMod [Mod α] : HMod α α α where\n hMod a b := Mod.mod a b", "start": [ 1457, 1 ], "end": [ 1459, 26 ], "kind": "commanddeclaration" }, { "full_name": "instHPow", "code": "@[default_instance]\ninstance instHPow [Pow α β] : HPow α β α where\n hPow a b := Pow.pow a b", "start": [ 1461, 1 ], "end": [ 1463, 26 ], "kind": "commanddeclaration" }, { "full_name": "instPowNat", "code": "@[default_instance]\ninstance instPowNat [NatPow α] : Pow α Nat where\n pow a n := NatPow.pow a n", "start": [ 1465, 1 ], "end": [ 1467, 28 ], "kind": "commanddeclaration" }, { "full_name": "Membership", "code": "class Membership (α : outParam (Type u)) (γ : Type v) where\n \n mem : α → γ → Prop", "start": [ 1511, 1 ], "end": [ 1518, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add", "code": "@[extern \"lean_nat_add\"]\nprotected def Nat.add : (@& Nat) → (@& Nat) → Nat\n | a, Nat.zero => a\n | a, Nat.succ b => Nat.succ (Nat.add a b)", "start": [ 1521, 1 ], "end": [ 1531, 44 ], "kind": "commanddeclaration" }, { "full_name": "instAddNat", "code": "instance instAddNat : Add Nat where\n add := Nat.add", "start": [ 1533, 1 ], "end": [ 1534, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul", "code": "@[extern \"lean_nat_mul\"]\nprotected def Nat.mul : (@& Nat) → (@& Nat) → Nat\n | _, 0 => 0\n | a, Nat.succ b => Nat.add (Nat.mul a b) a", "start": [ 1541, 1 ], "end": [ 1551, 45 ], "kind": "commanddeclaration" }, { "full_name": "instMulNat", "code": "instance instMulNat : Mul Nat where\n mul := Nat.mul", "start": [ 1553, 1 ], "end": [ 1554, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow", "code": "@[extern \"lean_nat_pow\"]\nprotected def Nat.pow (m : @& Nat) : (@& Nat) → Nat\n | 0 => 1\n | succ n => Nat.mul (Nat.pow m n) m", "start": [ 1557, 1 ], "end": [ 1567, 38 ], "kind": "commanddeclaration" }, { "full_name": "instNatPowNat", "code": "instance instNatPowNat : NatPow Nat := ⟨Nat.pow⟩", "start": [ 1569, 1 ], "end": [ 1569, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.beq", "code": "@[extern \"lean_nat_dec_eq\"]\ndef Nat.beq : (@& Nat) → (@& Nat) → Bool\n | zero, zero => true\n | zero, succ _ => false\n | succ _, zero => false\n | succ n, succ m => beq n m", "start": [ 1572, 1 ], "end": [ 1584, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_of_beq_eq_true", "code": "theorem Nat.eq_of_beq_eq_true : {n m : Nat} → Eq (beq n m) true → Eq n m", "start": [ 1589, 1 ], "end": [ 1596, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_of_beq_eq_false", "code": "theorem Nat.ne_of_beq_eq_false : {n m : Nat} → Eq (beq n m) false → Not (Eq n m)", "start": [ 1598, 1 ], "end": [ 1604, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decEq", "code": "@[reducible, extern \"lean_nat_dec_eq\"]\nprotected def Nat.decEq (n m : @& Nat) : Decidable (Eq n m) :=\n match h:beq n m with\n | true => isTrue (eq_of_beq_eq_true h)\n | false => isFalse (ne_of_beq_eq_false h)", "start": [ 1606, 1 ], "end": [ 1617, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ble", "code": "@[extern \"lean_nat_dec_le\"]\ndef Nat.ble : @& Nat → @& Nat → Bool\n | zero, zero => true\n | zero, succ _ => true\n | succ _, zero => false\n | succ n, succ m => ble n m", "start": [ 1622, 1 ], "end": [ 1634, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le", "code": "protected inductive Nat.le (n : Nat) : Nat → Prop\n \n | refl : Nat.le n n\n \n | step {m} : Nat.le n m → Nat.le n (succ m)", "start": [ 1636, 1 ], "end": [ 1644, 46 ], "kind": "commanddeclaration" }, { "full_name": "instLENat", "code": "instance instLENat : LE Nat where\n le := Nat.le", "start": [ 1646, 1 ], "end": [ 1647, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt", "code": "protected def Nat.lt (n m : Nat) : Prop :=\n Nat.le (succ n) m", "start": [ 1649, 1 ], "end": [ 1651, 20 ], "kind": "commanddeclaration" }, { "full_name": "instLTNat", "code": "instance instLTNat : LT Nat where\n lt := Nat.lt", "start": [ 1653, 1 ], "end": [ 1654, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_succ_le_zero", "code": "theorem Nat.not_succ_le_zero : ∀ (n : Nat), LE.le (succ n) 0 → False", "start": [ 1656, 1 ], "end": [ 1658, 20 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_zero", "code": "theorem Nat.not_lt_zero (n : Nat) : Not (LT.lt n 0)", "start": [ 1660, 1 ], "end": [ 1661, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_le", "code": "theorem Nat.zero_le : (n : Nat) → LE.le 0 n", "start": [ 1663, 1 ], "end": [ 1665, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_le_succ", "code": "theorem Nat.succ_le_succ : LE.le n m → LE.le (succ n) (succ m)", "start": [ 1667, 1 ], "end": [ 1669, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_succ", "code": "theorem Nat.zero_lt_succ (n : Nat) : LT.lt 0 (succ n)", "start": [ 1671, 1 ], "end": [ 1672, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_step", "code": "theorem Nat.le_step (h : LE.le n m) : LE.le n (succ m)", "start": [ 1674, 1 ], "end": [ 1675, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_trans", "code": "protected theorem Nat.le_trans {n m k : Nat} : LE.le n m → LE.le m k → LE.le n k", "start": [ 1677, 1 ], "end": [ 1679, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_trans", "code": "protected theorem Nat.lt_trans {n m k : Nat} (h₁ : LT.lt n m) : LT.lt m k → LT.lt n k", "start": [ 1681, 1 ], "end": [ 1682, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_succ", "code": "theorem Nat.le_succ (n : Nat) : LE.le n (succ n)", "start": [ 1684, 1 ], "end": [ 1685, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_succ_of_le", "code": "theorem Nat.le_succ_of_le {n m : Nat} (h : LE.le n m) : LE.le n (succ m)", "start": [ 1687, 1 ], "end": [ 1688, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_refl", "code": "protected theorem Nat.le_refl (n : Nat) : LE.le n n", "start": [ 1690, 1 ], "end": [ 1691, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_pos", "code": "theorem Nat.succ_pos (n : Nat) : LT.lt 0 (succ n)", "start": [ 1693, 1 ], "end": [ 1694, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred", "code": "@[extern \"lean_nat_pred\"]\ndef Nat.pred : (@& Nat) → Nat\n | 0 => 0\n | succ a => a", "start": [ 1697, 1 ], "end": [ 1706, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_le_pred", "code": "theorem Nat.pred_le_pred : {n m : Nat} → LE.le n m → LE.le (pred n) (pred m)", "start": [ 1708, 1 ], "end": [ 1711, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_succ_le_succ", "code": "theorem Nat.le_of_succ_le_succ {n m : Nat} : LE.le (succ n) (succ m) → LE.le n m", "start": [ 1713, 1 ], "end": [ 1714, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_lt_succ", "code": "theorem Nat.le_of_lt_succ {m n : Nat} : LT.lt m (succ n) → LE.le m n", "start": [ 1716, 1 ], "end": [ 1717, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_or_lt_of_le", "code": "protected theorem Nat.eq_or_lt_of_le : {n m: Nat} → LE.le n m → Or (Eq n m) (LT.lt n m)", "start": [ 1719, 1 ], "end": [ 1727, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_or_ge", "code": "protected theorem Nat.lt_or_ge (n m : Nat) : Or (LT.lt n m) (GE.ge n m)", "start": [ 1729, 1 ], "end": [ 1738, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_succ_le_self", "code": "theorem Nat.not_succ_le_self : (n : Nat) → Not (LE.le (succ n) n)", "start": [ 1740, 1 ], "end": [ 1742, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_irrefl", "code": "protected theorem Nat.lt_irrefl (n : Nat) : Not (LT.lt n n)", "start": [ 1744, 1 ], "end": [ 1745, 25 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_le_of_lt", "code": "protected theorem Nat.lt_of_le_of_lt {n m k : Nat} (h₁ : LE.le n m) (h₂ : LT.lt m k) : LT.lt n k", "start": [ 1747, 1 ], "end": [ 1748, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_antisymm", "code": "protected theorem Nat.le_antisymm {n m : Nat} (h₁ : LE.le n m) (h₂ : LE.le m n) : Eq n m", "start": [ 1750, 1 ], "end": [ 1753, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_le_of_ne", "code": "protected theorem Nat.lt_of_le_of_ne {n m : Nat} (h₁ : LE.le n m) (h₂ : Not (Eq n m)) : LT.lt n m", "start": [ 1755, 1 ], "end": [ 1758, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_ble_eq_true", "code": "theorem Nat.le_of_ble_eq_true (h : Eq (Nat.ble n m) true) : LE.le n m", "start": [ 1760, 1 ], "end": [ 1763, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ble_self_eq_true", "code": "theorem Nat.ble_self_eq_true : (n : Nat) → Eq (Nat.ble n n) true", "start": [ 1765, 1 ], "end": [ 1767, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ble_succ_eq_true", "code": "theorem Nat.ble_succ_eq_true : {n m : Nat} → Eq (Nat.ble n m) true → Eq (Nat.ble n (succ m)) true", "start": [ 1769, 1 ], "end": [ 1771, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ble_eq_true_of_le", "code": "theorem Nat.ble_eq_true_of_le (h : LE.le n m) : Eq (Nat.ble n m) true", "start": [ 1773, 1 ], "end": [ 1776, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_le_of_not_ble_eq_true", "code": "theorem Nat.not_le_of_not_ble_eq_true (h : Not (Eq (Nat.ble n m) true)) : Not (LE.le n m)", "start": [ 1778, 1 ], "end": [ 1779, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decLe", "code": "@[extern \"lean_nat_dec_le\"]\ninstance Nat.decLe (n m : @& Nat) : Decidable (LE.le n m) :=\n dite (Eq (Nat.ble n m) true) (fun h => isTrue (Nat.le_of_ble_eq_true h)) (fun h => isFalse (Nat.not_le_of_not_ble_eq_true h))", "start": [ 1781, 1 ], "end": [ 1783, 128 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decLt", "code": "@[extern \"lean_nat_dec_lt\"]\ninstance Nat.decLt (n m : @& Nat) : Decidable (LT.lt n m) :=\n decLe (succ n) m", "start": [ 1785, 1 ], "end": [ 1787, 19 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub", "code": "@[extern \"lean_nat_sub\"]\nprotected def Nat.sub : (@& Nat) → (@& Nat) → Nat\n | a, 0 => a\n | a, succ b => pred (Nat.sub a b)", "start": [ 1792, 1 ], "end": [ 1803, 36 ], "kind": "commanddeclaration" }, { "full_name": "instSubNat", "code": "instance instSubNat : Sub Nat where\n sub := Nat.sub", "start": [ 1805, 1 ], "end": [ 1806, 17 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.getNumBits", "code": "@[extern \"lean_system_platform_nbits\"] opaque System.Platform.getNumBits : Unit → Subtype fun (n : Nat) => Or (Eq n 32) (Eq n 64) :=\n fun _ => ⟨64, Or.inr rfl⟩", "start": [ 1808, 1 ], "end": [ 1817, 28 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.numBits", "code": "def System.Platform.numBits : Nat :=\n (getNumBits ()).val", "start": [ 1819, 1 ], "end": [ 1821, 22 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.numBits_eq", "code": "theorem System.Platform.numBits_eq : Or (Eq numBits 32) (Eq numBits 64)", "start": [ 1823, 1 ], "end": [ 1824, 27 ], "kind": "commanddeclaration" }, { "full_name": "Fin", "code": "@[pp_using_anonymous_constructor]\nstructure Fin (n : Nat) where\n \n mk ::\n \n val : Nat\n \n isLt : LT.lt val n", "start": [ 1826, 1 ], "end": [ 1838, 21 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eq_of_val_eq", "code": "theorem Fin.eq_of_val_eq {n} : ∀ {i j : Fin n}, Eq i.val j.val → Eq i j", "start": [ 1842, 1 ], "end": [ 1843, 31 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_eq_of_eq", "code": "theorem Fin.val_eq_of_eq {n} {i j : Fin n} (h : Eq i j) : Eq i.val j.val", "start": [ 1845, 1 ], "end": [ 1846, 10 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ne_of_val_ne", "code": "theorem Fin.ne_of_val_ne {n} {i j : Fin n} (h : Not (Eq i.val j.val)) : Not (Eq i j)", "start": [ 1848, 1 ], "end": [ 1849, 39 ], "kind": "commanddeclaration" }, { "full_name": "Fin.decLt", "code": "instance Fin.decLt {n} (a b : Fin n) : Decidable (LT.lt a b) := Nat.decLt ..", "start": [ 1863, 1 ], "end": [ 1863, 77 ], "kind": "commanddeclaration" }, { "full_name": "Fin.decLe", "code": "instance Fin.decLe {n} (a b : Fin n) : Decidable (LE.le a b) := Nat.decLe ..", "start": [ 1864, 1 ], "end": [ 1864, 77 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.size", "code": "abbrev UInt8.size : Nat := 256", "start": [ 1866, 1 ], "end": [ 1867, 31 ], "kind": "commanddeclaration" }, { "full_name": "UInt8", "code": "structure UInt8 where\n \n val : Fin UInt8.size", "start": [ 1869, 1 ], "end": [ 1876, 23 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.ofNatCore", "code": "@[extern \"lean_uint8_of_nat\"]\ndef UInt8.ofNatCore (n : @& Nat) (h : LT.lt n UInt8.size) : UInt8 where\n val := { val := n, isLt := h }", "start": [ 1881, 1 ], "end": [ 1887, 33 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.decEq", "code": "@[extern \"lean_uint8_dec_eq\"]\ndef UInt8.decEq (a b : UInt8) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt8.noConfusion h' (fun h' => absurd h' h)))", "start": [ 1890, 1 ], "end": [ 1898, 122 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.size", "code": "abbrev UInt16.size : Nat := 65536", "start": [ 1905, 1 ], "end": [ 1906, 34 ], "kind": "commanddeclaration" }, { "full_name": "UInt16", "code": "structure UInt16 where\n \n val : Fin UInt16.size", "start": [ 1908, 1 ], "end": [ 1915, 24 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.ofNatCore", "code": "@[extern \"lean_uint16_of_nat\"]\ndef UInt16.ofNatCore (n : @& Nat) (h : LT.lt n UInt16.size) : UInt16 where\n val := { val := n, isLt := h }", "start": [ 1920, 1 ], "end": [ 1926, 33 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.decEq", "code": "@[extern \"lean_uint16_dec_eq\"]\ndef UInt16.decEq (a b : UInt16) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt16.noConfusion h' (fun h' => absurd h' h)))", "start": [ 1929, 1 ], "end": [ 1937, 123 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.size", "code": "abbrev UInt32.size : Nat := 4294967296", "start": [ 1944, 1 ], "end": [ 1945, 39 ], "kind": "commanddeclaration" }, { "full_name": "UInt32", "code": "structure UInt32 where\n \n val : Fin UInt32.size", "start": [ 1947, 1 ], "end": [ 1954, 24 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.ofNatCore", "code": "@[extern \"lean_uint32_of_nat\"]\ndef UInt32.ofNatCore (n : @& Nat) (h : LT.lt n UInt32.size) : UInt32 where\n val := { val := n, isLt := h }", "start": [ 1959, 1 ], "end": [ 1965, 33 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.toNat", "code": "@[extern \"lean_uint32_to_nat\"]\ndef UInt32.toNat (n : UInt32) : Nat := n.val.val", "start": [ 1967, 1 ], "end": [ 1972, 49 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.decEq", "code": "@[extern \"lean_uint32_dec_eq\"]\ndef UInt32.decEq (a b : UInt32) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt32.noConfusion h' (fun h' => absurd h' h)))", "start": [ 1975, 1 ], "end": [ 1983, 123 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.decLt", "code": "@[extern \"lean_uint32_dec_lt\"]\ndef UInt32.decLt (a b : UInt32) : Decidable (LT.lt a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (LT.lt n m))", "start": [ 1997, 1 ], "end": [ 2004, 56 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.decLe", "code": "@[extern \"lean_uint32_dec_le\"]\ndef UInt32.decLe (a b : UInt32) : Decidable (LE.le a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (LE.le n m))", "start": [ 2007, 1 ], "end": [ 2014, 56 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.size", "code": "abbrev UInt64.size : Nat := 18446744073709551616", "start": [ 2021, 1 ], "end": [ 2022, 49 ], "kind": "commanddeclaration" }, { "full_name": "UInt64", "code": "structure UInt64 where\n \n val : Fin UInt64.size", "start": [ 2023, 1 ], "end": [ 2030, 24 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.ofNatCore", "code": "@[extern \"lean_uint64_of_nat\"]\ndef UInt64.ofNatCore (n : @& Nat) (h : LT.lt n UInt64.size) : UInt64 where\n val := { val := n, isLt := h }", "start": [ 2035, 1 ], "end": [ 2041, 33 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.decEq", "code": "@[extern \"lean_uint64_dec_eq\"]\ndef UInt64.decEq (a b : UInt64) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt64.noConfusion h' (fun h' => absurd h' h)))", "start": [ 2044, 1 ], "end": [ 2052, 123 ], "kind": "commanddeclaration" }, { "full_name": "USize.size", "code": "abbrev USize.size : Nat := hAdd (hSub (hPow 2 System.Platform.numBits) 1) 1", "start": [ 2059, 1 ], "end": [ 2078, 76 ], "kind": "commanddeclaration" }, { "full_name": "usize_size_eq", "code": "theorem usize_size_eq : Or (Eq USize.size 4294967296) (Eq USize.size 18446744073709551616)", "start": [ 2080, 1 ], "end": [ 2084, 40 ], "kind": "commanddeclaration" }, { "full_name": "USize", "code": "structure USize where\n \n val : Fin USize.size", "start": [ 2086, 1 ], "end": [ 2096, 23 ], "kind": "commanddeclaration" }, { "full_name": "USize.ofNatCore", "code": "@[extern \"lean_usize_of_nat\"]\ndef USize.ofNatCore (n : @& Nat) (h : LT.lt n USize.size) : USize := {\n val := { val := n, isLt := h }\n}", "start": [ 2101, 1 ], "end": [ 2108, 2 ], "kind": "commanddeclaration" }, { "full_name": "USize.decEq", "code": "@[extern \"lean_usize_dec_eq\"]\ndef USize.decEq (a b : USize) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h =>isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => USize.noConfusion h' (fun h' => absurd h' h)))", "start": [ 2111, 1 ], "end": [ 2119, 121 ], "kind": "commanddeclaration" }, { "full_name": "USize.ofNat32", "code": "@[extern \"lean_usize_of_nat\"]\ndef USize.ofNat32 (n : @& Nat) (h : LT.lt n 4294967296) : USize where\n val := {\n val := n\n isLt := match USize.size, usize_size_eq with\n | _, Or.inl rfl => h\n | _, Or.inr rfl => Nat.lt_trans h (by decide)\n }", "start": [ 2128, 1 ], "end": [ 2140, 4 ], "kind": "commanddeclaration" }, { "full_name": "Nat.isValidChar", "code": "abbrev Nat.isValidChar (n : Nat) : Prop :=\n Or (LT.lt n 0xd800) (And (LT.lt 0xdfff n) (LT.lt n 0x110000))", "start": [ 2142, 1 ], "end": [ 2147, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.isValidChar", "code": "abbrev UInt32.isValidChar (n : UInt32) : Prop :=\n n.toNat.isValidChar", "start": [ 2149, 1 ], "end": [ 2154, 22 ], "kind": "commanddeclaration" }, { "full_name": "Char", "code": "structure Char where\n \n val : UInt32\n \n valid : val.isValidChar", "start": [ 2156, 1 ], "end": [ 2162, 26 ], "kind": "commanddeclaration" }, { "full_name": "isValidChar_UInt32", "code": "private theorem isValidChar_UInt32 {n : Nat} (h : n.isValidChar) : LT.lt n UInt32.size", "start": [ 2164, 1 ], "end": [ 2167, 48 ], "kind": "commanddeclaration" }, { "full_name": "Char.ofNatAux", "code": "@[extern \"lean_uint32_of_nat\"]\ndef Char.ofNatAux (n : @& Nat) (h : n.isValidChar) : Char :=\n { val := ⟨{ val := n, isLt := isValidChar_UInt32 h }⟩, valid := h }", "start": [ 2169, 1 ], "end": [ 2175, 70 ], "kind": "commanddeclaration" }, { "full_name": "Char.ofNat", "code": "@[noinline, match_pattern]\ndef Char.ofNat (n : Nat) : Char :=\n dite (n.isValidChar)\n (fun h => Char.ofNatAux n h)\n (fun _ => { val := ⟨{ val := 0, isLt := by decide }⟩, valid := Or.inl (by decide) })", "start": [ 2177, 1 ], "end": [ 2185, 89 ], "kind": "commanddeclaration" }, { "full_name": "Char.eq_of_val_eq", "code": "theorem Char.eq_of_val_eq : ∀ {c d : Char}, Eq c.val d.val → Eq c d", "start": [ 2187, 1 ], "end": [ 2188, 31 ], "kind": "commanddeclaration" }, { "full_name": "Char.val_eq_of_eq", "code": "theorem Char.val_eq_of_eq : ∀ {c d : Char}, Eq c d → Eq c.val d.val", "start": [ 2190, 1 ], "end": [ 2191, 21 ], "kind": "commanddeclaration" }, { "full_name": "Char.ne_of_val_ne", "code": "theorem Char.ne_of_val_ne {c d : Char} (h : Not (Eq c.val d.val)) : Not (Eq c d)", "start": [ 2193, 1 ], "end": [ 2194, 39 ], "kind": "commanddeclaration" }, { "full_name": "Char.val_ne_of_ne", "code": "theorem Char.val_ne_of_ne {c d : Char} (h : Not (Eq c d)) : Not (Eq c.val d.val)", "start": [ 2196, 1 ], "end": [ 2197, 39 ], "kind": "commanddeclaration" }, { "full_name": "Char.utf8Size", "code": "def Char.utf8Size (c : Char) : Nat :=\n let v := c.val\n ite (LE.le v (UInt32.ofNatCore 0x7F (by decide))) 1\n (ite (LE.le v (UInt32.ofNatCore 0x7FF (by decide))) 2\n (ite (LE.le v (UInt32.ofNatCore 0xFFFF (by decide))) 3 4))", "start": [ 2205, 1 ], "end": [ 2210, 65 ], "kind": "commanddeclaration" }, { "full_name": "Option", "code": "inductive Option (α : Type u) where\n \n | none : Option α\n \n | some (val : α) : Option α", "start": [ 2212, 1 ], "end": [ 2244, 30 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD", "code": "@[macro_inline] def Option.getD (opt : Option α) (dflt : α) : α :=\n match opt with\n | some x => x\n | none => dflt", "start": [ 2253, 1 ], "end": [ 2263, 17 ], "kind": "commanddeclaration" }, { "full_name": "Option.map", "code": "@[inline] protected def Option.map (f : α → β) : Option α → Option β\n | some x => some (f x)\n | none => none", "start": [ 2265, 1 ], "end": [ 2271, 19 ], "kind": "commanddeclaration" }, { "full_name": "List", "code": "inductive List (α : Type u) where\n \n | nil : List α\n \n | cons (head : α) (tail : List α) : List α", "start": [ 2273, 1 ], "end": [ 2289, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.hasDecEq", "code": "protected def List.hasDecEq {α : Type u} [DecidableEq α] : (a b : List α) → Decidable (Eq a b)\n | nil, nil => isTrue rfl\n | cons _ _, nil => isFalse (fun h => List.noConfusion h)\n | nil, cons _ _ => isFalse (fun h => List.noConfusion h)\n | cons a as, cons b bs =>\n match decEq a b with\n | isTrue hab =>\n match List.hasDecEq as bs with\n | isTrue habs => isTrue (hab ▸ habs ▸ rfl)\n | isFalse nabs => isFalse (fun h => List.noConfusion h (fun _ habs => absurd habs nabs))\n | isFalse nab => isFalse (fun h => List.noConfusion h (fun hab _ => absurd hab nab))", "start": [ 2294, 1 ], "end": [ 2305, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.length", "code": "def List.length : List α → Nat\n | nil => 0\n | cons _ as => HAdd.hAdd (length as) 1", "start": [ 2309, 1 ], "end": [ 2318, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.lengthTRAux", "code": "def List.lengthTRAux : List α → Nat → Nat\n | nil, n => n\n | cons _ as, n => lengthTRAux as (Nat.succ n)", "start": [ 2320, 1 ], "end": [ 2323, 48 ], "kind": "commanddeclaration" }, { "full_name": "List.lengthTR", "code": "def List.lengthTR (as : List α) : Nat :=\n lengthTRAux as 0", "start": [ 2325, 1 ], "end": [ 2330, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.get", "code": "def List.get {α : Type u} : (as : List α) → Fin as.length → α\n | cons a _, ⟨0, _⟩ => a\n | cons _ as, ⟨Nat.succ i, h⟩ => get as ⟨i, Nat.le_of_succ_le_succ h⟩", "start": [ 2332, 1 ], "end": [ 2339, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.set", "code": "def List.set : List α → Nat → α → List α\n | cons _ as, 0, b => cons b as\n | cons a as, Nat.succ n, b => cons a (set as n b)\n | nil, _, _ => nil", "start": [ 2341, 1 ], "end": [ 2348, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl", "code": "@[specialize]\ndef List.foldl {α : Type u} {β : Type v} (f : α → β → α) : (init : α) → List β → α\n | a, nil => a\n | a, cons b l => foldl f (f a b) l", "start": [ 2350, 1 ], "end": [ 2357, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.concat", "code": "def List.concat {α : Type u} : List α → α → List α\n | nil, b => cons b nil\n | cons a as, b => cons a (concat as b)", "start": [ 2359, 1 ], "end": [ 2362, 41 ], "kind": "commanddeclaration" }, { "full_name": "String", "code": "structure String where\n \n mk ::\n \n data : List Char", "start": [ 2364, 1 ], "end": [ 2376, 19 ], "kind": "commanddeclaration" }, { "full_name": "String.decEq", "code": "@[extern \"lean_string_dec_eq\"]\ndef String.decEq (s₁ s₂ : @& String) : Decidable (Eq s₁ s₂) :=\n match s₁, s₂ with\n | ⟨s₁⟩, ⟨s₂⟩ =>\n dite (Eq s₁ s₂) (fun h => isTrue (congrArg _ h)) (fun h => isFalse (fun h' => String.noConfusion h' (fun h' => absurd h' h)))", "start": [ 2381, 1 ], "end": [ 2389, 130 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos", "code": "structure String.Pos where\n \n byteIdx : Nat := 0", "start": [ 2393, 1 ], "end": [ 2405, 21 ], "kind": "commanddeclaration" }, { "full_name": "Substring", "code": "structure Substring where\n \n str : String\n \n startPos : String.Pos\n \n stopPos : String.Pos", "start": [ 2415, 1 ], "end": [ 2427, 24 ], "kind": "commanddeclaration" }, { "full_name": "Substring.bsize", "code": "@[inline] def Substring.bsize : Substring → Nat\n | ⟨_, b, e⟩ => e.byteIdx.sub b.byteIdx", "start": [ 2432, 1 ], "end": [ 2434, 41 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8ByteSize", "code": "@[extern \"lean_string_utf8_byte_size\"]\ndef String.utf8ByteSize : (@& String) → Nat\n | ⟨s⟩ => go s\nwhere\n go : List Char → Nat\n | .nil => 0\n | .cons c cs => hAdd (go cs) c.utf8Size", "start": [ 2436, 1 ], "end": [ 2446, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.endPos", "code": "@[inline] def String.endPos (s : String) : String.Pos where\n byteIdx := utf8ByteSize s", "start": [ 2472, 1 ], "end": [ 2474, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.toSubstring", "code": "@[inline] def String.toSubstring (s : String) : Substring where\n str := s\n startPos := {}\n stopPos := s.endPos", "start": [ 2476, 1 ], "end": [ 2480, 23 ], "kind": "commanddeclaration" }, { "full_name": "String.toSubstring'", "code": "def String.toSubstring' (s : String) : Substring :=\n s.toSubstring", "start": [ 2482, 1 ], "end": [ 2484, 16 ], "kind": "commanddeclaration" }, { "full_name": "unsafeCast", "code": "unsafe def unsafeCast {α : Sort u} {β : Sort v} (a : α) : β :=\n PLift.down (ULift.down.{max u v} (cast lcProof (ULift.up.{max u v} (PLift.up a))))", "start": [ 2486, 1 ], "end": [ 2511, 85 ], "kind": "commanddeclaration" }, { "full_name": "panicCore", "code": "@[never_extract, extern \"lean_panic_fn\"]\ndef panicCore {α : Type u} [Inhabited α] (msg : String) : α := default", "start": [ 2514, 1 ], "end": [ 2526, 71 ], "kind": "commanddeclaration" }, { "full_name": "panic", "code": "@[noinline, never_extract]\ndef panic {α : Type u} [Inhabited α] (msg : String) : α :=\n panicCore msg", "start": [ 2528, 1 ], "end": [ 2541, 16 ], "kind": "commanddeclaration" }, { "full_name": "Array", "code": "structure Array (α : Type u) where\n \n mk ::\n \n data : List α", "start": [ 2546, 1 ], "end": [ 2571, 16 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkEmpty", "code": "@[extern \"lean_mk_empty_array_with_capacity\"]\ndef Array.mkEmpty {α : Type u} (c : @& Nat) : Array α where\n data := List.nil", "start": [ 2576, 1 ], "end": [ 2579, 19 ], "kind": "commanddeclaration" }, { "full_name": "Array.empty", "code": "def Array.empty {α : Type u} : Array α := mkEmpty 0", "start": [ 2581, 1 ], "end": [ 2582, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.size", "code": "@[reducible, extern \"lean_array_get_size\"]\ndef Array.size {α : Type u} (a : @& Array α) : Nat :=\n a.data.length", "start": [ 2584, 1 ], "end": [ 2587, 15 ], "kind": "commanddeclaration" }, { "full_name": "Array.get", "code": "@[extern \"lean_array_fget\"]\ndef Array.get {α : Type u} (a : @& Array α) (i : @& Fin a.size) : α :=\n a.data.get i", "start": [ 2589, 1 ], "end": [ 2592, 15 ], "kind": "commanddeclaration" }, { "full_name": "Array.getD", "code": "@[inline] abbrev Array.getD (a : Array α) (i : Nat) (v₀ : α) : α :=\n dite (LT.lt i a.size) (fun h => a.get ⟨i, h⟩) (fun _ => v₀)", "start": [ 2594, 1 ], "end": [ 2596, 62 ], "kind": "commanddeclaration" }, { "full_name": "Array.get!", "code": "@[extern \"lean_array_get\"]\ndef Array.get! {α : Type u} [Inhabited α] (a : @& Array α) (i : @& Nat) : α :=\n Array.getD a i default", "start": [ 2598, 1 ], "end": [ 2601, 25 ], "kind": "commanddeclaration" }, { "full_name": "Array.push", "code": "@[extern \"lean_array_push\"]\ndef Array.push {α : Type u} (a : Array α) (v : α) : Array α where\n data := List.concat a.data v", "start": [ 2603, 1 ], "end": [ 2609, 31 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray0", "code": "def Array.mkArray0 {α : Type u} : Array α :=\n mkEmpty 0", "start": [ 2611, 1 ], "end": [ 2613, 12 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray1", "code": "def Array.mkArray1 {α : Type u} (a₁ : α) : Array α :=\n (mkEmpty 1).push a₁", "start": [ 2615, 1 ], "end": [ 2617, 22 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray2", "code": "def Array.mkArray2 {α : Type u} (a₁ a₂ : α) : Array α :=\n ((mkEmpty 2).push a₁).push a₂", "start": [ 2619, 1 ], "end": [ 2621, 32 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray3", "code": "def Array.mkArray3 {α : Type u} (a₁ a₂ a₃ : α) : Array α :=\n (((mkEmpty 3).push a₁).push a₂).push a₃", "start": [ 2623, 1 ], "end": [ 2625, 42 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray4", "code": "def Array.mkArray4 {α : Type u} (a₁ a₂ a₃ a₄ : α) : Array α :=\n ((((mkEmpty 4).push a₁).push a₂).push a₃).push a₄", "start": [ 2627, 1 ], "end": [ 2629, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray5", "code": "def Array.mkArray5 {α : Type u} (a₁ a₂ a₃ a₄ a₅ : α) : Array α :=\n (((((mkEmpty 5).push a₁).push a₂).push a₃).push a₄).push a₅", "start": [ 2631, 1 ], "end": [ 2633, 62 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray6", "code": "def Array.mkArray6 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ : α) : Array α :=\n ((((((mkEmpty 6).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆", "start": [ 2635, 1 ], "end": [ 2637, 72 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray7", "code": "def Array.mkArray7 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ a₇ : α) : Array α :=\n (((((((mkEmpty 7).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆).push a₇", "start": [ 2639, 1 ], "end": [ 2641, 82 ], "kind": "commanddeclaration" }, { "full_name": "Array.mkArray8", "code": "def Array.mkArray8 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ : α) : Array α :=\n ((((((((mkEmpty 8).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆).push a₇).push a₈", "start": [ 2643, 1 ], "end": [ 2645, 92 ], "kind": "commanddeclaration" }, { "full_name": "Array.set", "code": "@[extern \"lean_array_fset\"]\ndef Array.set (a : Array α) (i : @& Fin a.size) (v : α) : Array α where\n data := a.data.set i.val v", "start": [ 2647, 1 ], "end": [ 2655, 29 ], "kind": "commanddeclaration" }, { "full_name": "Array.setD", "code": "@[inline] def Array.setD (a : Array α) (i : Nat) (v : α) : Array α :=\n dite (LT.lt i a.size) (fun h => a.set ⟨i, h⟩ v) (fun _ => a)", "start": [ 2657, 1 ], "end": [ 2664, 63 ], "kind": "commanddeclaration" }, { "full_name": "Array.set!", "code": "@[extern \"lean_array_set\"]\ndef Array.set! (a : Array α) (i : @& Nat) (v : α) : Array α :=\n Array.setD a i v", "start": [ 2666, 1 ], "end": [ 2674, 19 ], "kind": "commanddeclaration" }, { "full_name": "Array.appendCore", "code": "protected def Array.appendCore {α : Type u} (as : Array α) (bs : Array α) : Array α :=\n let rec loop (i : Nat) (j : Nat) (as : Array α) : Array α :=\n dite (LT.lt j bs.size)\n (fun hlt =>\n match i with\n | 0 => as\n | Nat.succ i' => loop i' (hAdd j 1) (as.push (bs.get ⟨j, hlt⟩)))\n (fun _ => as)\n loop bs.size 0 as", "start": [ 2676, 1 ], "end": [ 2685, 20 ], "kind": "commanddeclaration" }, { "full_name": "Array.extract", "code": "def Array.extract (as : Array α) (start stop : Nat) : Array α :=\n let rec loop (i : Nat) (j : Nat) (bs : Array α) : Array α :=\n dite (LT.lt j as.size)\n (fun hlt =>\n match i with\n | 0 => bs\n | Nat.succ i' => loop i' (hAdd j 1) (bs.push (as.get ⟨j, hlt⟩)))\n (fun _ => bs)\n let sz' := Nat.sub (min stop as.size) start\n loop sz' start (mkEmpty sz')", "start": [ 2687, 1 ], "end": [ 2701, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.toArrayAux", "code": "@[inline_if_reduce]\ndef List.toArrayAux : List α → Array α → Array α\n | nil, r => r\n | cons a as, r => toArrayAux as (r.push a)", "start": [ 2703, 1 ], "end": [ 2707, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.redLength", "code": "@[inline_if_reduce]\ndef List.redLength : List α → Nat\n | nil => 0\n | cons _ as => as.redLength.succ", "start": [ 2709, 1 ], "end": [ 2713, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.toArray", "code": "@[inline, match_pattern, pp_nodot, export lean_list_to_array]\ndef List.toArray (as : List α) : Array α :=\n as.toArrayAux (Array.mkEmpty as.redLength)", "start": [ 2715, 1 ], "end": [ 2720, 45 ], "kind": "commanddeclaration" }, { "full_name": "Bind", "code": "class Bind (m : Type u → Type v) where\n \n bind : {α β : Type u} → m α → (α → m β) → m β", "start": [ 2722, 1 ], "end": [ 2726, 48 ], "kind": "commanddeclaration" }, { "full_name": "Pure", "code": "class Pure (f : Type u → Type v) where\n \n pure {α : Type u} : α → f α", "start": [ 2730, 1 ], "end": [ 2734, 30 ], "kind": "commanddeclaration" }, { "full_name": "Functor", "code": "class Functor (f : Type u → Type v) : Type (max (u+1) v) where\n \n map : {α β : Type u} → (α → β) → f α → f β\n \n mapConst : {α β : Type u} → α → f β → f α := Function.comp map (Function.const _)", "start": [ 2738, 1 ], "end": [ 2752, 84 ], "kind": "commanddeclaration" }, { "full_name": "Seq", "code": "class Seq (f : Type u → Type v) : Type (max (u+1) v) where\n \n seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β", "start": [ 2754, 1 ], "end": [ 2762, 56 ], "kind": "commanddeclaration" }, { "full_name": "SeqLeft", "code": "class SeqLeft (f : Type u → Type v) : Type (max (u+1) v) where\n \n seqLeft : {α β : Type u} → f α → (Unit → f β) → f α", "start": [ 2764, 1 ], "end": [ 2771, 54 ], "kind": "commanddeclaration" }, { "full_name": "SeqRight", "code": "class SeqRight (f : Type u → Type v) : Type (max (u+1) v) where\n \n seqRight : {α β : Type u} → f α → (Unit → f β) → f β", "start": [ 2773, 1 ], "end": [ 2780, 55 ], "kind": "commanddeclaration" }, { "full_name": "Applicative", "code": "class Applicative (f : Type u → Type v) extends Functor f, Pure f, Seq f, SeqLeft f, SeqRight f where\n map := fun x y => Seq.seq (pure x) fun _ => y\n seqLeft := fun a b => Seq.seq (Functor.map (Function.const _) a) b\n seqRight := fun a b => Seq.seq (Functor.map (Function.const _ id) a) b", "start": [ 2782, 1 ], "end": [ 2797, 73 ], "kind": "commanddeclaration" }, { "full_name": "Monad", "code": "class Monad (m : Type u → Type v) extends Applicative m, Bind m : Type (max (u+1) v) where\n map f x := bind x (Function.comp pure f)\n seq f x := bind f fun y => Functor.map y (x ())\n seqLeft x y := bind x fun a => bind (y ()) (fun _ => pure a)\n seqRight x y := bind x fun _ => y ()", "start": [ 2799, 1 ], "end": [ 2818, 39 ], "kind": "commanddeclaration" }, { "full_name": "Array.sequenceMap", "code": "def Array.sequenceMap {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (f : α → m β) : m (Array β) :=\n let rec loop (i : Nat) (j : Nat) (bs : Array β) : m (Array β) :=\n dite (LT.lt j as.size)\n (fun hlt =>\n match i with\n | 0 => pure bs\n | Nat.succ i' => Bind.bind (f (as.get ⟨j, hlt⟩)) fun b => loop i' (hAdd j 1) (bs.push b))\n (fun _ => pure bs)\n loop as.size 0 (Array.mkEmpty as.size)", "start": [ 2829, 1 ], "end": [ 2838, 41 ], "kind": "commanddeclaration" }, { "full_name": "MonadLift", "code": "class MonadLift (m : semiOutParam (Type u → Type v)) (n : Type u → Type w) where\n \n monadLift : {α : Type u} → m α → n α", "start": [ 2840, 1 ], "end": [ 2850, 39 ], "kind": "commanddeclaration" }, { "full_name": "MonadLiftT", "code": "class MonadLiftT (m : Type u → Type v) (n : Type u → Type w) where\n \n monadLift : {α : Type u} → m α → n α", "start": [ 2852, 1 ], "end": [ 2861, 39 ], "kind": "commanddeclaration" }, { "full_name": "liftM", "code": "abbrev liftM := @monadLift", "start": [ 2865, 1 ], "end": [ 2866, 27 ], "kind": "commanddeclaration" }, { "full_name": "MonadFunctor", "code": "class MonadFunctor (m : semiOutParam (Type u → Type v)) (n : Type u → Type w) where\n \n monadMap {α : Type u} : ({β : Type u} → m β → m β) → n α → n α", "start": [ 2875, 1 ], "end": [ 2886, 65 ], "kind": "commanddeclaration" }, { "full_name": "MonadFunctorT", "code": "class MonadFunctorT (m : Type u → Type v) (n : Type u → Type w) where\n \n monadMap {α : Type u} : ({β : Type u} → m β → m β) → n α → n α", "start": [ 2888, 1 ], "end": [ 2893, 65 ], "kind": "commanddeclaration" }, { "full_name": "monadFunctorRefl", "code": "instance monadFunctorRefl (m) : MonadFunctorT m m where\n monadMap f := f", "start": [ 2901, 1 ], "end": [ 2902, 18 ], "kind": "commanddeclaration" }, { "full_name": "Except", "code": "inductive Except (ε : Type u) (α : Type v) where\n \n | error : ε → Except ε α\n \n | ok : α → Except ε α", "start": [ 2904, 1 ], "end": [ 2914, 27 ], "kind": "commanddeclaration" }, { "full_name": "MonadExceptOf", "code": "class MonadExceptOf (ε : semiOutParam (Type u)) (m : Type v → Type w) where\n \n throw {α : Type v} : ε → m α\n \n tryCatch {α : Type v} (body : m α) (handler : ε → m α) : m α", "start": [ 2921, 1 ], "end": [ 2943, 63 ], "kind": "commanddeclaration" }, { "full_name": "throwThe", "code": "abbrev throwThe (ε : Type u) {m : Type v → Type w} [MonadExceptOf ε m] {α : Type v} (e : ε) : m α :=\n MonadExceptOf.throw e", "start": [ 2945, 1 ], "end": [ 2950, 24 ], "kind": "commanddeclaration" }, { "full_name": "tryCatchThe", "code": "abbrev tryCatchThe (ε : Type u) {m : Type v → Type w} [MonadExceptOf ε m] {α : Type v} (x : m α) (handle : ε → m α) : m α :=\n MonadExceptOf.tryCatch x handle", "start": [ 2952, 1 ], "end": [ 2957, 34 ], "kind": "commanddeclaration" }, { "full_name": "MonadExcept", "code": "class MonadExcept (ε : outParam (Type u)) (m : Type v → Type w) where\n \n throw {α : Type v} : ε → m α\n \n tryCatch {α : Type v} : m α → (ε → m α) → m α", "start": [ 2959, 1 ], "end": [ 2967, 48 ], "kind": "commanddeclaration" }, { "full_name": "MonadExcept.ofExcept", "code": "def MonadExcept.ofExcept [Monad m] [MonadExcept ε m] : Except ε α → m α\n | .ok a => pure a\n | .error e => throw e", "start": [ 2969, 1 ], "end": [ 2972, 24 ], "kind": "commanddeclaration" }, { "full_name": "MonadExcept.orElse", "code": "@[inline] protected def orElse [MonadExcept ε m] {α : Type v} (t₁ : m α) (t₂ : Unit → m α) : m α :=\n tryCatch t₁ fun _ => t₂ ()", "start": [ 2983, 1 ], "end": [ 2985, 29 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT", "code": "def ReaderT (ρ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=\n ρ → m α", "start": [ 2992, 1 ], "end": [ 2999, 10 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.run", "code": "@[always_inline, inline]\ndef ReaderT.run {ρ : Type u} {m : Type u → Type v} {α : Type u} (x : ReaderT ρ m α) (r : ρ) : m α :=\n x r", "start": [ 3004, 1 ], "end": [ 3010, 6 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.read", "code": "@[always_inline, inline]\nprotected def read [Monad m] : ReaderT ρ m ρ :=\n pure", "start": [ 3030, 1 ], "end": [ 3033, 7 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.pure", "code": "@[always_inline, inline]\nprotected def pure [Monad m] {α} (a : α) : ReaderT ρ m α :=\n fun _ => pure a", "start": [ 3035, 1 ], "end": [ 3038, 18 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.bind", "code": "@[always_inline, inline]\nprotected def bind [Monad m] {α β} (x : ReaderT ρ m α) (f : α → ReaderT ρ m β) : ReaderT ρ m β :=\n fun r => bind (x r) fun a => f a r", "start": [ 3040, 1 ], "end": [ 3043, 37 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.adapt", "code": "@[always_inline, inline]\nprotected def adapt {ρ' α : Type u} (f : ρ' → ρ) : ReaderT ρ m α → ReaderT ρ' m α :=\n fun x r => x (f r)", "start": [ 3063, 1 ], "end": [ 3069, 21 ], "kind": "commanddeclaration" }, { "full_name": "MonadReaderOf", "code": "class MonadReaderOf (ρ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n read : m ρ", "start": [ 3074, 1 ], "end": [ 3090, 13 ], "kind": "commanddeclaration" }, { "full_name": "readThe", "code": "@[always_inline, inline]\ndef readThe (ρ : Type u) {m : Type u → Type v} [MonadReaderOf ρ m] : m ρ :=\n MonadReaderOf.read", "start": [ 3092, 1 ], "end": [ 3098, 21 ], "kind": "commanddeclaration" }, { "full_name": "MonadReader", "code": "class MonadReader (ρ : outParam (Type u)) (m : Type u → Type v) where\n \n read : m ρ", "start": [ 3100, 1 ], "end": [ 3103, 13 ], "kind": "commanddeclaration" }, { "full_name": "MonadWithReaderOf", "code": "class MonadWithReaderOf (ρ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n withReader {α : Type u} : (ρ → ρ) → m α → m α", "start": [ 3116, 1 ], "end": [ 3126, 48 ], "kind": "commanddeclaration" }, { "full_name": "withTheReader", "code": "@[always_inline, inline]\ndef withTheReader (ρ : Type u) {m : Type u → Type v} [MonadWithReaderOf ρ m] {α : Type u} (f : ρ → ρ) (x : m α) : m α :=\n MonadWithReaderOf.withReader f x", "start": [ 3128, 1 ], "end": [ 3134, 35 ], "kind": "commanddeclaration" }, { "full_name": "MonadWithReader", "code": "class MonadWithReader (ρ : outParam (Type u)) (m : Type u → Type v) where\n \n withReader {α : Type u} : (ρ → ρ) → m α → m α", "start": [ 3136, 1 ], "end": [ 3140, 48 ], "kind": "commanddeclaration" }, { "full_name": "MonadStateOf", "code": "class MonadStateOf (σ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n get : m σ\n \n set : σ → m PUnit\n \n modifyGet {α : Type u} : (σ → Prod α σ) → m α", "start": [ 3153, 1 ], "end": [ 3170, 48 ], "kind": "commanddeclaration" }, { "full_name": "getThe", "code": "abbrev getThe (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] : m σ :=\n MonadStateOf.get", "start": [ 3174, 1 ], "end": [ 3179, 19 ], "kind": "commanddeclaration" }, { "full_name": "modifyThe", "code": "@[always_inline, inline]\nabbrev modifyThe (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] (f : σ → σ) : m PUnit :=\n MonadStateOf.modifyGet fun s => (PUnit.unit, f s)", "start": [ 3181, 1 ], "end": [ 3187, 52 ], "kind": "commanddeclaration" }, { "full_name": "modifyGetThe", "code": "@[always_inline, inline]\nabbrev modifyGetThe {α : Type u} (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] (f : σ → Prod α σ) : m α :=\n MonadStateOf.modifyGet f", "start": [ 3189, 1 ], "end": [ 3195, 27 ], "kind": "commanddeclaration" }, { "full_name": "MonadState", "code": "class MonadState (σ : outParam (Type u)) (m : Type u → Type v) where\n \n get : m σ\n \n set : σ → m PUnit\n \n modifyGet {α : Type u} : (σ → Prod α σ) → m α", "start": [ 3197, 1 ], "end": [ 3209, 48 ], "kind": "commanddeclaration" }, { "full_name": "modify", "code": "@[always_inline, inline]\ndef modify {σ : Type u} {m : Type u → Type v} [MonadState σ m] (f : σ → σ) : m PUnit :=\n modifyGet fun s => (PUnit.unit, f s)", "start": [ 3218, 1 ], "end": [ 3226, 39 ], "kind": "commanddeclaration" }, { "full_name": "getModify", "code": "@[always_inline, inline]\ndef getModify {σ : Type u} {m : Type u → Type v} [MonadState σ m] (f : σ → σ) : m σ :=\n modifyGet fun s => (s, f s)", "start": [ 3228, 1 ], "end": [ 3234, 30 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.Result", "code": "inductive Result (ε σ α : Type u) where\n \n | ok : α → σ → Result ε σ α\n \n | error : ε → σ → Result ε σ α", "start": [ 3246, 1 ], "end": [ 3254, 33 ], "kind": "commanddeclaration" }, { "full_name": "EStateM", "code": "def EStateM (ε σ α : Type u) := σ → Result ε σ α", "start": [ 3264, 1 ], "end": [ 3268, 49 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.pure", "code": "@[always_inline, inline]\nprotected def pure (a : α) : EStateM ε σ α := fun s =>\n Result.ok a s", "start": [ 3277, 1 ], "end": [ 3280, 16 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.set", "code": "@[always_inline, inline]\nprotected def set (s : σ) : EStateM ε σ PUnit := fun _ =>\n Result.ok ⟨⟩ s", "start": [ 3282, 1 ], "end": [ 3285, 17 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.get", "code": "@[always_inline, inline]\nprotected def get : EStateM ε σ σ := fun s =>\n Result.ok s s", "start": [ 3287, 1 ], "end": [ 3290, 16 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.modifyGet", "code": "@[always_inline, inline]\nprotected def modifyGet (f : σ → Prod α σ) : EStateM ε σ α := fun s =>\n match f s with\n | (a, s) => Result.ok a s", "start": [ 3292, 1 ], "end": [ 3296, 28 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.throw", "code": "@[always_inline, inline]\nprotected def throw (e : ε) : EStateM ε σ α := fun s =>\n Result.error e s", "start": [ 3298, 1 ], "end": [ 3301, 19 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.Backtrackable", "code": "class Backtrackable (δ : outParam (Type u)) (σ : Type u) where\n \n save : σ → δ\n \n restore : σ → δ → σ", "start": [ 3303, 1 ], "end": [ 3313, 22 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.tryCatch", "code": "@[always_inline, inline]\nprotected def tryCatch {δ} [Backtrackable δ σ] {α} (x : EStateM ε σ α) (handle : ε → EStateM ε σ α) : EStateM ε σ α := fun s =>\n let d := Backtrackable.save s\n match x s with\n | Result.error e s => handle e (Backtrackable.restore s d)\n | ok => ok", "start": [ 3315, 1 ], "end": [ 3321, 27 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.orElse", "code": "@[always_inline, inline]\nprotected def orElse {δ} [Backtrackable δ σ] (x₁ : EStateM ε σ α) (x₂ : Unit → EStateM ε σ α) : EStateM ε σ α := fun s =>\n let d := Backtrackable.save s;\n match x₁ s with\n | Result.error _ s => x₂ () (Backtrackable.restore s d)\n | ok => ok", "start": [ 3323, 1 ], "end": [ 3329, 27 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.adaptExcept", "code": "@[always_inline, inline]\ndef adaptExcept {ε' : Type u} (f : ε → ε') (x : EStateM ε σ α) : EStateM ε' σ α := fun s =>\n match x s with\n | Result.error e s => Result.error (f e) s\n | Result.ok a s => Result.ok a s", "start": [ 3331, 1 ], "end": [ 3336, 38 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.bind", "code": "@[always_inline, inline]\nprotected def bind (x : EStateM ε σ α) (f : α → EStateM ε σ β) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok a s => f a s\n | Result.error e s => Result.error e s", "start": [ 3338, 1 ], "end": [ 3343, 41 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.map", "code": "@[always_inline, inline]\nprotected def map (f : α → β) (x : EStateM ε σ α) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok a s => Result.ok (f a) s\n | Result.error e s => Result.error e s", "start": [ 3345, 1 ], "end": [ 3350, 41 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.seqRight", "code": "@[always_inline, inline]\nprotected def seqRight (x : EStateM ε σ α) (y : Unit → EStateM ε σ β) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok _ s => y () s\n | Result.error e s => Result.error e s", "start": [ 3352, 1 ], "end": [ 3357, 41 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.instMonad", "code": "@[always_inline]\ninstance instMonad : Monad (EStateM ε σ) where\n bind := EStateM.bind\n pure := EStateM.pure\n map := EStateM.map\n seqRight := EStateM.seqRight", "start": [ 3359, 1 ], "end": [ 3364, 31 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.run", "code": "@[always_inline, inline]\ndef run (x : EStateM ε σ α) (s : σ) : Result ε σ α := x s", "start": [ 3378, 1 ], "end": [ 3380, 58 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.run'", "code": "@[always_inline, inline]\ndef run' (x : EStateM ε σ α) (s : σ) : Option α :=\n match run x s with\n | Result.ok v _ => some v\n | Result.error .. => none", "start": [ 3382, 1 ], "end": [ 3390, 28 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.dummySave", "code": "@[inline] def dummySave : σ → PUnit := fun _ => ⟨⟩", "start": [ 3392, 1 ], "end": [ 3393, 51 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.dummyRestore", "code": "@[inline] def dummyRestore : σ → PUnit → σ := fun s _ => s", "start": [ 3395, 1 ], "end": [ 3396, 59 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.nonBacktrackable", "code": "instance nonBacktrackable : Backtrackable PUnit σ where\n save := dummySave\n restore := dummyRestore", "start": [ 3398, 1 ], "end": [ 3406, 26 ], "kind": "commanddeclaration" }, { "full_name": "Hashable", "code": "class Hashable (α : Sort u) where\n \n hash : α → UInt64", "start": [ 3410, 1 ], "end": [ 3413, 20 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.toUSize", "code": "@[extern \"lean_uint64_to_usize\"]\nopaque UInt64.toUSize (u : UInt64) : USize", "start": [ 3417, 1 ], "end": [ 3419, 43 ], "kind": "commanddeclaration" }, { "full_name": "USize.toUInt64", "code": "@[extern \"lean_usize_to_uint64\"]\ndef USize.toUInt64 (u : USize) : UInt64 where\n val := {\n val := u.val.val\n isLt :=\n let ⟨n, h⟩ := u\n show LT.lt n _ from\n match USize.size, usize_size_eq, h with\n | _, Or.inl rfl, h => Nat.lt_trans h (by decide)\n | _, Or.inr rfl, h => h\n }", "start": [ 3421, 1 ], "end": [ 3436, 4 ], "kind": "commanddeclaration" }, { "full_name": "mixHash", "code": "@[extern \"lean_uint64_mix_hash\"]\nopaque mixHash (u₁ u₂ : UInt64) : UInt64", "start": [ 3438, 1 ], "end": [ 3440, 41 ], "kind": "commanddeclaration" }, { "full_name": "String.hash", "code": "@[extern \"lean_string_hash\"]\nprotected opaque String.hash (s : @& String) : UInt64", "start": [ 3445, 1 ], "end": [ 3447, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name", "code": "inductive Name where\n \n | anonymous : Name\n \n | str (pre : Name) (str : String)\n \n | num (pre : Name) (i : Nat)\nwith\n \n @[computed_field] hash : Name → UInt64\n | .anonymous => .ofNatCore 1723 (by decide)\n | .str p s => mixHash p.hash s.hash\n | .num p v => mixHash p.hash (dite (LT.lt v UInt64.size) (fun h => UInt64.ofNatCore v h) (fun _ => UInt64.ofNatCore 17 (by decide)))", "start": [ 3454, 1 ], "end": [ 3505, 137 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr", "code": "@[export lean_name_mk_string]\nabbrev mkStr (p : Name) (s : String) : Name :=\n Name.str p s", "start": [ 3515, 1 ], "end": [ 3520, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkNum", "code": "@[export lean_name_mk_numeral]\nabbrev mkNum (p : Name) (v : Nat) : Name :=\n Name.num p v", "start": [ 3522, 1 ], "end": [ 3527, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkSimple", "code": "abbrev mkSimple (s : String) : Name :=\n .str .anonymous s", "start": [ 3529, 1 ], "end": [ 3535, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr1", "code": "@[reducible] def mkStr1 (s₁ : String) : Name :=\n .str .anonymous s₁", "start": [ 3537, 1 ], "end": [ 3539, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr2", "code": "@[reducible] def mkStr2 (s₁ s₂ : String) : Name :=\n .str (.str .anonymous s₁) s₂", "start": [ 3541, 1 ], "end": [ 3543, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr3", "code": "@[reducible] def mkStr3 (s₁ s₂ s₃ : String) : Name :=\n .str (.str (.str .anonymous s₁) s₂) s₃", "start": [ 3545, 1 ], "end": [ 3547, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr4", "code": "@[reducible] def mkStr4 (s₁ s₂ s₃ s₄ : String) : Name :=\n .str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄", "start": [ 3549, 1 ], "end": [ 3551, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr5", "code": "@[reducible] def mkStr5 (s₁ s₂ s₃ s₄ s₅ : String) : Name :=\n .str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅", "start": [ 3553, 1 ], "end": [ 3555, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr6", "code": "@[reducible] def mkStr6 (s₁ s₂ s₃ s₄ s₅ s₆ : String) : Name :=\n .str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆", "start": [ 3557, 1 ], "end": [ 3559, 71 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr7", "code": "@[reducible] def mkStr7 (s₁ s₂ s₃ s₄ s₅ s₆ s₇ : String) : Name :=\n .str (.str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆) s₇", "start": [ 3561, 1 ], "end": [ 3563, 81 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.mkStr8", "code": "@[reducible] def mkStr8 (s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈ : String) : Name :=\n .str (.str (.str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆) s₇) s₈", "start": [ 3565, 1 ], "end": [ 3567, 91 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.beq", "code": "@[extern \"lean_name_eq\"]\nprotected def beq : (@& Name) → (@& Name) → Bool\n | anonymous, anonymous => true\n | str p₁ s₁, str p₂ s₂ => and (BEq.beq s₁ s₂) (Name.beq p₁ p₂)\n | num p₁ n₁, num p₂ n₂ => and (BEq.beq n₁ n₂) (Name.beq p₁ p₂)\n | _, _ => false", "start": [ 3569, 1 ], "end": [ 3575, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.appendCore", "code": "def appendCore : Name → Name → Name\n | n, .anonymous => n\n | n, .str p s => .str (appendCore n p) s\n | n, .num p d => .num (appendCore n p) d", "start": [ 3580, 1 ], "end": [ 3587, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SourceInfo", "code": "inductive SourceInfo where\n \n | original (leading : Substring) (pos : String.Pos) (trailing : Substring) (endPos : String.Pos)\n \n | synthetic (pos : String.Pos) (endPos : String.Pos) (canonical := false)\n \n | protected none", "start": [ 3593, 1 ], "end": [ 3626, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SourceInfo.getPos?", "code": "def getPos? (info : SourceInfo) (canonicalOnly := false) : Option String.Pos :=\n match info, canonicalOnly with\n | original (pos := pos) .., _\n | synthetic (pos := pos) (canonical := true) .., _\n | synthetic (pos := pos) .., false => some pos\n | _, _ => none", "start": [ 3632, 1 ], "end": [ 3641, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SourceInfo.getTailPos?", "code": "def getTailPos? (info : SourceInfo) (canonicalOnly := false) : Option String.Pos :=\n match info, canonicalOnly with\n | original (endPos := endPos) .., _\n | synthetic (endPos := endPos) (canonical := true) .., _\n | synthetic (endPos := endPos) .., false => some endPos\n | _, _ => none", "start": [ 3643, 1 ], "end": [ 3652, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SyntaxNodeKind", "code": "abbrev SyntaxNodeKind := Name", "start": [ 3656, 1 ], "end": [ 3663, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Preresolved", "code": "inductive Syntax.Preresolved where\n \n | namespace (ns : Name)\n \n | decl (n : Name) (fields : List String)", "start": [ 3667, 1 ], "end": [ 3676, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax", "code": "inductive Syntax where\n \n | missing : Syntax\n \n | node (info : SourceInfo) (kind : SyntaxNodeKind) (args : Array Syntax) : Syntax\n \n | atom (info : SourceInfo) (val : String) : Syntax\n \n | ident (info : SourceInfo) (rawVal : Substring) (val : Name) (preresolved : List Syntax.Preresolved) : Syntax", "start": [ 3678, 1 ], "end": [ 3716, 114 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node1", "code": "def Syntax.node1 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray1 a₁)", "start": [ 3718, 1 ], "end": [ 3720, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node2", "code": "def Syntax.node2 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray2 a₁ a₂)", "start": [ 3722, 1 ], "end": [ 3724, 47 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node3", "code": "def Syntax.node3 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray3 a₁ a₂ a₃)", "start": [ 3726, 1 ], "end": [ 3728, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node4", "code": "def Syntax.node4 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray4 a₁ a₂ a₃ a₄)", "start": [ 3730, 1 ], "end": [ 3732, 53 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node5", "code": "def Syntax.node5 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray5 a₁ a₂ a₃ a₄ a₅)", "start": [ 3734, 1 ], "end": [ 3736, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node6", "code": "def Syntax.node6 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray6 a₁ a₂ a₃ a₄ a₅ a₆)", "start": [ 3738, 1 ], "end": [ 3740, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node7", "code": "def Syntax.node7 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ a₇ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray7 a₁ a₂ a₃ a₄ a₅ a₆ a₇)", "start": [ 3742, 1 ], "end": [ 3744, 62 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.node8", "code": "def Syntax.node8 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray8 a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈)", "start": [ 3746, 1 ], "end": [ 3748, 65 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SyntaxNodeKinds", "code": "def SyntaxNodeKinds := List SyntaxNodeKind", "start": [ 3750, 1 ], "end": [ 3751, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax", "code": "structure TSyntax (ks : SyntaxNodeKinds) where\n \n raw : Syntax", "start": [ 3753, 1 ], "end": [ 3762, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.choiceKind", "code": "abbrev choiceKind : SyntaxNodeKind := `choice", "start": [ 3772, 1 ], "end": [ 3776, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.nullKind", "code": "abbrev nullKind : SyntaxNodeKind := `null", "start": [ 3778, 1 ], "end": [ 3779, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.groupKind", "code": "abbrev groupKind : SyntaxNodeKind := `group", "start": [ 3781, 1 ], "end": [ 3785, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.identKind", "code": "abbrev identKind : SyntaxNodeKind := `ident", "start": [ 3787, 1 ], "end": [ 3792, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.strLitKind", "code": "abbrev strLitKind : SyntaxNodeKind := `str", "start": [ 3794, 1 ], "end": [ 3795, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.charLitKind", "code": "abbrev charLitKind : SyntaxNodeKind := `char", "start": [ 3797, 1 ], "end": [ 3798, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.numLitKind", "code": "abbrev numLitKind : SyntaxNodeKind := `num", "start": [ 3800, 1 ], "end": [ 3801, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.scientificLitKind", "code": "abbrev scientificLitKind : SyntaxNodeKind := `scientific", "start": [ 3803, 1 ], "end": [ 3804, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.nameLitKind", "code": "abbrev nameLitKind : SyntaxNodeKind := `name", "start": [ 3806, 1 ], "end": [ 3807, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.fieldIdxKind", "code": "abbrev fieldIdxKind : SyntaxNodeKind := `fieldIdx", "start": [ 3809, 1 ], "end": [ 3810, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.hygieneInfoKind", "code": "abbrev hygieneInfoKind : SyntaxNodeKind := `hygieneInfo", "start": [ 3812, 1 ], "end": [ 3820, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.interpolatedStrLitKind", "code": "abbrev interpolatedStrLitKind : SyntaxNodeKind := `interpolatedStrLitKind", "start": [ 3822, 1 ], "end": [ 3826, 74 ], "kind": "commanddeclaration" }, { "full_name": "Lean.interpolatedStrKind", "code": "abbrev interpolatedStrKind : SyntaxNodeKind := `interpolatedStrKind", "start": [ 3827, 1 ], "end": [ 3831, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkNode", "code": "@[inline] def mkNode (k : SyntaxNodeKind) (args : Array Syntax) : TSyntax (.cons k .nil) :=\n ⟨Syntax.node SourceInfo.none k args⟩", "start": [ 3833, 1 ], "end": [ 3835, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkNullNode", "code": "@[inline] def mkNullNode (args : Array Syntax := Array.empty) : Syntax :=\n mkNode nullKind args |>.raw", "start": [ 3837, 1 ], "end": [ 3840, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getKind", "code": "def getKind (stx : Syntax) : SyntaxNodeKind :=\n match stx with\n | Syntax.node _ k _ => k\n | Syntax.missing => `missing\n | Syntax.atom _ v => Name.mkSimple v\n | Syntax.ident .. => identKind", "start": [ 3844, 1 ], "end": [ 3857, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setKind", "code": "def setKind (stx : Syntax) (k : SyntaxNodeKind) : Syntax :=\n match stx with\n | Syntax.node info _ args => Syntax.node info k args\n | _ => stx", "start": [ 3859, 1 ], "end": [ 3866, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isOfKind", "code": "def isOfKind (stx : Syntax) (k : SyntaxNodeKind) : Bool :=\n beq stx.getKind k", "start": [ 3868, 1 ], "end": [ 3870, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getArg", "code": "def getArg (stx : Syntax) (i : Nat) : Syntax :=\n match stx with\n | Syntax.node _ _ args => args.getD i Syntax.missing\n | _ => Syntax.missing", "start": [ 3872, 1 ], "end": [ 3879, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getArgs", "code": "def getArgs (stx : Syntax) : Array Syntax :=\n match stx with\n | Syntax.node _ _ args => args\n | _ => Array.empty", "start": [ 3881, 1 ], "end": [ 3885, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getNumArgs", "code": "def getNumArgs (stx : Syntax) : Nat :=\n match stx with\n | Syntax.node _ _ args => args.size\n | _ => 0", "start": [ 3887, 1 ], "end": [ 3891, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getOptional?", "code": "def getOptional? (stx : Syntax) : Option Syntax :=\n match stx with\n | Syntax.node _ k args => match and (beq k nullKind) (beq args.size 1) with\n | true => some (args.get! 0)\n | false => none\n | _ => none", "start": [ 3893, 1 ], "end": [ 3902, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isMissing", "code": "def isMissing : Syntax → Bool\n | Syntax.missing => true\n | _ => false", "start": [ 3904, 1 ], "end": [ 3907, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isNodeOf", "code": "def isNodeOf (stx : Syntax) (k : SyntaxNodeKind) (n : Nat) : Bool :=\n and (stx.isOfKind k) (beq stx.getNumArgs n)", "start": [ 3909, 1 ], "end": [ 3911, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isIdent", "code": "def isIdent : Syntax → Bool\n | ident .. => true\n | _ => false", "start": [ 3913, 1 ], "end": [ 3916, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getId", "code": "def getId : Syntax → Name\n | ident _ _ val _ => val\n | _ => Name.anonymous", "start": [ 3918, 1 ], "end": [ 3921, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setArgs", "code": "def setArgs (stx : Syntax) (args : Array Syntax) : Syntax :=\n match stx with\n | node info k _ => node info k args\n | stx => stx", "start": [ 3923, 1 ], "end": [ 3930, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setArg", "code": "def setArg (stx : Syntax) (i : Nat) (arg : Syntax) : Syntax :=\n match stx with\n | node info k args => node info k (args.setD i arg)\n | stx => stx", "start": [ 3932, 1 ], "end": [ 3939, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getHeadInfo?", "code": "partial def getHeadInfo? : Syntax → Option SourceInfo\n | atom info _ => some info\n | ident info .. => some info\n | node SourceInfo.none _ args =>\n let rec loop (i : Nat) : Option SourceInfo :=\n match decide (LT.lt i args.size) with\n | true => match getHeadInfo? (args.get! i) with\n | some info => some info\n | none => loop (hAdd i 1)\n | false => none\n loop 0\n | node info _ _ => some info\n | _ => none", "start": [ 3941, 1 ], "end": [ 3954, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getHeadInfo", "code": "partial def getHeadInfo (stx : Syntax) : SourceInfo :=\n match stx.getHeadInfo? with\n | some info => info\n | none => SourceInfo.none", "start": [ 3956, 1 ], "end": [ 3960, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getPos?", "code": "def getPos? (stx : Syntax) (canonicalOnly := false) : Option String.Pos :=\n stx.getHeadInfo.getPos? canonicalOnly", "start": [ 3962, 1 ], "end": [ 3968, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getTailPos?", "code": "partial def getTailPos? (stx : Syntax) (canonicalOnly := false) : Option String.Pos :=\n match stx, canonicalOnly with\n | atom (SourceInfo.original (endPos := pos) ..) .., _\n | atom (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) _, _\n | atom (SourceInfo.synthetic (endPos := pos) ..) _, false\n | ident (SourceInfo.original (endPos := pos) ..) .., _\n | ident (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) .., _\n | ident (SourceInfo.synthetic (endPos := pos) ..) .., false\n | node (SourceInfo.original (endPos := pos) ..) .., _\n | node (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) .., _\n | node (SourceInfo.synthetic (endPos := pos) ..) .., false => some pos\n | node _ _ args, _ =>\n let rec loop (i : Nat) : Option String.Pos :=\n match decide (LT.lt i args.size) with\n | true => match getTailPos? (args.get! ((args.size.sub i).sub 1)) canonicalOnly with\n | some info => some info\n | none => loop (hAdd i 1)\n | false => none\n loop 0\n | _, _ => none", "start": [ 3971, 1 ], "end": [ 3995, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.SepArray", "code": "structure SepArray (sep : String) where\n \n elemsAndSeps : Array Syntax", "start": [ 3997, 1 ], "end": [ 4004, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.TSepArray", "code": "structure TSepArray (ks : SyntaxNodeKinds) (sep : String) where\n \n elemsAndSeps : Array Syntax", "start": [ 4006, 1 ], "end": [ 4010, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntaxArray", "code": "abbrev TSyntaxArray (ks : SyntaxNodeKinds) := Array (TSyntax ks)", "start": [ 4014, 1 ], "end": [ 4015, 65 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntaxArray.rawImpl", "code": "unsafe def TSyntaxArray.rawImpl : TSyntaxArray ks → Array Syntax := unsafeCast", "start": [ 4017, 1 ], "end": [ 4018, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntaxArray.raw", "code": "@[implemented_by TSyntaxArray.rawImpl]\nopaque TSyntaxArray.raw (as : TSyntaxArray ks) : Array Syntax := Array.empty", "start": [ 4020, 1 ], "end": [ 4022, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntaxArray.mkImpl", "code": "unsafe def TSyntaxArray.mkImpl : Array Syntax → TSyntaxArray ks := unsafeCast", "start": [ 4024, 1 ], "end": [ 4025, 78 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntaxArray.mk", "code": "@[implemented_by TSyntaxArray.mkImpl]\nopaque TSyntaxArray.mk (as : Array Syntax) : TSyntaxArray ks := Array.empty", "start": [ 4027, 1 ], "end": [ 4029, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SourceInfo.fromRef", "code": "def SourceInfo.fromRef (ref : Syntax) (canonical := false) : SourceInfo :=\n let noncanonical ref :=\n match ref.getPos?, ref.getTailPos? with\n | some pos, some tailPos => .synthetic pos tailPos\n | _, _ => .none\n match canonical with\n | true =>\n match ref.getPos? true, ref.getTailPos? true with\n | some pos, some tailPos => .synthetic pos tailPos true\n | _, _ => noncanonical ref\n | false => noncanonical ref", "start": [ 4031, 1 ], "end": [ 4042, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkAtom", "code": "def mkAtom (val : String) : Syntax :=\n Syntax.atom SourceInfo.none val", "start": [ 4044, 1 ], "end": [ 4046, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkAtomFrom", "code": "def mkAtomFrom (src : Syntax) (val : String) (canonical := false) : Syntax :=\n Syntax.atom (SourceInfo.fromRef src canonical) val", "start": [ 4048, 1 ], "end": [ 4050, 53 ], "kind": "commanddeclaration" }, { "full_name": "Lean.ParserDescr", "code": "inductive ParserDescr where\n \n | const (name : Name)\n \n | unary (name : Name) (p : ParserDescr)\n \n | binary (name : Name) (p₁ p₂ : ParserDescr)\n \n | node (kind : SyntaxNodeKind) (prec : Nat) (p : ParserDescr)\n \n | trailingNode (kind : SyntaxNodeKind) (prec lhsPrec : Nat) (p : ParserDescr)\n \n | symbol (val : String)\n \n | nonReservedSymbol (val : String) (includeIdent : Bool)\n \n | cat (catName : Name) (rbp : Nat)\n \n | parser (declName : Name)\n \n | nodeWithAntiquot (name : String) (kind : SyntaxNodeKind) (p : ParserDescr)\n \n | sepBy (p : ParserDescr) (sep : String) (psep : ParserDescr) (allowTrailingSep : Bool := false)\n \n | sepBy1 (p : ParserDescr) (sep : String) (psep : ParserDescr) (allowTrailingSep : Bool := false)", "start": [ 4054, 1 ], "end": [ 4100, 100 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TrailingParserDescr", "code": "abbrev TrailingParserDescr := ParserDescr", "start": [ 4105, 1 ], "end": [ 4111, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MacroScope", "code": "abbrev MacroScope := Nat", "start": [ 4119, 1 ], "end": [ 4125, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.reservedMacroScope", "code": "def reservedMacroScope := 0", "start": [ 4126, 1 ], "end": [ 4127, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.firstFrontendMacroScope", "code": "def firstFrontendMacroScope := hAdd reservedMacroScope 1", "start": [ 4128, 1 ], "end": [ 4129, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MonadRef", "code": "class MonadRef (m : Type → Type) where\n \n getRef : m Syntax\n \n withRef {α} : Syntax → m α → m α", "start": [ 4131, 1 ], "end": [ 4141, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.replaceRef", "code": "def replaceRef (ref : Syntax) (oldRef : Syntax) : Syntax :=\n match ref.getPos? with\n | some _ => ref\n | _ => oldRef", "start": [ 4149, 1 ], "end": [ 4156, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.withRef", "code": "@[always_inline, inline]\ndef withRef [Monad m] [MonadRef m] {α} (ref : Syntax) (x : m α) : m α :=\n bind getRef fun oldRef =>\n let ref := replaceRef ref oldRef\n MonadRef.withRef ref x", "start": [ 4158, 1 ], "end": [ 4167, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MonadQuotation", "code": "class MonadQuotation (m : Type → Type) extends MonadRef m where\n \n getCurrMacroScope : m MacroScope\n \n getMainModule : m Name\n \n withFreshMacroScope {α : Type} : m α → m α", "start": [ 4169, 1 ], "end": [ 4196, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MonadRef.mkInfoFromRefPos", "code": "@[inline]\ndef MonadRef.mkInfoFromRefPos [Monad m] [MonadRef m] : m SourceInfo :=\n return SourceInfo.fromRef (← getRef)", "start": [ 4200, 1 ], "end": [ 4203, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.hasMacroScopes", "code": "def Name.hasMacroScopes : Name → Bool\n | str _ s => beq s \"_hyg\"\n | num p _ => hasMacroScopes p\n | _ => false", "start": [ 4231, 1 ], "end": [ 4235, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.eraseMacroScopesAux", "code": "private def eraseMacroScopesAux : Name → Name\n | .str p s => match beq s \"_@\" with\n | true => p\n | false => eraseMacroScopesAux p\n | .num p _ => eraseMacroScopesAux p\n | .anonymous => Name.anonymous", "start": [ 4237, 1 ], "end": [ 4242, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.eraseMacroScopes", "code": "@[export lean_erase_macro_scopes]\ndef Name.eraseMacroScopes (n : Name) : Name :=\n match n.hasMacroScopes with\n | true => eraseMacroScopesAux n\n | false => n", "start": [ 4244, 1 ], "end": [ 4249, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.simpMacroScopesAux", "code": "private def simpMacroScopesAux : Name → Name\n | .num p i => Name.mkNum (simpMacroScopesAux p) i\n | n => eraseMacroScopesAux n", "start": [ 4251, 1 ], "end": [ 4253, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.simpMacroScopes", "code": "@[export lean_simp_macro_scopes]\ndef Name.simpMacroScopes (n : Name) : Name :=\n match n.hasMacroScopes with\n | true => simpMacroScopesAux n\n | false => n", "start": [ 4255, 1 ], "end": [ 4260, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MacroScopesView", "code": "structure MacroScopesView where\n \n name : Name\n \n imported : Name\n \n mainModule : Name\n \n scopes : List MacroScope", "start": [ 4262, 1 ], "end": [ 4279, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MacroScopesView.review", "code": "def MacroScopesView.review (view : MacroScopesView) : Name :=\n match view.scopes with\n | List.nil => view.name\n | List.cons _ _ =>\n let base := (Name.mkStr (Name.appendCore (Name.appendCore (Name.mkStr view.name \"_@\") view.imported) view.mainModule) \"_hyg\")\n view.scopes.foldl Name.mkNum base", "start": [ 4284, 1 ], "end": [ 4290, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.assembleParts", "code": "private def assembleParts : List Name → Name → Name\n | .nil, acc => acc\n | .cons (.str _ s) ps, acc => assembleParts ps (Name.mkStr acc s)\n | .cons (.num _ n) ps, acc => assembleParts ps (Name.mkNum acc n)\n | _, _ => panic \"Error: unreachable @ assembleParts\"", "start": [ 4292, 1 ], "end": [ 4296, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.extractImported", "code": "private def extractImported (scps : List MacroScope) (mainModule : Name) : Name → List Name → MacroScopesView\n | n@(Name.str p str), parts =>\n match beq str \"_@\" with\n | true => { name := p, mainModule := mainModule, imported := assembleParts parts Name.anonymous, scopes := scps }\n | false => extractImported scps mainModule p (List.cons n parts)\n | n@(Name.num p _), parts => extractImported scps mainModule p (List.cons n parts)\n | _, _ => panic \"Error: unreachable @ extractImported\"", "start": [ 4298, 1 ], "end": [ 4304, 80 ], "kind": "commanddeclaration" }, { "full_name": "Lean.extractMainModule", "code": "private def extractMainModule (scps : List MacroScope) : Name → List Name → MacroScopesView\n | n@(Name.str p str), parts =>\n match beq str \"_@\" with\n | true => { name := p, mainModule := assembleParts parts Name.anonymous, imported := Name.anonymous, scopes := scps }\n | false => extractMainModule scps p (List.cons n parts)\n | n@(Name.num _ _), acc => extractImported scps (assembleParts acc Name.anonymous) n List.nil\n | _, _ => panic \"Error: unreachable @ extractMainModule\"", "start": [ 4306, 1 ], "end": [ 4312, 80 ], "kind": "commanddeclaration" }, { "full_name": "Lean.extractMacroScopesAux", "code": "private def extractMacroScopesAux : Name → List MacroScope → MacroScopesView\n | Name.num p scp, acc => extractMacroScopesAux p (List.cons scp acc)\n | Name.str p _ , acc => extractMainModule acc p List.nil | _, _ => panic \"Error: unreachable @ extractMacroScopesAux\"", "start": [ 4314, 1 ], "end": [ 4317, 80 ], "kind": "commanddeclaration" }, { "full_name": "Lean.extractMacroScopes", "code": "def extractMacroScopes (n : Name) : MacroScopesView :=\n match n.hasMacroScopes with\n | true => extractMacroScopesAux n List.nil\n | false => { name := n, scopes := List.nil, imported := Name.anonymous, mainModule := Name.anonymous }", "start": [ 4319, 1 ], "end": [ 4326, 105 ], "kind": "commanddeclaration" }, { "full_name": "Lean.addMacroScope", "code": "def addMacroScope (mainModule : Name) (n : Name) (scp : MacroScope) : Name :=\n match n.hasMacroScopes with\n | true =>\n let view := extractMacroScopes n\n match beq view.mainModule mainModule with\n | true => Name.mkNum n scp\n | false =>\n { view with\n imported := view.scopes.foldl Name.mkNum (Name.appendCore view.imported view.mainModule)\n mainModule := mainModule\n scopes := List.cons scp List.nil\n }.review\n | false =>\n Name.mkNum (Name.mkStr (Name.appendCore (Name.mkStr n \"_@\") mainModule) \"_hyg\") scp", "start": [ 4328, 1 ], "end": [ 4342, 88 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.append", "code": "def Name.append (a b : Name) : Name :=\n match a.hasMacroScopes, b.hasMacroScopes with\n | true, true =>\n panic \"Error: invalid `Name.append`, both arguments have macro scopes, consider using `eraseMacroScopes`\"\n | true, false =>\n let view := extractMacroScopes a\n { view with name := appendCore view.name b }.review\n | false, true =>\n let view := extractMacroScopes b\n { view with name := appendCore a view.name }.review\n | false, false => appendCore a b", "start": [ 4344, 1 ], "end": [ 4363, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MonadQuotation.addMacroScope", "code": "@[inline] def MonadQuotation.addMacroScope {m : Type → Type} [MonadQuotation m] [Monad m] (n : Name) : m Name :=\n bind getMainModule fun mainModule =>\n bind getCurrMacroScope fun scp =>\n pure (Lean.addMacroScope mainModule n scp)", "start": [ 4368, 1 ], "end": [ 4375, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.defaultMaxRecDepth", "code": "def defaultMaxRecDepth := 512", "start": [ 4377, 1 ], "end": [ 4378, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.maxRecDepthErrorMessage", "code": "def maxRecDepthErrorMessage : String :=\n \"maximum recursion depth has been reached\\nuse `set_option maxRecDepth <num>` to increase limit\\nuse `set_option diagnostics true` to get diagnostic information\"", "start": [ 4380, 1 ], "end": [ 4382, 164 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.matchesNull", "code": "def matchesNull (stx : Syntax) (n : Nat) : Bool :=\n stx.isNodeOf nullKind n", "start": [ 4386, 1 ], "end": [ 4388, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.matchesIdent", "code": "def matchesIdent (stx : Syntax) (id : Name) : Bool :=\n and stx.isIdent (beq stx.getId.eraseMacroScopes id.eraseMacroScopes)", "start": [ 4390, 1 ], "end": [ 4399, 71 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.matchesLit", "code": "def matchesLit (stx : Syntax) (k : SyntaxNodeKind) (val : String) : Bool :=\n match stx with\n | Syntax.node _ k' args => and (beq k k') (match args.getD 0 Syntax.missing with\n | Syntax.atom _ val' => beq val val'\n | _ => false)\n | _ => false", "start": [ 4401, 1 ], "end": [ 4407, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.MethodsRefPointed", "code": "private opaque MethodsRefPointed : NonemptyType.{0}", "start": [ 4413, 1 ], "end": [ 4414, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.MethodsRef", "code": "private def MethodsRef : Type := MethodsRefPointed.type", "start": [ 4416, 1 ], "end": [ 4416, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.Context", "code": "structure Context where\n \n methods : MethodsRef\n \n mainModule : Name\n \n currMacroScope : MacroScope\n \n currRecDepth : Nat := 0\n \n maxRecDepth : Nat := defaultMaxRecDepth\n \n ref : Syntax", "start": [ 4420, 1 ], "end": [ 4434, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.Exception", "code": "inductive Exception where\n \n | error : Syntax → String → Exception\n \n | unsupportedSyntax : Exception", "start": [ 4436, 1 ], "end": [ 4443, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.State", "code": "structure State where\n \n macroScope : MacroScope\n \n traceMsgs : List (Prod Name String) := List.nil\n deriving Inhabited", "start": [ 4445, 1 ], "end": [ 4452, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MacroM", "code": "abbrev MacroM := ReaderT Macro.Context (EStateM Macro.Exception Macro.State)", "start": [ 4456, 1 ], "end": [ 4466, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro", "code": "abbrev Macro := Syntax → MacroM Syntax", "start": [ 4468, 1 ], "end": [ 4473, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.addMacroScope", "code": "def addMacroScope (n : Name) : MacroM Name :=\n bind read fun ctx =>\n pure (Lean.addMacroScope ctx.mainModule n ctx.currMacroScope)", "start": [ 4481, 1 ], "end": [ 4484, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.throwUnsupported", "code": "def throwUnsupported {α} : MacroM α :=\n throw Exception.unsupportedSyntax", "start": [ 4486, 1 ], "end": [ 4488, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.throwError", "code": "def throwError {α} (msg : String) : MacroM α :=\n bind getRef fun ref =>\n throw (Exception.error ref msg)", "start": [ 4490, 1 ], "end": [ 4496, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.throwErrorAt", "code": "def throwErrorAt {α} (ref : Syntax) (msg : String) : MacroM α :=\n withRef ref (throwError msg)", "start": [ 4498, 1 ], "end": [ 4500, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.withFreshMacroScope", "code": "@[inline] protected def withFreshMacroScope {α} (x : MacroM α) : MacroM α :=\n bind (modifyGet (fun s => (s.macroScope, { s with macroScope := hAdd s.macroScope 1 }))) fun fresh =>\n withReader (fun ctx => { ctx with currMacroScope := fresh }) x", "start": [ 4502, 1 ], "end": [ 4508, 65 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.withIncRecDepth", "code": "@[inline] def withIncRecDepth {α} (ref : Syntax) (x : MacroM α) : MacroM α :=\n bind read fun ctx =>\n match beq ctx.currRecDepth ctx.maxRecDepth with\n | true => throw (Exception.error ref maxRecDepthErrorMessage)\n | false => withReader (fun ctx => { ctx with currRecDepth := hAdd ctx.currRecDepth 1 }) x", "start": [ 4510, 1 ], "end": [ 4515, 92 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.Methods", "code": "structure Methods where\n \n expandMacro? : Syntax → MacroM (Option Syntax)\n \n getCurrNamespace : MacroM Name\n \n hasDecl : Name → MacroM Bool\n \n resolveNamespace : Name → MacroM (List Name)\n \n resolveGlobalName : Name → MacroM (List (Prod Name (List String)))\n deriving Inhabited", "start": [ 4522, 1 ], "end": [ 4537, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.mkMethodsImp", "code": "unsafe def mkMethodsImp (methods : Methods) : MethodsRef :=\n unsafeCast methods", "start": [ 4539, 1 ], "end": [ 4541, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.mkMethods", "code": "@[implemented_by mkMethodsImp]\nopaque mkMethods (methods : Methods) : MethodsRef", "start": [ 4543, 1 ], "end": [ 4545, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.getMethodsImp", "code": "unsafe def getMethodsImp : MacroM Methods :=\n bind read fun ctx => pure (unsafeCast (ctx.methods))", "start": [ 4550, 1 ], "end": [ 4552, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.getMethods", "code": "@[implemented_by getMethodsImp] opaque getMethods : MacroM Methods", "start": [ 4554, 1 ], "end": [ 4555, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.expandMacro?", "code": "def expandMacro? (stx : Syntax) : MacroM (Option Syntax) := do\n (← getMethods).expandMacro? stx", "start": [ 4557, 1 ], "end": [ 4562, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.hasDecl", "code": "def hasDecl (declName : Name) : MacroM Bool := do\n (← getMethods).hasDecl declName", "start": [ 4564, 1 ], "end": [ 4566, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.getCurrNamespace", "code": "def getCurrNamespace : MacroM Name := do\n (← getMethods).getCurrNamespace", "start": [ 4568, 1 ], "end": [ 4570, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.resolveNamespace", "code": "def resolveNamespace (n : Name) : MacroM (List Name) := do\n (← getMethods).resolveNamespace n", "start": [ 4572, 3 ], "end": [ 4574, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.resolveGlobalName", "code": "def resolveGlobalName (n : Name) : MacroM (List (Prod Name (List String))) := do\n (← getMethods).resolveGlobalName n", "start": [ 4576, 1 ], "end": [ 4588, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Macro.trace", "code": "def trace (clsName : Name) (msg : String) : MacroM Unit := do\n modify fun s => { s with traceMsgs := List.cons (Prod.mk clsName msg) s.traceMsgs }", "start": [ 4590, 1 ], "end": [ 4592, 86 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PrettyPrinter.UnexpandM", "code": "abbrev UnexpandM := ReaderT Syntax (EStateM Unit Unit)", "start": [ 4600, 1 ], "end": [ 4604, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PrettyPrinter.Unexpander", "code": "abbrev Unexpander := Syntax → UnexpandM Syntax", "start": [ 4606, 1 ], "end": [ 4612, 47 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Coe.lean
[ ".lake/packages/lean4/src/lean/Init/Prelude.lean" ]
[ { "full_name": "Coe", "code": "class Coe (α : semiOutParam (Sort u)) (β : Sort v) where\n \n coe : α → β", "start": [ 120, 1 ], "end": [ 129, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeTC", "code": "class CoeTC (α : Sort u) (β : Sort v) where\n \n coe : α → β", "start": [ 132, 1 ], "end": [ 139, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeOut", "code": "class CoeOut (α : Sort u) (β : semiOutParam (Sort v)) where\n \n coe : α → β", "start": [ 146, 1 ], "end": [ 152, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeOTC", "code": "class CoeOTC (α : Sort u) (β : Sort v) where\n \n coe : α → β", "start": [ 155, 1 ], "end": [ 162, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeHead", "code": "class CoeHead (α : Sort u) (β : semiOutParam (Sort v)) where\n \n coe : α → β", "start": [ 173, 1 ], "end": [ 180, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeHTC", "code": "class CoeHTC (α : Sort u) (β : Sort v) where\n \n coe : α → β", "start": [ 183, 1 ], "end": [ 190, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeTail", "code": "class CoeTail (α : semiOutParam (Sort u)) (β : Sort v) where\n \n coe : α → β", "start": [ 197, 1 ], "end": [ 205, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeHTCT", "code": "class CoeHTCT (α : Sort u) (β : Sort v) where\n \n coe : α → β", "start": [ 208, 1 ], "end": [ 215, 14 ], "kind": "commanddeclaration" }, { "full_name": "CoeDep", "code": "class CoeDep (α : Sort u) (_ : α) (β : Sort v) where\n \n coe : β", "start": [ 222, 1 ], "end": [ 234, 10 ], "kind": "commanddeclaration" }, { "full_name": "CoeT", "code": "class CoeT (α : Sort u) (_ : α) (β : Sort v) where\n \n coe : β", "start": [ 237, 1 ], "end": [ 248, 10 ], "kind": "commanddeclaration" }, { "full_name": "CoeFun", "code": "class CoeFun (α : Sort u) (γ : outParam (α → Sort v)) where\n \n coe : (f : α) → γ f", "start": [ 255, 1 ], "end": [ 266, 22 ], "kind": "commanddeclaration" }, { "full_name": "CoeSort", "code": "class CoeSort (α : Sort u) (β : outParam (Sort v)) where\n \n coe : α → β", "start": [ 271, 1 ], "end": [ 279, 14 ], "kind": "commanddeclaration" }, { "full_name": "boolToProp", "code": "instance boolToProp : Coe Bool Prop where\n coe b := Eq b true", "start": [ 301, 1 ], "end": [ 302, 21 ], "kind": "commanddeclaration" }, { "full_name": "boolToSort", "code": "instance boolToSort : CoeSort Bool Prop where\n coe b := b", "start": [ 304, 1 ], "end": [ 305, 13 ], "kind": "commanddeclaration" }, { "full_name": "decPropToBool", "code": "instance decPropToBool (p : Prop) [Decidable p] : CoeDep Prop p Bool where\n coe := decide p", "start": [ 307, 1 ], "end": [ 308, 18 ], "kind": "commanddeclaration" }, { "full_name": "optionCoe", "code": "instance optionCoe {α : Type u} : Coe α (Option α) where\n coe := some", "start": [ 310, 1 ], "end": [ 311, 14 ], "kind": "commanddeclaration" }, { "full_name": "subtypeCoe", "code": "instance subtypeCoe {α : Sort u} {p : α → Prop} : CoeOut (Subtype p) α where\n coe v := v.val", "start": [ 313, 1 ], "end": [ 314, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Internal.liftCoeM", "code": "@[coe_decl] abbrev Lean.Internal.liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u}\n [MonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β := do\n let a ← liftM x\n pure (CoeT.coe a)", "start": [ 318, 1 ], "end": [ 327, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Internal.coeM", "code": "@[coe_decl] abbrev Lean.Internal.coeM {m : Type u → Type v} {α β : Type u}\n [∀ a, CoeT α a β] [Monad m] (x : m α) : m β := do\n let a ← x\n pure (CoeT.coe a)", "start": [ 329, 1 ], "end": [ 337, 20 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Notation.lean
[ ".lake/packages/lean4/src/lean/Init/Coe.lean", ".lake/packages/lean4/src/lean/Init/Prelude.lean" ]
[ { "full_name": "Lean.Parser.Category", "code": "structure Parser.Category", "start": [ 15, 1 ], "end": [ 19, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.command", "code": "def command : Category := {}", "start": [ 23, 1 ], "end": [ 28, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.term", "code": "def term : Category := {}", "start": [ 30, 1 ], "end": [ 35, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.tactic", "code": "def tactic : Category := {}", "start": [ 37, 1 ], "end": [ 45, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.doElem", "code": "def doElem : Category := {}", "start": [ 47, 1 ], "end": [ 49, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.level", "code": "def level : Category := {}", "start": [ 51, 1 ], "end": [ 54, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.attr", "code": "def attr : Category := {}", "start": [ 56, 1 ], "end": [ 58, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.stx", "code": "def stx : Category := {}", "start": [ 60, 1 ], "end": [ 62, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.prio", "code": "def prio : Category := {}", "start": [ 64, 1 ], "end": [ 70, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Category.prec", "code": "def prec : Category := {}", "start": [ 72, 1 ], "end": [ 81, 26 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Tactics.lean
[ ".lake/packages/lean4/src/lean/Init/Notation.lean" ]
[ { "full_name": "Lean.Parser.Tactic.simpArg", "code": "def simpArg := simpStar.binary `orelse (simpErase.binary `orelse simpLemma)", "start": [ 588, 1 ], "end": [ 592, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Parser.Tactic.dsimpArg", "code": "def dsimpArg := simpErase.binary `orelse simpLemma", "start": [ 597, 1 ], "end": [ 601, 51 ], "kind": "commanddeclaration" }, { "full_name": "autoParam", "code": "abbrev autoParam.{u} (α : Sort u) (tactic : Lean.Syntax) : Sort u := α", "start": [ 1609, 1 ], "end": [ 1614, 71 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/SizeOf.lean
[ ".lake/packages/lean4/src/lean/Init/Tactics.lean" ]
[ { "full_name": "SizeOf", "code": "class SizeOf (α : Sort u) where\n \n sizeOf : α → Nat", "start": [ 12, 1 ], "end": [ 28, 19 ], "kind": "commanddeclaration" }, { "full_name": "default.sizeOf", "code": "protected def default.sizeOf (α : Sort u) : α → Nat\n | _ => 0", "start": [ 37, 1 ], "end": [ 42, 11 ], "kind": "commanddeclaration" }, { "full_name": "sizeOf_default", "code": "@[simp] theorem sizeOf_default (n : α) : sizeOf n = 0", "start": [ 47, 1 ], "end": [ 47, 61 ], "kind": "commanddeclaration" }, { "full_name": "sizeOf_nat", "code": "@[simp] theorem sizeOf_nat (n : Nat) : sizeOf n = n", "start": [ 52, 1 ], "end": [ 52, 59 ], "kind": "commanddeclaration" }, { "full_name": "sizeOf_thunk", "code": "@[simp] theorem sizeOf_thunk [SizeOf α] (f : Unit → α) : sizeOf f = sizeOf (f ())", "start": [ 57, 1 ], "end": [ 58, 6 ], "kind": "commanddeclaration" }, { "full_name": "Unit.sizeOf", "code": "@[simp] theorem Unit.sizeOf (u : Unit) : sizeOf u = 1", "start": [ 85, 1 ], "end": [ 85, 61 ], "kind": "commanddeclaration" }, { "full_name": "Bool.sizeOf_eq_one", "code": "@[simp] theorem Bool.sizeOf_eq_one (b : Bool) : sizeOf b = 1", "start": [ 86, 1 ], "end": [ 86, 83 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.sizeOf", "code": "protected noncomputable def Name.sizeOf : Name → Nat\n | anonymous => 1\n | str p s => 1 + Name.sizeOf p + sizeOf s\n | num p n => 1 + Name.sizeOf p + sizeOf n", "start": [ 90, 1 ], "end": [ 97, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.anonymous.sizeOf_spec", "code": "@[simp] theorem Name.anonymous.sizeOf_spec : sizeOf anonymous = 1", "start": [ 102, 1 ], "end": [ 103, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.str.sizeOf_spec", "code": "@[simp] theorem Name.str.sizeOf_spec (p : Name) (s : String) : sizeOf (str p s) = 1 + sizeOf p + sizeOf s", "start": [ 104, 1 ], "end": [ 105, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.num.sizeOf_spec", "code": "@[simp] theorem Name.num.sizeOf_spec (p : Name) (n : Nat) : sizeOf (num p n) = 1 + sizeOf p + sizeOf n", "start": [ 106, 1 ], "end": [ 107, 6 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Core.lean
[ ".lake/packages/lean4/src/lean/Init/Prelude.lean", ".lake/packages/lean4/src/lean/Init/SizeOf.lean" ]
[ { "full_name": "inline", "code": "@[simp] def inline {α : Sort u} (a : α) : α := a", "start": [ 15, 1 ], "end": [ 20, 49 ], "kind": "commanddeclaration" }, { "full_name": "id_def", "code": "theorem id_def {α : Sort u} (a : α) : id a = a", "start": [ 22, 1 ], "end": [ 22, 54 ], "kind": "commanddeclaration" }, { "full_name": "flip", "code": "@[inline] def flip {α : Sort u} {β : Sort v} {φ : Sort w} (f : α → β → φ) : β → α → φ :=\n fun b a => f a b", "start": [ 24, 1 ], "end": [ 31, 19 ], "kind": "commanddeclaration" }, { "full_name": "Function.const_apply", "code": "@[simp] theorem Function.const_apply {y : β} {x : α} : const α y x = y", "start": [ 33, 1 ], "end": [ 33, 78 ], "kind": "commanddeclaration" }, { "full_name": "Function.comp_apply", "code": "@[simp] theorem Function.comp_apply {f : β → δ} {g : α → β} {x : α} : comp f g x = f (g x)", "start": [ 35, 1 ], "end": [ 35, 98 ], "kind": "commanddeclaration" }, { "full_name": "Function.comp_def", "code": "theorem Function.comp_def {α β δ} (f : β → δ) (g : α → β) : f ∘ g = fun x => f (g x)", "start": [ 37, 1 ], "end": [ 37, 92 ], "kind": "commanddeclaration" }, { "full_name": "Empty.elim", "code": "@[macro_inline] def Empty.elim {C : Sort u} : Empty → C := Empty.rec", "start": [ 41, 1 ], "end": [ 47, 69 ], "kind": "commanddeclaration" }, { "full_name": "PEmpty.elim", "code": "@[macro_inline] def PEmpty.elim {C : Sort _} : PEmpty → C := fun a => nomatch a", "start": [ 52, 1 ], "end": [ 58, 80 ], "kind": "commanddeclaration" }, { "full_name": "Thunk", "code": "structure Thunk (α : Type u) : Type u where\n \n mk ::\n \n private fn : Unit → α", "start": [ 63, 1 ], "end": [ 72, 24 ], "kind": "commanddeclaration" }, { "full_name": "Thunk.pure", "code": "@[extern \"lean_thunk_pure\"] protected def Thunk.pure (a : α) : Thunk α :=\n ⟨fun _ => a⟩", "start": [ 76, 1 ], "end": [ 78, 15 ], "kind": "commanddeclaration" }, { "full_name": "Thunk.get", "code": "@[extern \"lean_thunk_get_own\"] protected def Thunk.get (x : @& Thunk α) : α :=\n x.fn ()", "start": [ 80, 1 ], "end": [ 87, 10 ], "kind": "commanddeclaration" }, { "full_name": "Thunk.map", "code": "@[inline] protected def Thunk.map (f : α → β) (x : Thunk α) : Thunk β :=\n ⟨fun _ => f x.get⟩", "start": [ 89, 1 ], "end": [ 91, 21 ], "kind": "commanddeclaration" }, { "full_name": "Thunk.bind", "code": "@[inline] protected def Thunk.bind (x : Thunk α) (f : α → Thunk β) : Thunk β :=\n ⟨fun _ => (f x.get).get⟩", "start": [ 92, 1 ], "end": [ 94, 27 ], "kind": "commanddeclaration" }, { "full_name": "Thunk.sizeOf_eq", "code": "@[simp] theorem Thunk.sizeOf_eq [SizeOf α] (a : Thunk α) : sizeOf a = 1 + sizeOf a.get", "start": [ 96, 1 ], "end": [ 97, 16 ], "kind": "commanddeclaration" }, { "full_name": "thunkCoe", "code": "instance thunkCoe : CoeTail α (Thunk α) where\n coe a := ⟨fun _ => a⟩", "start": [ 99, 1 ], "end": [ 101, 24 ], "kind": "commanddeclaration" }, { "full_name": "Eq.ndrecOn", "code": "abbrev Eq.ndrecOn.{u1, u2} {α : Sort u2} {a : α} {motive : α → Sort u1} {b : α} (h : a = b) (m : motive a) : motive b :=\n Eq.ndrec m h", "start": [ 103, 1 ], "end": [ 105, 15 ], "kind": "commanddeclaration" }, { "full_name": "Iff", "code": "structure Iff (a b : Prop) : Prop where\n \n intro ::\n \n mp : a → b\n \n mpr : b → a", "start": [ 109, 1 ], "end": [ 120, 14 ], "kind": "commanddeclaration" }, { "full_name": "Sum", "code": "inductive Sum (α : Type u) (β : Type v) where\n \n | inl (val : α) : Sum α β\n \n | inr (val : β) : Sum α β", "start": [ 125, 1 ], "end": [ 134, 28 ], "kind": "commanddeclaration" }, { "full_name": "PSum", "code": "inductive PSum (α : Sort u) (β : Sort v) where\n \n | inl (val : α) : PSum α β\n \n | inr (val : β) : PSum α β", "start": [ 138, 1 ], "end": [ 153, 29 ], "kind": "commanddeclaration" }, { "full_name": "Sigma", "code": "@[pp_using_anonymous_constructor]\nstructure Sigma {α : Type u} (β : α → Type v) where\n \n mk ::\n \n fst : α\n \n snd : β fst", "start": [ 161, 1 ], "end": [ 177, 14 ], "kind": "commanddeclaration" }, { "full_name": "PSigma", "code": "@[pp_using_anonymous_constructor]\nstructure PSigma {α : Sort u} (β : α → Sort v) where\n \n mk ::\n \n fst : α\n \n snd : β fst", "start": [ 181, 1 ], "end": [ 203, 14 ], "kind": "commanddeclaration" }, { "full_name": "Exists", "code": "inductive Exists {α : Sort u} (p : α → Prop) : Prop where\n \n | intro (w : α) (h : p w) : Exists p", "start": [ 205, 1 ], "end": [ 233, 39 ], "kind": "commanddeclaration" }, { "full_name": "ForInStep", "code": "inductive ForInStep (α : Type u) where\n \n | done : α → ForInStep α\n \n | yield : α → ForInStep α\n deriving Inhabited", "start": [ 235, 1 ], "end": [ 253, 21 ], "kind": "commanddeclaration" }, { "full_name": "ForIn", "code": "class ForIn (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) where\n \n forIn {β} [Monad m] (x : ρ) (b : β) (f : α → β → m (ForInStep β)) : m β", "start": [ 255, 1 ], "end": [ 282, 74 ], "kind": "commanddeclaration" }, { "full_name": "ForIn'", "code": "class ForIn' (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) (d : outParam $ Membership α ρ) where\n \n forIn' {β} [Monad m] (x : ρ) (b : β) (f : (a : α) → a ∈ x → β → m (ForInStep β)) : m β", "start": [ 286, 1 ], "end": [ 298, 89 ], "kind": "commanddeclaration" }, { "full_name": "DoResultPRBC", "code": "inductive DoResultPRBC (α β σ : Type u) where\n \n | pure : α → σ → DoResultPRBC α β σ\n \n | return : β → σ → DoResultPRBC α β σ\n \n | break : σ → DoResultPRBC α β σ\n \n | continue : σ → DoResultPRBC α β σ", "start": [ 303, 1 ], "end": [ 326, 38 ], "kind": "commanddeclaration" }, { "full_name": "DoResultPR", "code": "inductive DoResultPR (α β σ : Type u) where\n \n | pure : α → σ → DoResultPR α β σ\n \n | return : β → σ → DoResultPR α β σ", "start": [ 328, 1 ], "end": [ 337, 38 ], "kind": "commanddeclaration" }, { "full_name": "DoResultBC", "code": "inductive DoResultBC (σ : Type u) where\n \n | break : σ → DoResultBC σ\n \n | continue : σ → DoResultBC σ", "start": [ 339, 1 ], "end": [ 350, 32 ], "kind": "commanddeclaration" }, { "full_name": "DoResultSBC", "code": "inductive DoResultSBC (α σ : Type u) where\n \n | pureReturn : α → σ → DoResultSBC α σ\n \n | break : σ → DoResultSBC α σ\n \n | continue : σ → DoResultSBC α σ", "start": [ 352, 1 ], "end": [ 369, 37 ], "kind": "commanddeclaration" }, { "full_name": "HasEquiv", "code": "class HasEquiv (α : Sort u) where\n \n Equiv : α → α → Sort v", "start": [ 371, 1 ], "end": [ 375, 25 ], "kind": "commanddeclaration" }, { "full_name": "HasSubset", "code": "class HasSubset (α : Type u) where\n \n Subset : α → α → Prop", "start": [ 381, 1 ], "end": [ 384, 24 ], "kind": "commanddeclaration" }, { "full_name": "HasSSubset", "code": "class HasSSubset (α : Type u) where\n \n SSubset : α → α → Prop", "start": [ 387, 1 ], "end": [ 390, 25 ], "kind": "commanddeclaration" }, { "full_name": "Superset", "code": "abbrev Superset [HasSubset α] (a b : α) := Subset b a", "start": [ 393, 1 ], "end": [ 394, 54 ], "kind": "commanddeclaration" }, { "full_name": "SSuperset", "code": "abbrev SSuperset [HasSSubset α] (a b : α) := SSubset b a", "start": [ 396, 1 ], "end": [ 397, 57 ], "kind": "commanddeclaration" }, { "full_name": "Union", "code": "class Union (α : Type u) where\n \n union : α → α → α", "start": [ 399, 1 ], "end": [ 402, 20 ], "kind": "commanddeclaration" }, { "full_name": "Inter", "code": "class Inter (α : Type u) where\n \n inter : α → α → α", "start": [ 404, 1 ], "end": [ 407, 20 ], "kind": "commanddeclaration" }, { "full_name": "SDiff", "code": "class SDiff (α : Type u) where\n \n sdiff : α → α → α", "start": [ 409, 1 ], "end": [ 415, 20 ], "kind": "commanddeclaration" }, { "full_name": "EmptyCollection", "code": "class EmptyCollection (α : Type u) where\n \n emptyCollection : α", "start": [ 443, 1 ], "end": [ 447, 22 ], "kind": "commanddeclaration" }, { "full_name": "Insert", "code": "class Insert (α : outParam <| Type u) (γ : Type v) where\n \n insert : α → γ → γ", "start": [ 452, 1 ], "end": [ 458, 21 ], "kind": "commanddeclaration" }, { "full_name": "Singleton", "code": "class Singleton (α : outParam <| Type u) (β : Type v) where\n \n singleton : α → β", "start": [ 461, 1 ], "end": [ 467, 20 ], "kind": "commanddeclaration" }, { "full_name": "LawfulSingleton", "code": "class LawfulSingleton (α : Type u) (β : Type v) [EmptyCollection β] [Insert α β] [Singleton α β] :\n Prop where\n \n insert_emptyc_eq (x : α) : (insert x ∅ : β) = singleton x", "start": [ 470, 1 ], "end": [ 474, 60 ], "kind": "commanddeclaration" }, { "full_name": "Sep", "code": "class Sep (α : outParam <| Type u) (γ : Type v) where\n \n sep : (α → Prop) → γ → γ", "start": [ 477, 1 ], "end": [ 480, 27 ], "kind": "commanddeclaration" }, { "full_name": "Task", "code": "structure Task (α : Type u) : Type u where\n \n pure ::\n \n get : α\n deriving Inhabited, Nonempty", "start": [ 482, 1 ], "end": [ 496, 31 ], "kind": "commanddeclaration" }, { "full_name": "Task.Priority", "code": "abbrev Priority := Nat", "start": [ 502, 1 ], "end": [ 503, 23 ], "kind": "commanddeclaration" }, { "full_name": "Task.Priority.default", "code": "def Priority.default : Priority := 0", "start": [ 505, 1 ], "end": [ 506, 37 ], "kind": "commanddeclaration" }, { "full_name": "Task.Priority.max", "code": "def Priority.max : Priority := 8", "start": [ 507, 1 ], "end": [ 515, 33 ], "kind": "commanddeclaration" }, { "full_name": "Task.Priority.dedicated", "code": "def Priority.dedicated : Priority := 9", "start": [ 516, 1 ], "end": [ 522, 39 ], "kind": "commanddeclaration" }, { "full_name": "Task.spawn", "code": "@[noinline, extern \"lean_task_spawn\"]\nprotected def spawn {α : Type u} (fn : Unit → α) (prio := Priority.default) : Task α :=\n ⟨fn ()⟩", "start": [ 525, 1 ], "end": [ 533, 10 ], "kind": "commanddeclaration" }, { "full_name": "Task.map", "code": "@[noinline, extern \"lean_task_map\"]\nprotected def map (f : α → β) (x : Task α) (prio := Priority.default) (sync := false) : Task β :=\n ⟨f x.get⟩", "start": [ 536, 1 ], "end": [ 546, 12 ], "kind": "commanddeclaration" }, { "full_name": "Task.bind", "code": "@[noinline, extern \"lean_task_bind\"]\nprotected def bind (x : Task α) (f : α → Task β) (prio := Priority.default) (sync := false) :\n Task β :=\n ⟨(f x.get).get⟩", "start": [ 549, 1 ], "end": [ 561, 18 ], "kind": "commanddeclaration" }, { "full_name": "NonScalar", "code": "structure NonScalar where\n mk ::\n val : Nat", "start": [ 565, 1 ], "end": [ 573, 52 ], "kind": "commanddeclaration" }, { "full_name": "PNonScalar", "code": "inductive PNonScalar : Type u where\n \n | mk (v : Nat) : PNonScalar", "start": [ 575, 1 ], "end": [ 586, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_zero", "code": "@[simp] protected theorem Nat.add_zero (n : Nat) : n + 0 = n", "start": [ 588, 1 ], "end": [ 588, 68 ], "kind": "commanddeclaration" }, { "full_name": "optParam_eq", "code": "theorem optParam_eq (α : Sort u) (default : α) : optParam α default = α", "start": [ 590, 1 ], "end": [ 590, 79 ], "kind": "commanddeclaration" }, { "full_name": "strictOr", "code": "@[extern \"lean_strict_or\"] def strictOr (b₁ b₂ : Bool) := b₁ || b₂", "start": [ 594, 1 ], "end": [ 598, 68 ], "kind": "commanddeclaration" }, { "full_name": "strictAnd", "code": "@[extern \"lean_strict_and\"] def strictAnd (b₁ b₂ : Bool) := b₁ && b₂", "start": [ 600, 1 ], "end": [ 604, 69 ], "kind": "commanddeclaration" }, { "full_name": "bne", "code": "@[inline] def bne {α : Type u} [BEq α] (a b : α) : Bool :=\n !(a == b)", "start": [ 606, 1 ], "end": [ 614, 12 ], "kind": "commanddeclaration" }, { "full_name": "LawfulBEq", "code": "class LawfulBEq (α : Type u) [BEq α] : Prop where\n \n eq_of_beq : {a b : α} → a == b → a = b\n \n protected rfl : {a : α} → a == a", "start": [ 618, 1 ], "end": [ 627, 35 ], "kind": "commanddeclaration" }, { "full_name": "trivial", "code": "@[inherit_doc True.intro] theorem trivial : True", "start": [ 645, 1 ], "end": [ 645, 55 ], "kind": "commanddeclaration" }, { "full_name": "mt", "code": "theorem mt {a b : Prop} (h₁ : a → b) (h₂ : ¬b) : ¬a", "start": [ 647, 1 ], "end": [ 648, 23 ], "kind": "commanddeclaration" }, { "full_name": "not_false", "code": "theorem not_false : ¬False", "start": [ 650, 1 ], "end": [ 650, 33 ], "kind": "commanddeclaration" }, { "full_name": "not_not_intro", "code": "theorem not_not_intro {p : Prop} (h : p) : ¬ ¬ p", "start": [ 652, 1 ], "end": [ 653, 23 ], "kind": "commanddeclaration" }, { "full_name": "proof_irrel", "code": "theorem proof_irrel {a : Prop} (h₁ h₂ : a) : h₁ = h₂", "start": [ 656, 1 ], "end": [ 656, 60 ], "kind": "commanddeclaration" }, { "full_name": "Eq.mp", "code": "@[macro_inline] def Eq.mp {α β : Sort u} (h : α = β) (a : α) : β :=\n h ▸ a", "start": [ 658, 1 ], "end": [ 666, 8 ], "kind": "commanddeclaration" }, { "full_name": "Eq.mpr", "code": "@[macro_inline] def Eq.mpr {α β : Sort u} (h : α = β) (b : β) : α :=\n h ▸ b", "start": [ 668, 1 ], "end": [ 676, 8 ], "kind": "commanddeclaration" }, { "full_name": "Eq.substr", "code": "@[elab_as_elim]\ntheorem Eq.substr {α : Sort u} {p : α → Prop} {a b : α} (h₁ : b = a) (h₂ : p a) : p b", "start": [ 678, 1 ], "end": [ 680, 10 ], "kind": "commanddeclaration" }, { "full_name": "cast_eq", "code": "@[simp] theorem cast_eq {α : Sort u} (h : α = α) (a : α) : cast h a = a", "start": [ 682, 1 ], "end": [ 683, 6 ], "kind": "commanddeclaration" }, { "full_name": "Ne", "code": "@[reducible] def Ne {α : Sort u} (a b : α) :=\n ¬(a = b)", "start": [ 685, 1 ], "end": [ 690, 11 ], "kind": "commanddeclaration" }, { "full_name": "Ne.intro", "code": "theorem Ne.intro (h : a = b → False) : a ≠ b", "start": [ 698, 1 ], "end": [ 698, 50 ], "kind": "commanddeclaration" }, { "full_name": "Ne.elim", "code": "theorem Ne.elim (h : a ≠ b) : a = b → False", "start": [ 700, 1 ], "end": [ 700, 49 ], "kind": "commanddeclaration" }, { "full_name": "Ne.irrefl", "code": "theorem Ne.irrefl (h : a ≠ a) : False", "start": [ 702, 1 ], "end": [ 702, 47 ], "kind": "commanddeclaration" }, { "full_name": "Ne.symm", "code": "theorem Ne.symm (h : a ≠ b) : b ≠ a", "start": [ 704, 1 ], "end": [ 704, 61 ], "kind": "commanddeclaration" }, { "full_name": "ne_comm", "code": "theorem ne_comm {α} {a b : α} : a ≠ b ↔ b ≠ a", "start": [ 706, 1 ], "end": [ 706, 68 ], "kind": "commanddeclaration" }, { "full_name": "false_of_ne", "code": "theorem false_of_ne : a ≠ a → False", "start": [ 708, 1 ], "end": [ 708, 49 ], "kind": "commanddeclaration" }, { "full_name": "ne_false_of_self", "code": "theorem ne_false_of_self : p → p ≠ False", "start": [ 710, 1 ], "end": [ 711, 41 ], "kind": "commanddeclaration" }, { "full_name": "ne_true_of_not", "code": "theorem ne_true_of_not : ¬p → p ≠ True", "start": [ 713, 1 ], "end": [ 716, 17 ], "kind": "commanddeclaration" }, { "full_name": "true_ne_false", "code": "theorem true_ne_false : ¬True = False", "start": [ 718, 1 ], "end": [ 718, 66 ], "kind": "commanddeclaration" }, { "full_name": "false_ne_true", "code": "theorem false_ne_true : False ≠ True", "start": [ 719, 1 ], "end": [ 719, 66 ], "kind": "commanddeclaration" }, { "full_name": "Bool.of_not_eq_true", "code": "theorem Bool.of_not_eq_true : {b : Bool} → ¬ (b = true) → b = false", "start": [ 723, 1 ], "end": [ 725, 20 ], "kind": "commanddeclaration" }, { "full_name": "Bool.of_not_eq_false", "code": "theorem Bool.of_not_eq_false : {b : Bool} → ¬ (b = false) → b = true", "start": [ 727, 1 ], "end": [ 729, 29 ], "kind": "commanddeclaration" }, { "full_name": "ne_of_beq_false", "code": "theorem ne_of_beq_false [BEq α] [LawfulBEq α] {a b : α} (h : (a == b) = false) : a ≠ b", "start": [ 731, 1 ], "end": [ 732, 90 ], "kind": "commanddeclaration" }, { "full_name": "beq_false_of_ne", "code": "theorem beq_false_of_ne [BEq α] [LawfulBEq α] {a b : α} (h : a ≠ b) : (a == b) = false", "start": [ 734, 1 ], "end": [ 737, 27 ], "kind": "commanddeclaration" }, { "full_name": "HEq.ndrec", "code": "noncomputable def HEq.ndrec.{u1, u2} {α : Sort u2} {a : α} {motive : {β : Sort u2} → β → Sort u1} (m : motive a) {β : Sort u2} {b : β} (h : HEq a b) : motive b :=\n h.rec m", "start": [ 742, 1 ], "end": [ 744, 10 ], "kind": "commanddeclaration" }, { "full_name": "HEq.ndrecOn", "code": "noncomputable def HEq.ndrecOn.{u1, u2} {α : Sort u2} {a : α} {motive : {β : Sort u2} → β → Sort u1} {β : Sort u2} {b : β} (h : HEq a b) (m : motive a) : motive b :=\n h.rec m", "start": [ 746, 1 ], "end": [ 748, 10 ], "kind": "commanddeclaration" }, { "full_name": "HEq.elim", "code": "noncomputable def HEq.elim {α : Sort u} {a : α} {p : α → Sort v} {b : α} (h₁ : HEq a b) (h₂ : p a) : p b :=\n eq_of_heq h₁ ▸ h₂", "start": [ 750, 1 ], "end": [ 752, 20 ], "kind": "commanddeclaration" }, { "full_name": "HEq.subst", "code": "theorem HEq.subst {p : (T : Sort u) → T → Prop} (h₁ : HEq a b) (h₂ : p α a) : p β b", "start": [ 754, 1 ], "end": [ 755, 20 ], "kind": "commanddeclaration" }, { "full_name": "HEq.symm", "code": "theorem HEq.symm (h : HEq a b) : HEq b a", "start": [ 757, 1 ], "end": [ 758, 21 ], "kind": "commanddeclaration" }, { "full_name": "heq_of_eq", "code": "theorem heq_of_eq (h : a = a') : HEq a a'", "start": [ 760, 1 ], "end": [ 761, 26 ], "kind": "commanddeclaration" }, { "full_name": "HEq.trans", "code": "theorem HEq.trans (h₁ : HEq a b) (h₂ : HEq b c) : HEq a c", "start": [ 763, 1 ], "end": [ 764, 18 ], "kind": "commanddeclaration" }, { "full_name": "heq_of_heq_of_eq", "code": "theorem heq_of_heq_of_eq (h₁ : HEq a b) (h₂ : b = b') : HEq a b'", "start": [ 766, 1 ], "end": [ 767, 30 ], "kind": "commanddeclaration" }, { "full_name": "heq_of_eq_of_heq", "code": "theorem heq_of_eq_of_heq (h₁ : a = a') (h₂ : HEq a' b) : HEq a b", "start": [ 769, 1 ], "end": [ 770, 30 ], "kind": "commanddeclaration" }, { "full_name": "type_eq_of_heq", "code": "theorem type_eq_of_heq (h : HEq a b) : α = β", "start": [ 772, 1 ], "end": [ 773, 20 ], "kind": "commanddeclaration" }, { "full_name": "eqRec_heq", "code": "theorem eqRec_heq {α : Sort u} {φ : α → Sort v} {a a' : α} : (h : a = a') → (p : φ a) → HEq (Eq.recOn (motive := fun x _ => φ x) h p) p", "start": [ 777, 1 ], "end": [ 778, 25 ], "kind": "commanddeclaration" }, { "full_name": "heq_of_eqRec_eq", "code": "theorem heq_of_eqRec_eq {α β : Sort u} {a : α} {b : β} (h₁ : α = β) (h₂ : Eq.rec (motive := fun α _ => α) a h₁ = b) : HEq a b", "start": [ 780, 1 ], "end": [ 783, 11 ], "kind": "commanddeclaration" }, { "full_name": "cast_heq", "code": "theorem cast_heq {α β : Sort u} : (h : α = β) → (a : α) → HEq (cast h a) a", "start": [ 785, 1 ], "end": [ 786, 25 ], "kind": "commanddeclaration" }, { "full_name": "iff_iff_implies_and_implies", "code": "theorem iff_iff_implies_and_implies (a b : Prop) : (a ↔ b) ↔ (a → b) ∧ (b → a)", "start": [ 790, 1 ], "end": [ 791, 80 ], "kind": "commanddeclaration" }, { "full_name": "Iff.refl", "code": "theorem Iff.refl (a : Prop) : a ↔ a", "start": [ 793, 1 ], "end": [ 794, 38 ], "kind": "commanddeclaration" }, { "full_name": "Iff.rfl", "code": "protected theorem Iff.rfl {a : Prop} : a ↔ a", "start": [ 796, 1 ], "end": [ 797, 13 ], "kind": "commanddeclaration" }, { "full_name": "Iff.of_eq", "code": "theorem Iff.of_eq (h : a = b) : a ↔ b", "start": [ 801, 1 ], "end": [ 801, 53 ], "kind": "commanddeclaration" }, { "full_name": "Iff.trans", "code": "theorem Iff.trans (h₁ : a ↔ b) (h₂ : b ↔ c) : a ↔ c", "start": [ 803, 1 ], "end": [ 804, 46 ], "kind": "commanddeclaration" }, { "full_name": "Eq.comm", "code": "theorem Eq.comm {a b : α} : a = b ↔ b = a", "start": [ 810, 1 ], "end": [ 810, 71 ], "kind": "commanddeclaration" }, { "full_name": "eq_comm", "code": "theorem eq_comm {a b : α} : a = b ↔ b = a", "start": [ 811, 1 ], "end": [ 811, 53 ], "kind": "commanddeclaration" }, { "full_name": "Iff.symm", "code": "theorem Iff.symm (h : a ↔ b) : b ↔ a", "start": [ 813, 1 ], "end": [ 813, 61 ], "kind": "commanddeclaration" }, { "full_name": "Iff.comm", "code": "theorem Iff.comm: (a ↔ b) ↔ (b ↔ a)", "start": [ 814, 1 ], "end": [ 814, 67 ], "kind": "commanddeclaration" }, { "full_name": "iff_comm", "code": "theorem iff_comm : (a ↔ b) ↔ (b ↔ a)", "start": [ 815, 1 ], "end": [ 815, 49 ], "kind": "commanddeclaration" }, { "full_name": "And.symm", "code": "theorem And.symm : a ∧ b → b ∧ a", "start": [ 817, 1 ], "end": [ 817, 61 ], "kind": "commanddeclaration" }, { "full_name": "And.comm", "code": "theorem And.comm : a ∧ b ↔ b ∧ a", "start": [ 818, 1 ], "end": [ 818, 64 ], "kind": "commanddeclaration" }, { "full_name": "and_comm", "code": "theorem and_comm : a ∧ b ↔ b ∧ a", "start": [ 819, 1 ], "end": [ 819, 45 ], "kind": "commanddeclaration" }, { "full_name": "Or.symm", "code": "theorem Or.symm : a ∨ b → b ∨ a", "start": [ 821, 1 ], "end": [ 821, 50 ], "kind": "commanddeclaration" }, { "full_name": "Or.comm", "code": "theorem Or.comm : a ∨ b ↔ b ∨ a", "start": [ 822, 1 ], "end": [ 822, 61 ], "kind": "commanddeclaration" }, { "full_name": "or_comm", "code": "theorem or_comm : a ∨ b ↔ b ∨ a", "start": [ 823, 1 ], "end": [ 823, 43 ], "kind": "commanddeclaration" }, { "full_name": "Exists.elim", "code": "theorem Exists.elim {α : Sort u} {p : α → Prop} {b : Prop}\n (h₁ : Exists (fun x => p x)) (h₂ : ∀ (a : α), p a → b) : b", "start": [ 827, 1 ], "end": [ 830, 24 ], "kind": "commanddeclaration" }, { "full_name": "decide_true_eq_true", "code": "theorem decide_true_eq_true (h : Decidable True) : @decide True h = true", "start": [ 834, 1 ], "end": [ 837, 36 ], "kind": "commanddeclaration" }, { "full_name": "decide_false_eq_false", "code": "theorem decide_false_eq_false (h : Decidable False) : @decide False h = false", "start": [ 839, 1 ], "end": [ 842, 30 ], "kind": "commanddeclaration" }, { "full_name": "toBoolUsing", "code": "@[inline] def toBoolUsing {p : Prop} (d : Decidable p) : Bool :=\n decide (h := d)", "start": [ 844, 1 ], "end": [ 846, 18 ], "kind": "commanddeclaration" }, { "full_name": "toBoolUsing_eq_true", "code": "theorem toBoolUsing_eq_true {p : Prop} (d : Decidable p) (h : p) : toBoolUsing d = true", "start": [ 848, 1 ], "end": [ 849, 31 ], "kind": "commanddeclaration" }, { "full_name": "ofBoolUsing_eq_true", "code": "theorem ofBoolUsing_eq_true {p : Prop} {d : Decidable p} (h : toBoolUsing d = true) : p", "start": [ 851, 1 ], "end": [ 852, 34 ], "kind": "commanddeclaration" }, { "full_name": "ofBoolUsing_eq_false", "code": "theorem ofBoolUsing_eq_false {p : Prop} {d : Decidable p} (h : toBoolUsing d = false) : ¬ p", "start": [ 854, 1 ], "end": [ 855, 35 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.byCases", "code": "@[macro_inline] def byCases {q : Sort u} [dec : Decidable p] (h1 : p → q) (h2 : ¬p → q) : q :=\n match dec with\n | isTrue h => h1 h\n | isFalse h => h2 h", "start": [ 866, 1 ], "end": [ 874, 22 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.em", "code": "theorem em (p : Prop) [Decidable p] : p ∨ ¬p", "start": [ 876, 1 ], "end": [ 877, 24 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.byContradiction", "code": "theorem byContradiction [dec : Decidable p] (h : ¬p → False) : p", "start": [ 880, 1 ], "end": [ 881, 43 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.of_not_not", "code": "theorem of_not_not [Decidable p] : ¬ ¬ p → p", "start": [ 883, 1 ], "end": [ 884, 55 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_and_iff_or_not", "code": "theorem not_and_iff_or_not (p q : Prop) [d₁ : Decidable p] [d₂ : Decidable q] : ¬ (p ∧ q) ↔ ¬ p ∨ ¬ q", "start": [ 886, 1 ], "end": [ 894, 26 ], "kind": "commanddeclaration" }, { "full_name": "decidable_of_decidable_of_iff", "code": "@[inline] def decidable_of_decidable_of_iff [Decidable p] (h : p ↔ q) : Decidable q :=\n if hp : p then\n isTrue (Iff.mp h hp)\n else\n isFalse fun hq => absurd (Iff.mpr h hq) hp", "start": [ 900, 1 ], "end": [ 905, 47 ], "kind": "commanddeclaration" }, { "full_name": "decidable_of_decidable_of_eq", "code": "@[inline] def decidable_of_decidable_of_eq [Decidable p] (h : p = q) : Decidable q :=\n decidable_of_decidable_of_iff (p := p) (h ▸ Iff.rfl)", "start": [ 907, 1 ], "end": [ 909, 55 ], "kind": "commanddeclaration" }, { "full_name": "if_pos", "code": "theorem if_pos {c : Prop} {h : Decidable c} (hc : c) {α : Sort u} {t e : α} : (ite c t e) = t", "start": [ 932, 1 ], "end": [ 935, 33 ], "kind": "commanddeclaration" }, { "full_name": "if_neg", "code": "theorem if_neg {c : Prop} {h : Decidable c} (hnc : ¬c) {α : Sort u} {t e : α} : (ite c t e) = e", "start": [ 937, 1 ], "end": [ 940, 23 ], "kind": "commanddeclaration" }, { "full_name": "iteInduction", "code": "def iteInduction {c} [inst : Decidable c] {motive : α → Sort _} {t e : α}\n (hpos : c → motive t) (hneg : ¬c → motive e) : motive (ite c t e) :=\n match inst with\n | isTrue h => hpos h\n | isFalse h => hneg h", "start": [ 942, 1 ], "end": [ 947, 24 ], "kind": "commanddeclaration" }, { "full_name": "dif_pos", "code": "theorem dif_pos {c : Prop} {h : Decidable c} (hc : c) {α : Sort u} {t : c → α} {e : ¬ c → α} : (dite c t e) = t hc", "start": [ 949, 1 ], "end": [ 952, 33 ], "kind": "commanddeclaration" }, { "full_name": "dif_neg", "code": "theorem dif_neg {c : Prop} {h : Decidable c} (hnc : ¬c) {α : Sort u} {t : c → α} {e : ¬ c → α} : (dite c t e) = e hnc", "start": [ 954, 1 ], "end": [ 957, 23 ], "kind": "commanddeclaration" }, { "full_name": "dif_eq_if", "code": "theorem dif_eq_if (c : Prop) {h : Decidable c} {α : Sort u} (t : α) (e : α) : dite c (fun _ => t) (fun _ => e) = ite c t e", "start": [ 960, 1 ], "end": [ 963, 23 ], "kind": "commanddeclaration" }, { "full_name": "noConfusionTypeEnum", "code": "abbrev noConfusionTypeEnum {α : Sort u} {β : Sort v} [inst : DecidableEq β] (f : α → β) (P : Sort w) (x y : α) : Sort w :=\n (inst (f x) (f y)).casesOn\n (fun _ => P)\n (fun _ => P → P)", "start": [ 975, 1 ], "end": [ 979, 21 ], "kind": "commanddeclaration" }, { "full_name": "noConfusionEnum", "code": "abbrev noConfusionEnum {α : Sort u} {β : Sort v} [inst : DecidableEq β] (f : α → β) {P : Sort w} {x y : α} (h : x = y) : noConfusionTypeEnum f P x y :=\n Decidable.casesOn\n (motive := fun (inst : Decidable (f x = f y)) => Decidable.casesOn (motive := fun _ => Sort w) inst (fun _ => P) (fun _ => P → P))\n (inst (f x) (f y))\n (fun h' => False.elim (h' (congrArg f h)))\n (fun _ => fun x => x)", "start": [ 981, 1 ], "end": [ 987, 26 ], "kind": "commanddeclaration" }, { "full_name": "nonempty_of_exists", "code": "theorem nonempty_of_exists {α : Sort u} {p : α → Prop} : Exists (fun x => p x) → Nonempty α", "start": [ 996, 1 ], "end": [ 997, 18 ], "kind": "commanddeclaration" }, { "full_name": "Subsingleton", "code": "class Subsingleton (α : Sort u) : Prop where\n \n intro ::\n \n allEq : (a b : α) → a = b", "start": [ 1001, 1 ], "end": [ 1013, 28 ], "kind": "commanddeclaration" }, { "full_name": "Subsingleton.elim", "code": "protected theorem Subsingleton.elim {α : Sort u} [h : Subsingleton α] : (a b : α) → a = b", "start": [ 1015, 1 ], "end": [ 1016, 10 ], "kind": "commanddeclaration" }, { "full_name": "Subsingleton.helim", "code": "protected theorem Subsingleton.helim {α β : Sort u} [h₁ : Subsingleton α] (h₂ : α = β) (a : α) (b : β) : HEq a b", "start": [ 1018, 1 ], "end": [ 1021, 26 ], "kind": "commanddeclaration" }, { "full_name": "recSubsingleton", "code": "theorem recSubsingleton\n {p : Prop} [h : Decidable p]\n {h₁ : p → Sort u}\n {h₂ : ¬p → Sort u}\n [h₃ : ∀ (h : p), Subsingleton (h₁ h)]\n [h₄ : ∀ (h : ¬p), Subsingleton (h₂ h)]\n : Subsingleton (h.casesOn h₂ h₁)", "start": [ 1043, 1 ], "end": [ 1052, 22 ], "kind": "commanddeclaration" }, { "full_name": "Equivalence", "code": "structure Equivalence {α : Sort u} (r : α → α → Prop) : Prop where\n \n refl : ∀ x, r x x\n \n symm : ∀ {x y}, r x y → r y x\n \n trans : ∀ {x y z}, r x y → r y z → r x z", "start": [ 1054, 1 ], "end": [ 1071, 43 ], "kind": "commanddeclaration" }, { "full_name": "emptyRelation", "code": "def emptyRelation {α : Sort u} (_ _ : α) : Prop :=\n False", "start": [ 1073, 1 ], "end": [ 1075, 8 ], "kind": "commanddeclaration" }, { "full_name": "Subrelation", "code": "def Subrelation {α : Sort u} (q r : α → α → Prop) :=\n ∀ {x y}, q x y → r x y", "start": [ 1077, 1 ], "end": [ 1082, 25 ], "kind": "commanddeclaration" }, { "full_name": "InvImage", "code": "def InvImage {α : Sort u} {β : Sort v} (r : β → β → Prop) (f : α → β) : α → α → Prop :=\n fun a₁ a₂ => r (f a₁) (f a₂)", "start": [ 1084, 1 ], "end": [ 1089, 31 ], "kind": "commanddeclaration" }, { "full_name": "TC", "code": "inductive TC {α : Sort u} (r : α → α → Prop) : α → α → Prop where\n \n | base : ∀ a b, r a b → TC r a b\n \n | trans : ∀ a b c, TC r a b → TC r b c → TC r a c", "start": [ 1091, 1 ], "end": [ 1100, 52 ], "kind": "commanddeclaration" }, { "full_name": "Subtype.existsOfSubtype", "code": "theorem existsOfSubtype {α : Type u} {p : α → Prop} : { x // p x } → Exists (fun x => p x)", "start": [ 1105, 1 ], "end": [ 1106, 21 ], "kind": "commanddeclaration" }, { "full_name": "Subtype.eq", "code": "protected theorem eq : ∀ {a1 a2 : {x // p x}}, val a1 = val a2 → a1 = a2", "start": [ 1110, 1 ], "end": [ 1111, 31 ], "kind": "commanddeclaration" }, { "full_name": "Subtype.eta", "code": "theorem eta (a : {x // p x}) (h : p (val a)) : mk (val a) h = a", "start": [ 1113, 1 ], "end": [ 1115, 12 ], "kind": "commanddeclaration" }, { "full_name": "Sum.inhabitedLeft", "code": "instance Sum.inhabitedLeft [Inhabited α] : Inhabited (Sum α β) where\n default := Sum.inl default", "start": [ 1129, 1 ], "end": [ 1130, 29 ], "kind": "commanddeclaration" }, { "full_name": "Sum.inhabitedRight", "code": "instance Sum.inhabitedRight [Inhabited β] : Inhabited (Sum α β) where\n default := Sum.inr default", "start": [ 1132, 1 ], "end": [ 1133, 29 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lexLt", "code": "def Prod.lexLt [LT α] [LT β] (s : α × β) (t : α × β) : Prop :=\n s.1 < t.1 ∨ (s.1 = t.1 ∧ s.2 < t.2)", "start": [ 1171, 1 ], "end": [ 1173, 38 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lexLtDec", "code": "instance Prod.lexLtDec\n [LT α] [LT β] [DecidableEq α]\n [(a b : α) → Decidable (a < b)] [(a b : β) → Decidable (a < b)]\n : (s t : α × β) → Decidable (Prod.lexLt s t) :=\n fun _ _ => inferInstanceAs (Decidable (_ ∨ _))", "start": [ 1175, 1 ], "end": [ 1179, 49 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lexLt_def", "code": "theorem Prod.lexLt_def [LT α] [LT β] (s t : α × β) : (Prod.lexLt s t) = (s.1 < t.1 ∨ (s.1 = t.1 ∧ s.2 < t.2))", "start": [ 1181, 1 ], "end": [ 1182, 6 ], "kind": "commanddeclaration" }, { "full_name": "Prod.eta", "code": "theorem Prod.eta (p : α × β) : (p.1, p.2) = p", "start": [ 1184, 1 ], "end": [ 1184, 53 ], "kind": "commanddeclaration" }, { "full_name": "Prod.map", "code": "def Prod.map {α₁ : Type u₁} {α₂ : Type u₂} {β₁ : Type v₁} {β₂ : Type v₂}\n (f : α₁ → α₂) (g : β₁ → β₂) : α₁ × β₁ → α₂ × β₂\n | (a, b) => (f a, g b)", "start": [ 1186, 1 ], "end": [ 1192, 25 ], "kind": "commanddeclaration" }, { "full_name": "Prod.map_apply", "code": "@[simp] theorem Prod.map_apply (f : α → β) (g : γ → δ) (x) (y) :\n Prod.map f g (x, y) = (f x, g y)", "start": [ 1194, 1 ], "end": [ 1195, 44 ], "kind": "commanddeclaration" }, { "full_name": "Prod.map_fst", "code": "@[simp] theorem Prod.map_fst (f : α → β) (g : γ → δ) (x) : (Prod.map f g x).1 = f x.1", "start": [ 1196, 1 ], "end": [ 1196, 93 ], "kind": "commanddeclaration" }, { "full_name": "Prod.map_snd", "code": "@[simp] theorem Prod.map_snd (f : α → β) (g : γ → δ) (x) : (Prod.map f g x).2 = g x.2", "start": [ 1197, 1 ], "end": [ 1197, 93 ], "kind": "commanddeclaration" }, { "full_name": "ex_of_PSigma", "code": "theorem ex_of_PSigma {α : Type u} {p : α → Prop} : (PSigma (fun x => p x)) → Exists (fun x => p x)", "start": [ 1201, 1 ], "end": [ 1202, 23 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.eta", "code": "protected theorem PSigma.eta {α : Sort u} {β : α → Sort v} {a₁ a₂ : α} {b₁ : β a₁} {b₂ : β a₂}\n (h₁ : a₁ = a₂) (h₂ : Eq.ndrec b₁ h₁ = b₂) : PSigma.mk a₁ b₁ = PSigma.mk a₂ b₂", "start": [ 1204, 1 ], "end": [ 1208, 12 ], "kind": "commanddeclaration" }, { "full_name": "PUnit.subsingleton", "code": "theorem PUnit.subsingleton (a b : PUnit) : a = b", "start": [ 1212, 1 ], "end": [ 1213, 30 ], "kind": "commanddeclaration" }, { "full_name": "PUnit.eq_punit", "code": "theorem PUnit.eq_punit (a : PUnit) : a = ⟨⟩", "start": [ 1215, 1 ], "end": [ 1216, 26 ], "kind": "commanddeclaration" }, { "full_name": "Setoid", "code": "class Setoid (α : Sort u) where\n \n r : α → α → Prop\n \n iseqv : Equivalence r", "start": [ 1229, 1 ], "end": [ 1237, 24 ], "kind": "commanddeclaration" }, { "full_name": "Setoid.refl", "code": "theorem refl (a : α) : a ≈ a", "start": [ 1246, 1 ], "end": [ 1247, 15 ], "kind": "commanddeclaration" }, { "full_name": "Setoid.symm", "code": "theorem symm {a b : α} (hab : a ≈ b) : b ≈ a", "start": [ 1249, 1 ], "end": [ 1250, 17 ], "kind": "commanddeclaration" }, { "full_name": "Setoid.trans", "code": "theorem trans {a b c : α} (hab : a ≈ b) (hbc : b ≈ c) : a ≈ c", "start": [ 1252, 1 ], "end": [ 1253, 22 ], "kind": "commanddeclaration" }, { "full_name": "propext", "code": "axiom propext {a b : Prop} : (a ↔ b) → a = b", "start": [ 1260, 1 ], "end": [ 1294, 45 ], "kind": "commanddeclaration" }, { "full_name": "Eq.propIntro", "code": "theorem Eq.propIntro {a b : Prop} (h₁ : a → b) (h₂ : b → a) : a = b", "start": [ 1296, 1 ], "end": [ 1297, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ.inj", "code": "theorem Nat.succ.inj {m n : Nat} : m.succ = n.succ → m = n", "start": [ 1320, 1 ], "end": [ 1321, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ.injEq", "code": "theorem Nat.succ.injEq (u v : Nat) : (u.succ = v.succ) = (u = v)", "start": [ 1323, 1 ], "end": [ 1324, 48 ], "kind": "commanddeclaration" }, { "full_name": "beq_iff_eq", "code": "@[simp] theorem beq_iff_eq [BEq α] [LawfulBEq α] (a b : α) : a == b ↔ a = b", "start": [ 1326, 1 ], "end": [ 1327, 56 ], "kind": "commanddeclaration" }, { "full_name": "Not.elim", "code": "def Not.elim {α : Sort _} (H1 : ¬a) (H2 : a) : α := absurd H2 H1", "start": [ 1331, 1 ], "end": [ 1333, 65 ], "kind": "commanddeclaration" }, { "full_name": "And.elim", "code": "abbrev And.elim (f : a → b → α) (h : a ∧ b) : α := f h.left h.right", "start": [ 1335, 1 ], "end": [ 1336, 68 ], "kind": "commanddeclaration" }, { "full_name": "Iff.elim", "code": "def Iff.elim (f : (a → b) → (b → a) → α) (h : a ↔ b) : α := f h.mp h.mpr", "start": [ 1338, 1 ], "end": [ 1339, 73 ], "kind": "commanddeclaration" }, { "full_name": "Iff.subst", "code": "theorem Iff.subst {a b : Prop} {p : Prop → Prop} (h₁ : a ↔ b) (h₂ : p a) : p b", "start": [ 1341, 1 ], "end": [ 1343, 27 ], "kind": "commanddeclaration" }, { "full_name": "Not.intro", "code": "theorem Not.intro {a : Prop} (h : a → False) : ¬a", "start": [ 1345, 1 ], "end": [ 1345, 55 ], "kind": "commanddeclaration" }, { "full_name": "Not.imp", "code": "theorem Not.imp {a b : Prop} (H2 : ¬b) (H1 : a → b) : ¬a", "start": [ 1347, 1 ], "end": [ 1347, 69 ], "kind": "commanddeclaration" }, { "full_name": "not_congr", "code": "theorem not_congr (h : a ↔ b) : ¬a ↔ ¬b", "start": [ 1349, 1 ], "end": [ 1349, 60 ], "kind": "commanddeclaration" }, { "full_name": "not_not_not", "code": "theorem not_not_not : ¬¬¬a ↔ ¬a", "start": [ 1351, 1 ], "end": [ 1351, 69 ], "kind": "commanddeclaration" }, { "full_name": "iff_of_true", "code": "theorem iff_of_true (ha : a) (hb : b) : a ↔ b", "start": [ 1353, 1 ], "end": [ 1353, 87 ], "kind": "commanddeclaration" }, { "full_name": "iff_of_false", "code": "theorem iff_of_false (ha : ¬a) (hb : ¬b) : a ↔ b", "start": [ 1354, 1 ], "end": [ 1354, 78 ], "kind": "commanddeclaration" }, { "full_name": "iff_true_left", "code": "theorem iff_true_left (ha : a) : (a ↔ b) ↔ b", "start": [ 1356, 1 ], "end": [ 1356, 86 ], "kind": "commanddeclaration" }, { "full_name": "iff_true_right", "code": "theorem iff_true_right (ha : a) : (b ↔ a) ↔ b", "start": [ 1357, 1 ], "end": [ 1357, 83 ], "kind": "commanddeclaration" }, { "full_name": "iff_false_left", "code": "theorem iff_false_left (ha : ¬a) : (a ↔ b) ↔ ¬b", "start": [ 1359, 1 ], "end": [ 1359, 94 ], "kind": "commanddeclaration" }, { "full_name": "iff_false_right", "code": "theorem iff_false_right (ha : ¬a) : (b ↔ a) ↔ ¬b", "start": [ 1360, 1 ], "end": [ 1360, 87 ], "kind": "commanddeclaration" }, { "full_name": "of_iff_true", "code": "theorem of_iff_true (h : a ↔ True) : a", "start": [ 1362, 1 ], "end": [ 1362, 59 ], "kind": "commanddeclaration" }, { "full_name": "iff_true_intro", "code": "theorem iff_true_intro (h : a) : a ↔ True", "start": [ 1363, 1 ], "end": [ 1363, 67 ], "kind": "commanddeclaration" }, { "full_name": "not_of_iff_false", "code": "theorem not_of_iff_false : (p ↔ False) → ¬p", "start": [ 1365, 1 ], "end": [ 1365, 54 ], "kind": "commanddeclaration" }, { "full_name": "iff_false_intro", "code": "theorem iff_false_intro (h : ¬a) : a ↔ False", "start": [ 1366, 1 ], "end": [ 1366, 66 ], "kind": "commanddeclaration" }, { "full_name": "not_iff_false_intro", "code": "theorem not_iff_false_intro (h : a) : ¬a ↔ False", "start": [ 1368, 1 ], "end": [ 1368, 86 ], "kind": "commanddeclaration" }, { "full_name": "not_true", "code": "theorem not_true : (¬True) ↔ False", "start": [ 1369, 1 ], "end": [ 1369, 78 ], "kind": "commanddeclaration" }, { "full_name": "not_false_iff", "code": "theorem not_false_iff : (¬False) ↔ True", "start": [ 1371, 1 ], "end": [ 1371, 68 ], "kind": "commanddeclaration" }, { "full_name": "Eq.to_iff", "code": "theorem Eq.to_iff : a = b → (a ↔ b)", "start": [ 1373, 1 ], "end": [ 1373, 49 ], "kind": "commanddeclaration" }, { "full_name": "iff_of_eq", "code": "theorem iff_of_eq : a = b → (a ↔ b)", "start": [ 1374, 1 ], "end": [ 1374, 49 ], "kind": "commanddeclaration" }, { "full_name": "neq_of_not_iff", "code": "theorem neq_of_not_iff : ¬(a ↔ b) → a ≠ b", "start": [ 1375, 1 ], "end": [ 1375, 58 ], "kind": "commanddeclaration" }, { "full_name": "iff_iff_eq", "code": "theorem iff_iff_eq : (a ↔ b) ↔ a = b", "start": [ 1377, 1 ], "end": [ 1377, 68 ], "kind": "commanddeclaration" }, { "full_name": "eq_iff_iff", "code": "@[simp] theorem eq_iff_iff : (a = b) ↔ (a ↔ b)", "start": [ 1378, 1 ], "end": [ 1378, 66 ], "kind": "commanddeclaration" }, { "full_name": "eq_self_iff_true", "code": "theorem eq_self_iff_true (a : α) : a = a ↔ True", "start": [ 1380, 1 ], "end": [ 1380, 72 ], "kind": "commanddeclaration" }, { "full_name": "ne_self_iff_false", "code": "theorem ne_self_iff_false (a : α) : a ≠ a ↔ False", "start": [ 1381, 1 ], "end": [ 1381, 77 ], "kind": "commanddeclaration" }, { "full_name": "false_of_true_iff_false", "code": "theorem false_of_true_iff_false (h : True ↔ False) : False", "start": [ 1383, 1 ], "end": [ 1383, 75 ], "kind": "commanddeclaration" }, { "full_name": "false_of_true_eq_false", "code": "theorem false_of_true_eq_false (h : True = False) : False", "start": [ 1384, 1 ], "end": [ 1384, 100 ], "kind": "commanddeclaration" }, { "full_name": "true_eq_false_of_false", "code": "theorem true_eq_false_of_false : False → (True = False)", "start": [ 1386, 1 ], "end": [ 1386, 70 ], "kind": "commanddeclaration" }, { "full_name": "iff_def", "code": "theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a)", "start": [ 1388, 1 ], "end": [ 1388, 82 ], "kind": "commanddeclaration" }, { "full_name": "iff_def'", "code": "theorem iff_def' : (a ↔ b) ↔ (b → a) ∧ (a → b)", "start": [ 1389, 1 ], "end": [ 1389, 77 ], "kind": "commanddeclaration" }, { "full_name": "true_iff_false", "code": "theorem true_iff_false : (True ↔ False) ↔ False", "start": [ 1391, 1 ], "end": [ 1391, 86 ], "kind": "commanddeclaration" }, { "full_name": "false_iff_true", "code": "theorem false_iff_true : (False ↔ True) ↔ False", "start": [ 1392, 1 ], "end": [ 1392, 86 ], "kind": "commanddeclaration" }, { "full_name": "iff_not_self", "code": "theorem iff_not_self : ¬(a ↔ ¬a)", "start": [ 1394, 1 ], "end": [ 1394, 70 ], "kind": "commanddeclaration" }, { "full_name": "heq_self_iff_true", "code": "theorem heq_self_iff_true (a : α) : HEq a a ↔ True", "start": [ 1395, 1 ], "end": [ 1395, 77 ], "kind": "commanddeclaration" }, { "full_name": "not_not_of_not_imp", "code": "theorem not_not_of_not_imp : ¬(a → b) → ¬¬a", "start": [ 1399, 1 ], "end": [ 1399, 59 ], "kind": "commanddeclaration" }, { "full_name": "not_of_not_imp", "code": "theorem not_of_not_imp {a : Prop} : ¬(a → b) → ¬b", "start": [ 1401, 1 ], "end": [ 1401, 69 ], "kind": "commanddeclaration" }, { "full_name": "imp_not_self", "code": "@[simp] theorem imp_not_self : (a → ¬a) ↔ ¬a", "start": [ 1403, 1 ], "end": [ 1403, 95 ], "kind": "commanddeclaration" }, { "full_name": "imp_intro", "code": "theorem imp_intro {α β : Prop} (h : α) : β → α", "start": [ 1405, 1 ], "end": [ 1405, 61 ], "kind": "commanddeclaration" }, { "full_name": "imp_imp_imp", "code": "theorem imp_imp_imp {a b c d : Prop} (h₀ : c → a) (h₁ : b → d) : (a → b) → (c → d)", "start": [ 1407, 1 ], "end": [ 1407, 100 ], "kind": "commanddeclaration" }, { "full_name": "imp_iff_right", "code": "theorem imp_iff_right {a : Prop} (ha : a) : (a → b) ↔ b", "start": [ 1409, 1 ], "end": [ 1409, 91 ], "kind": "commanddeclaration" }, { "full_name": "imp_true_iff", "code": "theorem imp_true_iff (α : Sort u) : (α → True) ↔ True", "start": [ 1412, 1 ], "end": [ 1412, 91 ], "kind": "commanddeclaration" }, { "full_name": "false_imp_iff", "code": "theorem false_imp_iff (a : Prop) : (False → a) ↔ True", "start": [ 1414, 1 ], "end": [ 1414, 83 ], "kind": "commanddeclaration" }, { "full_name": "true_imp_iff", "code": "theorem true_imp_iff (α : Prop) : (True → α) ↔ α", "start": [ 1416, 1 ], "end": [ 1416, 77 ], "kind": "commanddeclaration" }, { "full_name": "imp_self", "code": "@[simp high] theorem imp_self : (a → a) ↔ True", "start": [ 1418, 1 ], "end": [ 1418, 68 ], "kind": "commanddeclaration" }, { "full_name": "imp_false", "code": "@[simp] theorem imp_false : (a → False) ↔ ¬a", "start": [ 1420, 1 ], "end": [ 1420, 56 ], "kind": "commanddeclaration" }, { "full_name": "imp.swap", "code": "theorem imp.swap : (a → b → c) ↔ (b → a → c)", "start": [ 1422, 1 ], "end": [ 1422, 68 ], "kind": "commanddeclaration" }, { "full_name": "imp_not_comm", "code": "theorem imp_not_comm : (a → ¬b) ↔ (b → ¬a)", "start": [ 1424, 1 ], "end": [ 1424, 55 ], "kind": "commanddeclaration" }, { "full_name": "imp_congr_left", "code": "theorem imp_congr_left (h : a ↔ b) : (a → c) ↔ (b → c)", "start": [ 1426, 1 ], "end": [ 1426, 91 ], "kind": "commanddeclaration" }, { "full_name": "imp_congr_right", "code": "theorem imp_congr_right (h : a → (b ↔ c)) : (a → b) ↔ (a → c)", "start": [ 1428, 1 ], "end": [ 1429, 83 ], "kind": "commanddeclaration" }, { "full_name": "imp_congr_ctx", "code": "theorem imp_congr_ctx (h₁ : a ↔ c) (h₂ : c → (b ↔ d)) : (a → b) ↔ (c → d)", "start": [ 1431, 1 ], "end": [ 1432, 53 ], "kind": "commanddeclaration" }, { "full_name": "imp_congr", "code": "theorem imp_congr (h₁ : a ↔ c) (h₂ : b ↔ d) : (a → b) ↔ (c → d)", "start": [ 1434, 1 ], "end": [ 1434, 96 ], "kind": "commanddeclaration" }, { "full_name": "imp_iff_not", "code": "theorem imp_iff_not (hb : ¬b) : a → b ↔ ¬a", "start": [ 1436, 1 ], "end": [ 1436, 90 ], "kind": "commanddeclaration" }, { "full_name": "Quot.sound", "code": "axiom sound : ∀ {α : Sort u} {r : α → α → Prop} {a b : α}, r a b → Quot.mk r a = Quot.mk r b", "start": [ 1441, 1 ], "end": [ 1471, 93 ], "kind": "commanddeclaration" }, { "full_name": "Quot.liftBeta", "code": "protected theorem liftBeta {α : Sort u} {r : α → α → Prop} {β : Sort v}\n (f : α → β)\n (c : (a b : α) → r a b → f a = f b)\n (a : α)\n : lift f c (Quot.mk r a) = f a", "start": [ 1473, 1 ], "end": [ 1478, 6 ], "kind": "commanddeclaration" }, { "full_name": "Quot.indBeta", "code": "protected theorem indBeta {α : Sort u} {r : α → α → Prop} {motive : Quot r → Prop}\n (p : (a : α) → motive (Quot.mk r a))\n (a : α)\n : (ind p (Quot.mk r a) : motive (Quot.mk r a)) = p a", "start": [ 1480, 1 ], "end": [ 1484, 6 ], "kind": "commanddeclaration" }, { "full_name": "Quot.liftOn", "code": "protected abbrev liftOn {α : Sort u} {β : Sort v} {r : α → α → Prop}\n (q : Quot r) (f : α → β) (c : (a b : α) → r a b → f a = f b) : β :=\n lift f c q", "start": [ 1486, 1 ], "end": [ 1492, 13 ], "kind": "commanddeclaration" }, { "full_name": "Quot.inductionOn", "code": "@[elab_as_elim]\nprotected theorem inductionOn {α : Sort u} {r : α → α → Prop} {motive : Quot r → Prop}\n (q : Quot r)\n (h : (a : α) → motive (Quot.mk r a))\n : motive q", "start": [ 1494, 1 ], "end": [ 1499, 10 ], "kind": "commanddeclaration" }, { "full_name": "Quot.exists_rep", "code": "theorem exists_rep {α : Sort u} {r : α → α → Prop} (q : Quot r) : Exists (fun a => (Quot.mk r a) = q)", "start": [ 1501, 1 ], "end": [ 1502, 36 ], "kind": "commanddeclaration" }, { "full_name": "Quot.indep", "code": "@[reducible, macro_inline]\nprotected def indep (f : (a : α) → motive (Quot.mk r a)) (a : α) : PSigma motive :=\n ⟨Quot.mk r a, f a⟩", "start": [ 1509, 1 ], "end": [ 1512, 21 ], "kind": "commanddeclaration" }, { "full_name": "Quot.indepCoherent", "code": "protected theorem indepCoherent\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n : (a b : α) → r a b → Quot.indep f a = Quot.indep f b", "start": [ 1514, 1 ], "end": [ 1518, 46 ], "kind": "commanddeclaration" }, { "full_name": "Quot.liftIndepPr1", "code": "protected theorem liftIndepPr1\n (f : (a : α) → motive (Quot.mk r a))\n (h : ∀ (a b : α) (p : r a b), Eq.ndrec (f a) (sound p) = f b)\n (q : Quot r)\n : (lift (Quot.indep f) (Quot.indepCoherent f h) q).1 = q", "start": [ 1520, 1 ], "end": [ 1526, 11 ], "kind": "commanddeclaration" }, { "full_name": "Quot.rec", "code": "protected abbrev rec\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n (q : Quot r) : motive q :=\n Eq.ndrecOn (Quot.liftIndepPr1 f h q) ((lift (Quot.indep f) (Quot.indepCoherent f h) q).2)", "start": [ 1528, 1 ], "end": [ 1540, 92 ], "kind": "commanddeclaration" }, { "full_name": "Quot.recOn", "code": "@[inherit_doc Quot.rec] protected abbrev recOn\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n : motive q :=\n q.rec f h", "start": [ 1542, 1 ], "end": [ 1547, 11 ], "kind": "commanddeclaration" }, { "full_name": "Quot.recOnSubsingleton", "code": "protected abbrev recOnSubsingleton\n [h : (a : α) → Subsingleton (motive (Quot.mk r a))]\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n : motive q := by\n induction q using Quot.rec\n apply f\n apply Subsingleton.elim", "start": [ 1549, 1 ], "end": [ 1560, 26 ], "kind": "commanddeclaration" }, { "full_name": "Quot.hrecOn", "code": "protected abbrev hrecOn\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n (c : (a b : α) → (p : r a b) → HEq (f a) (f b))\n : motive q :=\n Quot.recOn q f fun a b p => eq_of_heq <|\n have p₁ : HEq (Eq.ndrec (f a) (sound p)) (f a) := eqRec_heq (sound p) (f a)\n HEq.trans p₁ (c a b p)", "start": [ 1562, 1 ], "end": [ 1574, 27 ], "kind": "commanddeclaration" }, { "full_name": "Quotient", "code": "def Quotient {α : Sort u} (s : Setoid α) :=\n @Quot α Setoid.r", "start": [ 1580, 1 ], "end": [ 1586, 19 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.mk", "code": "@[inline]\nprotected def mk {α : Sort u} (s : Setoid α) (a : α) : Quotient s :=\n Quot.mk Setoid.r a", "start": [ 1590, 1 ], "end": [ 1593, 21 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.mk'", "code": "protected def mk' {α : Sort u} [s : Setoid α] (a : α) : Quotient s :=\n Quotient.mk s a", "start": [ 1595, 1 ], "end": [ 1600, 18 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.sound", "code": "theorem sound {α : Sort u} {s : Setoid α} {a b : α} : a ≈ b → Quotient.mk s a = Quotient.mk s b", "start": [ 1602, 1 ], "end": [ 1607, 13 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.lift", "code": "protected abbrev lift {α : Sort u} {β : Sort v} {s : Setoid α} (f : α → β) : ((a b : α) → a ≈ b → f a = f b) → Quotient s → β :=\n Quot.lift f", "start": [ 1609, 1 ], "end": [ 1614, 14 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.ind", "code": "protected theorem ind {α : Sort u} {s : Setoid α} {motive : Quotient s → Prop} : ((a : α) → motive (Quotient.mk s a)) → (q : Quotient s) → motive q", "start": [ 1616, 1 ], "end": [ 1618, 11 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.liftOn", "code": "protected abbrev liftOn {α : Sort u} {β : Sort v} {s : Setoid α} (q : Quotient s) (f : α → β) (c : (a b : α) → a ≈ b → f a = f b) : β :=\n Quot.liftOn q f c", "start": [ 1620, 1 ], "end": [ 1625, 20 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.inductionOn", "code": "@[elab_as_elim]\nprotected theorem inductionOn {α : Sort u} {s : Setoid α} {motive : Quotient s → Prop}\n (q : Quotient s)\n (h : (a : α) → motive (Quotient.mk s a))\n : motive q", "start": [ 1627, 1 ], "end": [ 1633, 23 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.exists_rep", "code": "theorem exists_rep {α : Sort u} {s : Setoid α} (q : Quotient s) : Exists (fun (a : α) => Quotient.mk s a = q)", "start": [ 1635, 1 ], "end": [ 1636, 20 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.rec", "code": "@[inline, elab_as_elim]\nprotected def rec\n (f : (a : α) → motive (Quotient.mk s a))\n (h : (a b : α) → (p : a ≈ b) → Eq.ndrec (f a) (Quotient.sound p) = f b)\n (q : Quotient s)\n : motive q :=\n Quot.rec f h q", "start": [ 1643, 1 ], "end": [ 1650, 17 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.recOn", "code": "@[elab_as_elim]\nprotected abbrev recOn\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n (h : (a b : α) → (p : a ≈ b) → Eq.ndrec (f a) (Quotient.sound p) = f b)\n : motive q :=\n Quot.recOn q f h", "start": [ 1652, 1 ], "end": [ 1659, 19 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.recOnSubsingleton", "code": "@[elab_as_elim]\nprotected abbrev recOnSubsingleton\n [h : (a : α) → Subsingleton (motive (Quotient.mk s a))]\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n : motive q :=\n Quot.recOnSubsingleton (h := h) q f", "start": [ 1661, 1 ], "end": [ 1668, 38 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.hrecOn", "code": "@[elab_as_elim]\nprotected abbrev hrecOn\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n (c : (a b : α) → (p : a ≈ b) → HEq (f a) (f b))\n : motive q :=\n Quot.hrecOn q f c", "start": [ 1670, 1 ], "end": [ 1677, 20 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.lift₂", "code": "protected abbrev lift₂\n (f : α → β → φ)\n (c : (a₁ : α) → (b₁ : β) → (a₂ : α) → (b₂ : β) → a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ = f a₂ b₂)\n (q₁ : Quotient s₁) (q₂ : Quotient s₂)\n : φ := by\n apply Quotient.lift (fun (a₁ : α) => Quotient.lift (f a₁) (fun (a b : β) => c a₁ a a₁ b (Setoid.refl a₁)) q₂) _ q₁\n intros\n induction q₂ using Quotient.ind\n apply c; assumption; apply Setoid.refl", "start": [ 1685, 1 ], "end": [ 1694, 41 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.liftOn₂", "code": "protected abbrev liftOn₂\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (f : α → β → φ)\n (c : (a₁ : α) → (b₁ : β) → (a₂ : α) → (b₂ : β) → a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ = f a₂ b₂)\n : φ :=\n Quotient.lift₂ f c q₁ q₂", "start": [ 1696, 1 ], "end": [ 1703, 27 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.ind₂", "code": "@[elab_as_elim]\nprotected theorem ind₂\n {motive : Quotient s₁ → Quotient s₂ → Prop}\n (h : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n : motive q₁ q₂", "start": [ 1705, 1 ], "end": [ 1714, 10 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.inductionOn₂", "code": "@[elab_as_elim]\nprotected theorem inductionOn₂\n {motive : Quotient s₁ → Quotient s₂ → Prop}\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (h : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n : motive q₁ q₂", "start": [ 1716, 1 ], "end": [ 1725, 10 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.inductionOn₃", "code": "@[elab_as_elim]\nprotected theorem inductionOn₃\n {s₃ : Setoid φ}\n {motive : Quotient s₁ → Quotient s₂ → Quotient s₃ → Prop}\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (q₃ : Quotient s₃)\n (h : (a : α) → (b : β) → (c : φ) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b) (Quotient.mk s₃ c))\n : motive q₁ q₂ q₃", "start": [ 1727, 1 ], "end": [ 1739, 10 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.rel", "code": "private def rel {s : Setoid α} (q₁ q₂ : Quotient s) : Prop :=\n Quotient.liftOn₂ q₁ q₂\n (fun a₁ a₂ => a₁ ≈ a₂)\n (fun _ _ _ _ a₁b₁ a₂b₂ =>\n propext (Iff.intro\n (fun a₁a₂ => Setoid.trans (Setoid.symm a₁b₁) (Setoid.trans a₁a₂ a₂b₂))\n (fun b₁b₂ => Setoid.trans a₁b₁ (Setoid.trans b₁b₂ (Setoid.symm a₂b₂)))))", "start": [ 1747, 1 ], "end": [ 1753, 81 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.rel.refl", "code": "private theorem rel.refl {s : Setoid α} (q : Quotient s) : rel q q", "start": [ 1755, 1 ], "end": [ 1756, 28 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.rel_of_eq", "code": "private theorem rel_of_eq {s : Setoid α} {q₁ q₂ : Quotient s} : q₁ = q₂ → rel q₁ q₂", "start": [ 1758, 1 ], "end": [ 1759, 38 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.exact", "code": "theorem exact {s : Setoid α} {a b : α} : Quotient.mk s a = Quotient.mk s b → a ≈ b", "start": [ 1761, 1 ], "end": [ 1762, 23 ], "kind": "commanddeclaration" }, { "full_name": "Quotient.recOnSubsingleton₂", "code": "@[elab_as_elim]\nprotected abbrev recOnSubsingleton₂\n {motive : Quotient s₁ → Quotient s₂ → Sort uC}\n [s : (a : α) → (b : β) → Subsingleton (motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))]\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (g : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n : motive q₁ q₂ := by\n induction q₁ using Quot.recOnSubsingleton\n induction q₂ using Quot.recOnSubsingleton\n apply g\n intro a; apply s\n induction q₂ using Quot.recOnSubsingleton\n intro a; apply s\n infer_instance", "start": [ 1771, 1 ], "end": [ 1786, 17 ], "kind": "commanddeclaration" }, { "full_name": "funext", "code": "theorem funext {α : Sort u} {β : α → Sort v} {f g : (x : α) → β x}\n (h : ∀ x, f x = g x) : f = g", "start": [ 1805, 1 ], "end": [ 1825, 42 ], "kind": "commanddeclaration" }, { "full_name": "Squash", "code": "def Squash (α : Type u) := Quot (fun (_ _ : α) => True)", "start": [ 1832, 1 ], "end": [ 1846, 56 ], "kind": "commanddeclaration" }, { "full_name": "Squash.mk", "code": "def Squash.mk {α : Type u} (x : α) : Squash α := Quot.mk _ x", "start": [ 1848, 1 ], "end": [ 1849, 61 ], "kind": "commanddeclaration" }, { "full_name": "Squash.ind", "code": "theorem Squash.ind {α : Type u} {motive : Squash α → Prop} (h : ∀ (a : α), motive (Squash.mk a)) : ∀ (q : Squash α), motive q", "start": [ 1851, 1 ], "end": [ 1852, 13 ], "kind": "commanddeclaration" }, { "full_name": "Squash.lift", "code": "@[inline] def Squash.lift {α β} [Subsingleton β] (s : Squash α) (f : α → β) : β :=\n Quot.lift f (fun _ _ _ => Subsingleton.elim _ _) s", "start": [ 1854, 1 ], "end": [ 1856, 53 ], "kind": "commanddeclaration" }, { "full_name": "Antisymm", "code": "class Antisymm {α : Sort u} (r : α → α → Prop) where\n \n antisymm {a b : α} : r a b → r b a → a = b", "start": [ 1867, 1 ], "end": [ 1872, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.trustCompiler", "code": "axiom trustCompiler : True", "start": [ 1877, 1 ], "end": [ 1880, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.reduceBool", "code": "opaque reduceBool (b : Bool) : Bool :=\n have := trustCompiler\n b", "start": [ 1882, 1 ], "end": [ 1904, 4 ], "kind": "commanddeclaration" }, { "full_name": "Lean.reduceNat", "code": "opaque reduceNat (n : Nat) : Nat :=\n have := trustCompiler\n n", "start": [ 1906, 1 ], "end": [ 1916, 4 ], "kind": "commanddeclaration" }, { "full_name": "Lean.ofReduceBool", "code": "axiom ofReduceBool (a b : Bool) (h : reduceBool a = b) : a = b", "start": [ 1919, 1 ], "end": [ 1932, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.ofReduceNat", "code": "axiom ofReduceNat (a b : Nat) (h : reduceNat a = b) : a = b", "start": [ 1934, 1 ], "end": [ 1943, 60 ], "kind": "commanddeclaration" }, { "full_name": "ge_iff_le", "code": "@[simp] theorem ge_iff_le [LE α] {x y : α} : x ≥ y ↔ y ≤ x", "start": [ 1947, 1 ], "end": [ 1947, 70 ], "kind": "commanddeclaration" }, { "full_name": "gt_iff_lt", "code": "@[simp] theorem gt_iff_lt [LT α] {x y : α} : x > y ↔ y < x", "start": [ 1949, 1 ], "end": [ 1949, 70 ], "kind": "commanddeclaration" }, { "full_name": "le_of_eq_of_le", "code": "theorem le_of_eq_of_le {a b c : α} [LE α] (h₁ : a = b) (h₂ : b ≤ c) : a ≤ c", "start": [ 1951, 1 ], "end": [ 1951, 87 ], "kind": "commanddeclaration" }, { "full_name": "le_of_le_of_eq", "code": "theorem le_of_le_of_eq {a b c : α} [LE α] (h₁ : a ≤ b) (h₂ : b = c) : a ≤ c", "start": [ 1953, 1 ], "end": [ 1953, 87 ], "kind": "commanddeclaration" }, { "full_name": "lt_of_eq_of_lt", "code": "theorem lt_of_eq_of_lt {a b c : α} [LT α] (h₁ : a = b) (h₂ : b < c) : a < c", "start": [ 1955, 1 ], "end": [ 1955, 87 ], "kind": "commanddeclaration" }, { "full_name": "lt_of_lt_of_eq", "code": "theorem lt_of_lt_of_eq {a b c : α} [LT α] (h₁ : a < b) (h₂ : b = c) : a < c", "start": [ 1957, 1 ], "end": [ 1957, 87 ], "kind": "commanddeclaration" }, { "full_name": "Std.Associative", "code": "class Associative (op : α → α → α) : Prop where\n \n assoc : (a b c : α) → op (op a b) c = op a (op b c)", "start": [ 1962, 1 ], "end": [ 1968, 54 ], "kind": "commanddeclaration" }, { "full_name": "Std.Commutative", "code": "class Commutative (op : α → α → α) : Prop where\n \n comm : (a b : α) → op a b = op b a", "start": [ 1970, 1 ], "end": [ 1976, 37 ], "kind": "commanddeclaration" }, { "full_name": "Std.IdempotentOp", "code": "class IdempotentOp (op : α → α → α) : Prop where\n \n idempotent : (x : α) → op x x = x", "start": [ 1978, 1 ], "end": [ 1984, 36 ], "kind": "commanddeclaration" }, { "full_name": "Std.LeftIdentity", "code": "class LeftIdentity (op : α → β → β) (o : outParam α) : Prop", "start": [ 1986, 1 ], "end": [ 1992, 60 ], "kind": "commanddeclaration" }, { "full_name": "Std.LawfulLeftIdentity", "code": "class LawfulLeftIdentity (op : α → β → β) (o : outParam α) extends LeftIdentity op o : Prop where\n \n left_id : ∀ a, op o a = a", "start": [ 1994, 1 ], "end": [ 2000, 28 ], "kind": "commanddeclaration" }, { "full_name": "Std.RightIdentity", "code": "class RightIdentity (op : α → β → α) (o : outParam β) : Prop", "start": [ 2002, 1 ], "end": [ 2008, 61 ], "kind": "commanddeclaration" }, { "full_name": "Std.LawfulRightIdentity", "code": "class LawfulRightIdentity (op : α → β → α) (o : outParam β) extends RightIdentity op o : Prop where\n \n right_id : ∀ a, op a o = a", "start": [ 2010, 1 ], "end": [ 2016, 29 ], "kind": "commanddeclaration" }, { "full_name": "Std.Identity", "code": "class Identity (op : α → α → α) (o : outParam α) extends LeftIdentity op o, RightIdentity op o : Prop", "start": [ 2018, 1 ], "end": [ 2024, 102 ], "kind": "commanddeclaration" }, { "full_name": "Std.LawfulIdentity", "code": "class LawfulIdentity (op : α → α → α) (o : outParam α) extends Identity op o, LawfulLeftIdentity op o, LawfulRightIdentity op o : Prop", "start": [ 2026, 1 ], "end": [ 2030, 135 ], "kind": "commanddeclaration" }, { "full_name": "Std.LawfulCommIdentity", "code": "class LawfulCommIdentity (op : α → α → α) (o : outParam α) [hc : Commutative op] extends LawfulIdentity op o : Prop where\n left_id a := Eq.trans (hc.comm o a) (right_id a)\n right_id a := Eq.trans (hc.comm a o) (left_id a)", "start": [ 2032, 1 ], "end": [ 2043, 51 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/SimpLemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "of_eq_true", "code": "theorem of_eq_true (h : p = True) : p", "start": [ 12, 1 ], "end": [ 12, 53 ], "kind": "commanddeclaration" }, { "full_name": "of_eq_false", "code": "theorem of_eq_false (h : p = False) : ¬ p", "start": [ 13, 1 ], "end": [ 13, 76 ], "kind": "commanddeclaration" }, { "full_name": "eq_true", "code": "theorem eq_true (h : p) : p = True", "start": [ 15, 1 ], "end": [ 16, 41 ], "kind": "commanddeclaration" }, { "full_name": "eq_false", "code": "theorem eq_false (h : ¬ p) : p = False", "start": [ 21, 1 ], "end": [ 22, 59 ], "kind": "commanddeclaration" }, { "full_name": "eq_false'", "code": "theorem eq_false' (h : p → False) : p = False", "start": [ 24, 1 ], "end": [ 24, 60 ], "kind": "commanddeclaration" }, { "full_name": "eq_true_of_decide", "code": "theorem eq_true_of_decide {p : Prop} [Decidable p] (h : decide p = true) : p = True", "start": [ 26, 1 ], "end": [ 27, 32 ], "kind": "commanddeclaration" }, { "full_name": "eq_false_of_decide", "code": "theorem eq_false_of_decide {p : Prop} {_ : Decidable p} (h : decide p = false) : p = False", "start": [ 29, 1 ], "end": [ 30, 34 ], "kind": "commanddeclaration" }, { "full_name": "eq_self", "code": "@[simp] theorem eq_self (a : α) : (a = a) = True", "start": [ 32, 1 ], "end": [ 32, 64 ], "kind": "commanddeclaration" }, { "full_name": "implies_congr", "code": "theorem implies_congr {p₁ p₂ : Sort u} {q₁ q₂ : Sort v} (h₁ : p₁ = p₂) (h₂ : q₁ = q₂) : (p₁ → q₁) = (p₂ → q₂)", "start": [ 34, 1 ], "end": [ 35, 16 ], "kind": "commanddeclaration" }, { "full_name": "iff_congr", "code": "theorem iff_congr {p₁ p₂ q₁ q₂ : Prop} (h₁ : p₁ ↔ p₂) (h₂ : q₁ ↔ q₂) : (p₁ ↔ q₁) ↔ (p₂ ↔ q₂)", "start": [ 37, 1 ], "end": [ 38, 44 ], "kind": "commanddeclaration" }, { "full_name": "implies_dep_congr_ctx", "code": "theorem implies_dep_congr_ctx {p₁ p₂ q₁ : Prop} (h₁ : p₁ = p₂) {q₂ : p₂ → Prop} (h₂ : (h : p₂) → q₁ = q₂ h) : (p₁ → q₁) = ((h : p₂) → q₂ h)", "start": [ 40, 1 ], "end": [ 43, 57 ], "kind": "commanddeclaration" }, { "full_name": "implies_congr_ctx", "code": "theorem implies_congr_ctx {p₁ p₂ q₁ q₂ : Prop} (h₁ : p₁ = p₂) (h₂ : p₂ → q₁ = q₂) : (p₁ → q₁) = (p₂ → q₂)", "start": [ 45, 1 ], "end": [ 46, 30 ], "kind": "commanddeclaration" }, { "full_name": "forall_congr", "code": "theorem forall_congr {α : Sort u} {p q : α → Prop} (h : ∀ a, p a = q a) : (∀ a, p a) = (∀ a, q a)", "start": [ 48, 1 ], "end": [ 49, 27 ], "kind": "commanddeclaration" }, { "full_name": "forall_prop_domain_congr", "code": "theorem forall_prop_domain_congr {p₁ p₂ : Prop} {q₁ : p₁ → Prop} {q₂ : p₂ → Prop}\n (h₁ : p₁ = p₂)\n (h₂ : ∀ a : p₂, q₁ (h₁.substr a) = q₂ a)\n : (∀ a : p₁, q₁ a) = (∀ a : p₂, q₂ a)", "start": [ 51, 1 ], "end": [ 55, 24 ], "kind": "commanddeclaration" }, { "full_name": "let_congr", "code": "theorem let_congr {α : Sort u} {β : Sort v} {a a' : α} {b b' : α → β}\n (h₁ : a = a') (h₂ : ∀ x, b x = b' x) : (let x := a; b x) = (let x := a'; b' x)", "start": [ 57, 1 ], "end": [ 59, 34 ], "kind": "commanddeclaration" }, { "full_name": "let_val_congr", "code": "theorem let_val_congr {α : Sort u} {β : Sort v} {a a' : α}\n (b : α → β) (h : a = a') : (let x := a; b x) = (let x := a'; b x)", "start": [ 61, 1 ], "end": [ 62, 81 ], "kind": "commanddeclaration" }, { "full_name": "let_body_congr", "code": "theorem let_body_congr {α : Sort u} {β : α → Sort v} {b b' : (a : α) → β a}\n (a : α) (h : ∀ x, b x = b' x) : (let x := a; b x) = (let x := a; b' x)", "start": [ 64, 1 ], "end": [ 66, 28 ], "kind": "commanddeclaration" }, { "full_name": "ite_congr", "code": "@[congr]\ntheorem ite_congr {x y u v : α} {s : Decidable b} [Decidable c]\n (h₁ : b = c) (h₂ : c → x = u) (h₃ : ¬ c → y = v) : ite b x y = ite c u v", "start": [ 68, 1 ], "end": [ 73, 63 ], "kind": "commanddeclaration" }, { "full_name": "Eq.mpr_prop", "code": "theorem Eq.mpr_prop {p q : Prop} (h₁ : p = q) (h₂ : q) : p", "start": [ 75, 1 ], "end": [ 75, 72 ], "kind": "commanddeclaration" }, { "full_name": "Eq.mpr_not", "code": "theorem Eq.mpr_not {p q : Prop} (h₁ : p = q) (h₂ : ¬q) : ¬p", "start": [ 76, 1 ], "end": [ 76, 72 ], "kind": "commanddeclaration" }, { "full_name": "dite_congr", "code": "@[congr]\ntheorem dite_congr {_ : Decidable b} [Decidable c]\n {x : b → α} {u : c → α} {y : ¬b → α} {v : ¬c → α}\n (h₁ : b = c)\n (h₂ : (h : c) → x (h₁.mpr_prop h) = u h)\n (h₃ : (h : ¬c) → y (h₁.mpr_not h) = v h) :\n dite b x y = dite c u v", "start": [ 78, 1 ], "end": [ 87, 65 ], "kind": "commanddeclaration" }, { "full_name": "ne_eq", "code": "@[simp] theorem ne_eq (a b : α) : (a ≠ b) = ¬(a = b)", "start": [ 89, 1 ], "end": [ 89, 60 ], "kind": "commanddeclaration" }, { "full_name": "ite_true", "code": "@[simp] theorem ite_true (a b : α) : (if True then a else b) = a", "start": [ 91, 1 ], "end": [ 91, 72 ], "kind": "commanddeclaration" }, { "full_name": "ite_false", "code": "@[simp] theorem ite_false (a b : α) : (if False then a else b) = b", "start": [ 92, 1 ], "end": [ 92, 74 ], "kind": "commanddeclaration" }, { "full_name": "dite_true", "code": "@[simp] theorem dite_true {α : Sort u} {t : True → α} {e : ¬ True → α} : (dite True t e) = t True.intro", "start": [ 93, 1 ], "end": [ 93, 111 ], "kind": "commanddeclaration" }, { "full_name": "dite_false", "code": "@[simp] theorem dite_false {α : Sort u} {t : False → α} {e : ¬ False → α} : (dite False t e) = e not_false", "start": [ 94, 1 ], "end": [ 94, 114 ], "kind": "commanddeclaration" }, { "full_name": "ite_cond_eq_true", "code": "theorem ite_cond_eq_true {α : Sort u} {c : Prop} {_ : Decidable c} (a b : α) (h : c = True) : (if c then a else b) = a", "start": [ 97, 1 ], "end": [ 97, 134 ], "kind": "commanddeclaration" }, { "full_name": "ite_cond_eq_false", "code": "theorem ite_cond_eq_false {α : Sort u} {c : Prop} {_ : Decidable c} (a b : α) (h : c = False) : (if c then a else b) = b", "start": [ 98, 1 ], "end": [ 98, 136 ], "kind": "commanddeclaration" }, { "full_name": "dite_cond_eq_true", "code": "theorem dite_cond_eq_true {α : Sort u} {c : Prop} {_ : Decidable c} {t : c → α} {e : ¬ c → α} (h : c = True) : (dite c t e) = t (of_eq_true h)", "start": [ 99, 1 ], "end": [ 99, 158 ], "kind": "commanddeclaration" }, { "full_name": "dite_cond_eq_false", "code": "theorem dite_cond_eq_false {α : Sort u} {c : Prop} {_ : Decidable c} {t : c → α} {e : ¬ c → α} (h : c = False) : (dite c t e) = e (of_eq_false h)", "start": [ 100, 1 ], "end": [ 100, 161 ], "kind": "commanddeclaration" }, { "full_name": "ite_self", "code": "@[simp] theorem ite_self {α : Sort u} {c : Prop} {d : Decidable c} (a : α) : ite c a a = a", "start": [ 102, 1 ], "end": [ 102, 113 ], "kind": "commanddeclaration" }, { "full_name": "and_true", "code": "@[simp] theorem and_true (p : Prop) : (p ∧ True) = p", "start": [ 104, 1 ], "end": [ 104, 88 ], "kind": "commanddeclaration" }, { "full_name": "true_and", "code": "@[simp] theorem true_and (p : Prop) : (True ∧ p) = p", "start": [ 105, 1 ], "end": [ 105, 88 ], "kind": "commanddeclaration" }, { "full_name": "and_false", "code": "@[simp] theorem and_false (p : Prop) : (p ∧ False) = False", "start": [ 109, 1 ], "end": [ 109, 77 ], "kind": "commanddeclaration" }, { "full_name": "false_and", "code": "@[simp] theorem false_and (p : Prop) : (False ∧ p) = False", "start": [ 110, 1 ], "end": [ 110, 77 ], "kind": "commanddeclaration" }, { "full_name": "and_self", "code": "@[simp] theorem and_self (p : Prop) : (p ∧ p) = p", "start": [ 111, 1 ], "end": [ 111, 89 ], "kind": "commanddeclaration" }, { "full_name": "and_not_self", "code": "@[simp] theorem and_not_self : ¬(a ∧ ¬a)", "start": [ 113, 1 ], "end": [ 113, 68 ], "kind": "commanddeclaration" }, { "full_name": "not_and_self", "code": "@[simp] theorem not_and_self : ¬(¬a ∧ a)", "start": [ 114, 1 ], "end": [ 114, 68 ], "kind": "commanddeclaration" }, { "full_name": "and_imp", "code": "@[simp] theorem and_imp : (a ∧ b → c) ↔ (a → b → c)", "start": [ 115, 1 ], "end": [ 115, 110 ], "kind": "commanddeclaration" }, { "full_name": "not_and", "code": "@[simp] theorem not_and : ¬(a ∧ b) ↔ (a → ¬b)", "start": [ 116, 1 ], "end": [ 116, 57 ], "kind": "commanddeclaration" }, { "full_name": "or_self", "code": "@[simp] theorem or_self (p : Prop) : (p ∨ p) = p", "start": [ 117, 1 ], "end": [ 117, 95 ], "kind": "commanddeclaration" }, { "full_name": "or_true", "code": "@[simp] theorem or_true (p : Prop) : (p ∨ True) = True", "start": [ 119, 1 ], "end": [ 119, 81 ], "kind": "commanddeclaration" }, { "full_name": "true_or", "code": "@[simp] theorem true_or (p : Prop) : (True ∨ p) = True", "start": [ 120, 1 ], "end": [ 120, 81 ], "kind": "commanddeclaration" }, { "full_name": "or_false", "code": "@[simp] theorem or_false (p : Prop) : (p ∨ False) = p", "start": [ 121, 1 ], "end": [ 121, 91 ], "kind": "commanddeclaration" }, { "full_name": "false_or", "code": "@[simp] theorem false_or (p : Prop) : (False ∨ p) = p", "start": [ 122, 1 ], "end": [ 122, 91 ], "kind": "commanddeclaration" }, { "full_name": "iff_self", "code": "@[simp] theorem iff_self (p : Prop) : (p ↔ p) = True", "start": [ 126, 1 ], "end": [ 126, 69 ], "kind": "commanddeclaration" }, { "full_name": "iff_true", "code": "@[simp] theorem iff_true (p : Prop) : (p ↔ True) = p", "start": [ 127, 1 ], "end": [ 127, 121 ], "kind": "commanddeclaration" }, { "full_name": "true_iff", "code": "@[simp] theorem true_iff (p : Prop) : (True ↔ p) = p", "start": [ 128, 1 ], "end": [ 128, 121 ], "kind": "commanddeclaration" }, { "full_name": "iff_false", "code": "@[simp] theorem iff_false (p : Prop) : (p ↔ False) = ¬p", "start": [ 129, 1 ], "end": [ 129, 94 ], "kind": "commanddeclaration" }, { "full_name": "false_iff", "code": "@[simp] theorem false_iff (p : Prop) : (False ↔ p) = ¬p", "start": [ 130, 1 ], "end": [ 130, 94 ], "kind": "commanddeclaration" }, { "full_name": "false_implies", "code": "@[simp] theorem false_implies (p : Prop) : (False → p) = True", "start": [ 131, 1 ], "end": [ 131, 84 ], "kind": "commanddeclaration" }, { "full_name": "implies_true", "code": "@[simp] theorem implies_true (α : Sort u) : (α → True) = True", "start": [ 132, 1 ], "end": [ 132, 90 ], "kind": "commanddeclaration" }, { "full_name": "true_implies", "code": "@[simp] theorem true_implies (p : Prop) : (True → p) = p", "start": [ 133, 1 ], "end": [ 133, 96 ], "kind": "commanddeclaration" }, { "full_name": "not_false_eq_true", "code": "@[simp] theorem not_false_eq_true : (¬ False) = True", "start": [ 134, 1 ], "end": [ 134, 75 ], "kind": "commanddeclaration" }, { "full_name": "not_true_eq_false", "code": "@[simp] theorem not_true_eq_false : (¬ True) = False", "start": [ 135, 1 ], "end": [ 135, 66 ], "kind": "commanddeclaration" }, { "full_name": "not_iff_self", "code": "@[simp] theorem not_iff_self : ¬(¬a ↔ a)", "start": [ 137, 1 ], "end": [ 137, 68 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_right", "code": "theorem and_congr_right (h : a → (b ↔ c)) : a ∧ b ↔ a ∧ c", "start": [ 142, 1 ], "end": [ 144, 59 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_left", "code": "theorem and_congr_left (h : c → (a ↔ b)) : a ∧ c ↔ b ∧ c", "start": [ 145, 1 ], "end": [ 146, 62 ], "kind": "commanddeclaration" }, { "full_name": "and_assoc", "code": "theorem and_assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)", "start": [ 148, 1 ], "end": [ 150, 49 ], "kind": "commanddeclaration" }, { "full_name": "and_self_left", "code": "@[simp] theorem and_self_left : a ∧ (a ∧ b) ↔ a ∧ b", "start": [ 153, 1 ], "end": [ 153, 93 ], "kind": "commanddeclaration" }, { "full_name": "and_self_right", "code": "@[simp] theorem and_self_right : (a ∧ b) ∧ b ↔ a ∧ b", "start": [ 154, 1 ], "end": [ 154, 93 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_right_iff", "code": "@[simp] theorem and_congr_right_iff : (a ∧ b ↔ a ∧ c) ↔ (a → (b ↔ c))", "start": [ 156, 1 ], "end": [ 157, 69 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_left_iff", "code": "@[simp] theorem and_congr_left_iff : (a ∧ c ↔ b ∧ c) ↔ c → (a ↔ b)", "start": [ 158, 1 ], "end": [ 159, 59 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_left_of_imp", "code": "theorem and_iff_left_of_imp (h : a → b) : (a ∧ b) ↔ a", "start": [ 161, 1 ], "end": [ 161, 109 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_right_of_imp", "code": "theorem and_iff_right_of_imp (h : b → a) : (a ∧ b) ↔ b", "start": [ 162, 1 ], "end": [ 162, 101 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_left_iff_imp", "code": "@[simp] theorem and_iff_left_iff_imp : ((a ∧ b) ↔ a) ↔ (a → b)", "start": [ 164, 1 ], "end": [ 164, 117 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_right_iff_imp", "code": "@[simp] theorem and_iff_right_iff_imp : ((a ∧ b) ↔ b) ↔ (b → a)", "start": [ 165, 1 ], "end": [ 165, 117 ], "kind": "commanddeclaration" }, { "full_name": "iff_self_and", "code": "@[simp] theorem iff_self_and : (p ↔ p ∧ q) ↔ (p → q)", "start": [ 167, 1 ], "end": [ 167, 98 ], "kind": "commanddeclaration" }, { "full_name": "iff_and_self", "code": "@[simp] theorem iff_and_self : (p ↔ q ∧ p) ↔ (p → q)", "start": [ 168, 1 ], "end": [ 168, 87 ], "kind": "commanddeclaration" }, { "full_name": "Or.imp", "code": "theorem Or.imp (f : a → c) (g : b → d) (h : a ∨ b) : c ∨ d", "start": [ 172, 1 ], "end": [ 172, 89 ], "kind": "commanddeclaration" }, { "full_name": "Or.imp_left", "code": "theorem Or.imp_left (f : a → b) : a ∨ c → b ∨ c", "start": [ 173, 1 ], "end": [ 173, 61 ], "kind": "commanddeclaration" }, { "full_name": "Or.imp_right", "code": "theorem Or.imp_right (f : b → c) : a ∨ b → a ∨ c", "start": [ 174, 1 ], "end": [ 174, 62 ], "kind": "commanddeclaration" }, { "full_name": "or_assoc", "code": "theorem or_assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c)", "start": [ 176, 1 ], "end": [ 178, 50 ], "kind": "commanddeclaration" }, { "full_name": "or_self_left", "code": "@[simp] theorem or_self_left : a ∨ (a ∨ b) ↔ a ∨ b", "start": [ 181, 1 ], "end": [ 181, 90 ], "kind": "commanddeclaration" }, { "full_name": "or_self_right", "code": "@[simp] theorem or_self_right : (a ∨ b) ∨ b ↔ a ∨ b", "start": [ 182, 1 ], "end": [ 182, 90 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_right_of_imp", "code": "theorem or_iff_right_of_imp (ha : a → b) : (a ∨ b) ↔ b", "start": [ 184, 1 ], "end": [ 184, 88 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_left_of_imp", "code": "theorem or_iff_left_of_imp (hb : b → a) : (a ∨ b) ↔ a", "start": [ 185, 1 ], "end": [ 185, 89 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_left_iff_imp", "code": "@[simp] theorem or_iff_left_iff_imp : (a ∨ b ↔ a) ↔ (b → a)", "start": [ 187, 1 ], "end": [ 187, 109 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_right_iff_imp", "code": "@[simp] theorem or_iff_right_iff_imp : (a ∨ b ↔ b) ↔ (a → b)", "start": [ 188, 1 ], "end": [ 188, 101 ], "kind": "commanddeclaration" }, { "full_name": "iff_self_or", "code": "@[simp] theorem iff_self_or (a b : Prop) : (a ↔ a ∨ b) ↔ (b → a)", "start": [ 190, 1 ], "end": [ 191, 53 ], "kind": "commanddeclaration" }, { "full_name": "iff_or_self", "code": "@[simp] theorem iff_or_self (a b : Prop) : (b ↔ a ∨ b) ↔ (a → b)", "start": [ 192, 1 ], "end": [ 193, 54 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_false", "code": "@[simp] theorem Bool.or_false (b : Bool) : (b || false) = b", "start": [ 197, 1 ], "end": [ 197, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_true", "code": "@[simp] theorem Bool.or_true (b : Bool) : (b || true) = true", "start": [ 198, 1 ], "end": [ 198, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_or", "code": "@[simp] theorem Bool.false_or (b : Bool) : (false || b) = b", "start": [ 199, 1 ], "end": [ 199, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_or", "code": "@[simp] theorem Bool.true_or (b : Bool) : (true || b) = true", "start": [ 203, 1 ], "end": [ 203, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_self", "code": "@[simp] theorem Bool.or_self (b : Bool) : (b || b) = b", "start": [ 204, 1 ], "end": [ 204, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_eq_true", "code": "@[simp] theorem Bool.or_eq_true (a b : Bool) : ((a || b) = true) = (a = true ∨ b = true)", "start": [ 206, 1 ], "end": [ 207, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_false", "code": "@[simp] theorem Bool.and_false (b : Bool) : (b && false) = false", "start": [ 209, 1 ], "end": [ 209, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_true", "code": "@[simp] theorem Bool.and_true (b : Bool) : (b && true) = b", "start": [ 210, 1 ], "end": [ 210, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_and", "code": "@[simp] theorem Bool.false_and (b : Bool) : (false && b) = false", "start": [ 211, 1 ], "end": [ 211, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_and", "code": "@[simp] theorem Bool.true_and (b : Bool) : (true && b) = b", "start": [ 212, 1 ], "end": [ 212, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_self", "code": "@[simp] theorem Bool.and_self (b : Bool) : (b && b) = b", "start": [ 216, 1 ], "end": [ 216, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_eq_true", "code": "@[simp] theorem Bool.and_eq_true (a b : Bool) : ((a && b) = true) = (a = true ∧ b = true)", "start": [ 218, 1 ], "end": [ 219, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_assoc", "code": "theorem Bool.and_assoc (a b c : Bool) : (a && b && c) = (a && (b && c))", "start": [ 221, 1 ], "end": [ 222, 45 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_assoc", "code": "theorem Bool.or_assoc (a b c : Bool) : (a || b || c) = (a || (b || c))", "start": [ 224, 1 ], "end": [ 225, 45 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_not", "code": "@[simp] theorem Bool.not_not (b : Bool) : (!!b) = b", "start": [ 228, 1 ], "end": [ 228, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_true", "code": "@[simp] theorem Bool.not_true : (!true) = false", "start": [ 229, 1 ], "end": [ 229, 62 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_false", "code": "@[simp] theorem Bool.not_false : (!false) = true", "start": [ 230, 1 ], "end": [ 230, 62 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_beq_true", "code": "@[simp] theorem Bool.not_beq_true (b : Bool) : (!(b == true)) = (b == false)", "start": [ 231, 1 ], "end": [ 231, 100 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_beq_false", "code": "@[simp] theorem Bool.not_beq_false (b : Bool) : (!(b == false)) = (b == true)", "start": [ 232, 1 ], "end": [ 232, 100 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_true'", "code": "@[simp] theorem Bool.not_eq_true' (b : Bool) : ((!b) = true) = (b = false)", "start": [ 233, 1 ], "end": [ 233, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_false'", "code": "@[simp] theorem Bool.not_eq_false' (b : Bool) : ((!b) = false) = (b = true)", "start": [ 234, 1 ], "end": [ 234, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_to_eq", "code": "@[simp] theorem Bool.beq_to_eq (a b : Bool) :\n (a == b) = (a = b)", "start": [ 236, 1 ], "end": [ 237, 58 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_beq_to_not_eq", "code": "@[simp] theorem Bool.not_beq_to_not_eq (a b : Bool) :\n (!(a == b)) = ¬(a = b)", "start": [ 238, 1 ], "end": [ 239, 62 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_true", "code": "@[simp] theorem Bool.not_eq_true (b : Bool) : (¬(b = true)) = (b = false)", "start": [ 241, 1 ], "end": [ 241, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_false", "code": "@[simp] theorem Bool.not_eq_false (b : Bool) : (¬(b = false)) = (b = true)", "start": [ 242, 1 ], "end": [ 242, 100 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_true_eq", "code": "@[simp] theorem decide_eq_true_eq [Decidable p] : (decide p = true) = p", "start": [ 244, 1 ], "end": [ 245, 56 ], "kind": "commanddeclaration" }, { "full_name": "decide_not", "code": "@[simp] theorem decide_not [g : Decidable p] [h : Decidable (Not p)] : decide (Not p) = !(decide p)", "start": [ 246, 1 ], "end": [ 247, 44 ], "kind": "commanddeclaration" }, { "full_name": "not_decide_eq_true", "code": "@[simp] theorem not_decide_eq_true [h : Decidable p] : ((!decide p) = true) = ¬ p", "start": [ 248, 1 ], "end": [ 249, 47 ], "kind": "commanddeclaration" }, { "full_name": "heq_eq_eq", "code": "@[simp] theorem heq_eq_eq (a b : α) : HEq a b = (a = b)", "start": [ 251, 1 ], "end": [ 251, 100 ], "kind": "commanddeclaration" }, { "full_name": "cond_true", "code": "@[simp] theorem cond_true (a b : α) : cond true a b = a", "start": [ 253, 1 ], "end": [ 253, 63 ], "kind": "commanddeclaration" }, { "full_name": "cond_false", "code": "@[simp] theorem cond_false (a b : α) : cond false a b = b", "start": [ 254, 1 ], "end": [ 254, 65 ], "kind": "commanddeclaration" }, { "full_name": "beq_self_eq_true", "code": "@[simp] theorem beq_self_eq_true [BEq α] [LawfulBEq α] (a : α) : (a == a) = true", "start": [ 256, 1 ], "end": [ 256, 98 ], "kind": "commanddeclaration" }, { "full_name": "beq_self_eq_true'", "code": "@[simp] theorem beq_self_eq_true' [DecidableEq α] (a : α) : (a == a) = true", "start": [ 257, 1 ], "end": [ 257, 97 ], "kind": "commanddeclaration" }, { "full_name": "bne_self_eq_false", "code": "@[simp] theorem bne_self_eq_false [BEq α] [LawfulBEq α] (a : α) : (a != a) = false", "start": [ 259, 1 ], "end": [ 259, 100 ], "kind": "commanddeclaration" }, { "full_name": "bne_self_eq_false'", "code": "@[simp] theorem bne_self_eq_false' [DecidableEq α] (a : α) : (a != a) = false", "start": [ 260, 1 ], "end": [ 260, 95 ], "kind": "commanddeclaration" }, { "full_name": "decide_False", "code": "@[simp] theorem decide_False : decide False = false", "start": [ 262, 1 ], "end": [ 262, 59 ], "kind": "commanddeclaration" }, { "full_name": "decide_True", "code": "@[simp] theorem decide_True : decide True = true", "start": [ 263, 1 ], "end": [ 263, 58 ], "kind": "commanddeclaration" }, { "full_name": "bne_iff_ne", "code": "@[simp] theorem bne_iff_ne [BEq α] [LawfulBEq α] (a b : α) : a != b ↔ a ≠ b", "start": [ 265, 1 ], "end": [ 266, 56 ], "kind": "commanddeclaration" }, { "full_name": "beq_eq_false_iff_ne", "code": "@[simp] theorem beq_eq_false_iff_ne [BEq α] [LawfulBEq α]\n (a b : α) : (a == b) = false ↔ a ≠ b", "start": [ 276, 1 ], "end": [ 279, 26 ], "kind": "commanddeclaration" }, { "full_name": "bne_eq_false_iff_eq", "code": "@[simp] theorem bne_eq_false_iff_eq [BEq α] [LawfulBEq α] (a b : α) :\n (a != b) = false ↔ a = b", "start": [ 281, 1 ], "end": [ 284, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_zero_eq", "code": "@[simp] theorem Nat.le_zero_eq (a : Nat) : (a ≤ 0) = (a = 0)", "start": [ 288, 1 ], "end": [ 289, 84 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/SimpLemmas.lean" ]
[ { "full_name": "Nat.recCompiled", "code": "private def recCompiled {motive : Nat → Sort u} (zero : motive zero) (succ : (n : Nat) → motive n → motive (Nat.succ n)) : (t : Nat) → motive t\n | .zero => zero\n | .succ n => succ n (recCompiled zero succ n)", "start": [ 13, 1 ], "end": [ 17, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.rec_eq_recCompiled", "code": "@[csimp]\nprivate theorem rec_eq_recCompiled : @Nat.rec = @Nat.recCompiled", "start": [ 19, 1 ], "end": [ 22, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.recAux", "code": "@[elab_as_elim, induction_eliminator]\nprotected abbrev recAux {motive : Nat → Sort u} (zero : motive 0) (succ : (n : Nat) → motive n → motive (n + 1)) (t : Nat) : motive t :=\n Nat.rec zero succ t", "start": [ 24, 1 ], "end": [ 28, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.casesAuxOn", "code": "@[elab_as_elim, cases_eliminator]\nprotected abbrev casesAuxOn {motive : Nat → Sort u} (t : Nat) (zero : motive 0) (succ : (n : Nat) → motive (n + 1)) : motive t :=\n Nat.casesOn t zero succ", "start": [ 30, 1 ], "end": [ 34, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.fold", "code": "@[specialize] def fold {α : Type u} (f : Nat → α → α) : (n : Nat) → (init : α) → α\n | 0, a => a\n | succ n, a => f n (fold f n a)", "start": [ 36, 1 ], "end": [ 42, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.foldTR", "code": "@[inline] def foldTR {α : Type u} (f : Nat → α → α) (n : Nat) (init : α) : α :=\n let rec @[specialize] loop\n | 0, a => a\n | succ m, a => loop m (f (n - succ m) a)\n loop n init", "start": [ 44, 1 ], "end": [ 49, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.foldRev", "code": "@[specialize] def foldRev {α : Type u} (f : Nat → α → α) : (n : Nat) → (init : α) → α\n | 0, a => a\n | succ n, a => foldRev f n (f n a)", "start": [ 51, 1 ], "end": [ 57, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.any", "code": "@[specialize] def any (f : Nat → Bool) : Nat → Bool\n | 0 => false\n | succ n => any f n || f n", "start": [ 59, 1 ], "end": [ 62, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.anyTR", "code": "@[inline] def anyTR (f : Nat → Bool) (n : Nat) : Bool :=\n let rec @[specialize] loop : Nat → Bool\n | 0 => false\n | succ m => f (n - succ m) || loop m\n loop n", "start": [ 64, 1 ], "end": [ 69, 9 ], "kind": "commanddeclaration" }, { "full_name": "Nat.all", "code": "@[specialize] def all (f : Nat → Bool) : Nat → Bool\n | 0 => true\n | succ n => all f n && f n", "start": [ 71, 1 ], "end": [ 74, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.allTR", "code": "@[inline] def allTR (f : Nat → Bool) (n : Nat) : Bool :=\n let rec @[specialize] loop : Nat → Bool\n | 0 => true\n | succ m => f (n - succ m) && loop m\n loop n", "start": [ 76, 1 ], "end": [ 81, 9 ], "kind": "commanddeclaration" }, { "full_name": "Nat.repeat", "code": "@[specialize] def repeat {α : Type u} (f : α → α) : (n : Nat) → (a : α) → α\n | 0, a => a\n | succ n, a => f (repeat f n a)", "start": [ 83, 1 ], "end": [ 89, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.repeatTR", "code": "@[inline] def repeatTR {α : Type u} (f : α → α) (n : Nat) (a : α) : α :=\n let rec @[specialize] loop\n | 0, a => a\n | succ n, a => loop n (f a)\n loop n a", "start": [ 91, 1 ], "end": [ 96, 11 ], "kind": "commanddeclaration" }, { "full_name": "Nat.blt", "code": "def blt (a b : Nat) : Bool :=\n ble a.succ b", "start": [ 98, 1 ], "end": [ 100, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_eq", "code": "@[simp] theorem zero_eq : Nat.zero = 0", "start": [ 106, 1 ], "end": [ 106, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_eq", "code": "@[simp] theorem add_eq : Nat.add x y = x + y", "start": [ 107, 1 ], "end": [ 107, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_eq", "code": "@[simp] theorem mul_eq : Nat.mul x y = x * y", "start": [ 108, 1 ], "end": [ 108, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq", "code": "@[simp] theorem sub_eq : Nat.sub x y = x - y", "start": [ 109, 1 ], "end": [ 109, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_eq", "code": "@[simp] theorem lt_eq : Nat.lt x y = (x < y)", "start": [ 110, 1 ], "end": [ 110, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_eq", "code": "@[simp] theorem le_eq : Nat.le x y = (x ≤ y)", "start": [ 111, 1 ], "end": [ 111, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.beq_refl", "code": "@[simp] theorem beq_refl (a : Nat) : Nat.beq a a = true", "start": [ 115, 1 ], "end": [ 117, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.beq_eq", "code": "@[simp] theorem beq_eq : (Nat.beq x y = true) = (x = y)", "start": [ 119, 1 ], "end": [ 119, 134 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ble_eq", "code": "@[simp] theorem ble_eq : (Nat.ble x y = true) = (x ≤ y)", "start": [ 120, 1 ], "end": [ 120, 124 ], "kind": "commanddeclaration" }, { "full_name": "Nat.blt_eq", "code": "@[simp] theorem blt_eq : (Nat.blt x y = true) = (x < y)", "start": [ 121, 1 ], "end": [ 121, 124 ], "kind": "commanddeclaration" }, { "full_name": "Nat.beq_eq_true_eq", "code": "@[simp] theorem beq_eq_true_eq (a b : Nat) : ((a == b) = true) = (a = b)", "start": [ 127, 1 ], "end": [ 127, 150 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_beq_eq_true_eq", "code": "@[simp] theorem not_beq_eq_true_eq (a b : Nat) : ((!(a == b)) = true) = ¬(a = b)", "start": [ 128, 1 ], "end": [ 133, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_add", "code": "@[simp] protected theorem zero_add : ∀ (n : Nat), 0 + n = n", "start": [ 137, 1 ], "end": [ 139, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_add", "code": "theorem succ_add : ∀ (n m : Nat), (succ n) + m = succ (n + m)", "start": [ 144, 1 ], "end": [ 146, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_succ", "code": "theorem add_succ (n m : Nat) : n + succ m = succ (n + m)", "start": [ 148, 1 ], "end": [ 149, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one", "code": "theorem add_one (n : Nat) : n + 1 = succ n", "start": [ 151, 1 ], "end": [ 152, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_eq_add_one", "code": "@[simp] theorem succ_eq_add_one (n : Nat) : succ n = n + 1", "start": [ 154, 1 ], "end": [ 155, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_ne_zero", "code": "@[simp] theorem add_one_ne_zero (n : Nat) : n + 1 ≠ 0", "start": [ 157, 1 ], "end": [ 157, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_ne_add_one", "code": "@[simp] theorem zero_ne_add_one (n : Nat) : 0 ≠ n + 1", "start": [ 158, 1 ], "end": [ 158, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_comm", "code": "protected theorem add_comm : ∀ (n m : Nat), n + m = m + n", "start": [ 160, 1 ], "end": [ 165, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_assoc", "code": "protected theorem add_assoc : ∀ (n m k : Nat), (n + m) + k = n + (m + k)", "start": [ 168, 1 ], "end": [ 170, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_left_comm", "code": "protected theorem add_left_comm (n m k : Nat) : n + (m + k) = m + (n + k)", "start": [ 173, 1 ], "end": [ 174, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_right_comm", "code": "protected theorem add_right_comm (n m k : Nat) : (n + m) + k = (n + k) + m", "start": [ 176, 1 ], "end": [ 177, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_left_cancel", "code": "protected theorem add_left_cancel {n m k : Nat} : n + m = n + k → m = k", "start": [ 179, 1 ], "end": [ 182, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_right_cancel", "code": "protected theorem add_right_cancel {n m k : Nat} (h : n + m = k + m) : n = k", "start": [ 184, 1 ], "end": [ 186, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_add_eq_zero", "code": "theorem eq_zero_of_add_eq_zero : ∀ {n m}, n + m = 0 → n = 0 ∧ m = 0", "start": [ 188, 1 ], "end": [ 190, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_add_eq_zero_left", "code": "protected theorem eq_zero_of_add_eq_zero_left (h : n + m = 0) : m = 0", "start": [ 192, 1 ], "end": [ 193, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_zero", "code": "@[simp] protected theorem mul_zero (n : Nat) : n * 0 = 0", "start": [ 197, 1 ], "end": [ 198, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_succ", "code": "theorem mul_succ (n m : Nat) : n * succ m = n * m + n", "start": [ 200, 1 ], "end": [ 201, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_add_one", "code": "theorem mul_add_one (n m : Nat) : n * (m + 1) = n * m + n", "start": [ 203, 1 ], "end": [ 204, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_mul", "code": "@[simp] protected theorem zero_mul : ∀ (n : Nat), 0 * n = 0", "start": [ 206, 1 ], "end": [ 208, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_mul", "code": "theorem succ_mul (n m : Nat) : (succ n) * m = (n * m) + m", "start": [ 210, 1 ], "end": [ 213, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_mul", "code": "theorem add_one_mul (n m : Nat) : (n + 1) * m = (n * m) + m", "start": [ 215, 1 ], "end": [ 215, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_comm", "code": "protected theorem mul_comm : ∀ (n m : Nat), n * m = m * n", "start": [ 217, 1 ], "end": [ 219, 91 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_one", "code": "@[simp] protected theorem mul_one : ∀ (n : Nat), n * 1 = n", "start": [ 222, 1 ], "end": [ 223, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_mul", "code": "@[simp] protected theorem one_mul (n : Nat) : 1 * n = n", "start": [ 225, 1 ], "end": [ 226, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.left_distrib", "code": "protected theorem left_distrib (n m k : Nat) : n * (m + k) = n * m + n * k", "start": [ 231, 1 ], "end": [ 234, 119 ], "kind": "commanddeclaration" }, { "full_name": "Nat.right_distrib", "code": "protected theorem right_distrib (n m k : Nat) : (n + m) * k = n * k + m * k", "start": [ 236, 1 ], "end": [ 237, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_add", "code": "protected theorem mul_add (n m k : Nat) : n * (m + k) = n * m + n * k", "start": [ 239, 1 ], "end": [ 240, 25 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mul", "code": "protected theorem add_mul (n m k : Nat) : (n + m) * k = n * k + m * k", "start": [ 242, 1 ], "end": [ 243, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_assoc", "code": "protected theorem mul_assoc : ∀ (n m k : Nat), (n * m) * k = n * (m * k)", "start": [ 245, 1 ], "end": [ 247, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_left_comm", "code": "protected theorem mul_left_comm (n m k : Nat) : n * (m * k) = m * (n * k)", "start": [ 250, 1 ], "end": [ 251, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_two", "code": "protected theorem mul_two (n) : n * 2 = n + n", "start": [ 253, 1 ], "end": [ 253, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.two_mul", "code": "protected theorem two_mul (n) : 2 * n = n + n", "start": [ 254, 1 ], "end": [ 254, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_lt_succ", "code": "theorem succ_lt_succ {n m : Nat} : n < m → succ n < succ m", "start": [ 260, 1 ], "end": [ 260, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ_of_le", "code": "theorem lt_succ_of_le {n m : Nat} : n ≤ m → n < succ m", "start": [ 262, 1 ], "end": [ 262, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_lt_add_one", "code": "theorem le_of_lt_add_one {n m : Nat} : n < m + 1 → n ≤ m", "start": [ 264, 1 ], "end": [ 264, 79 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_one_of_le", "code": "theorem lt_add_one_of_le {n m : Nat} : n ≤ m → n < m + 1", "start": [ 266, 1 ], "end": [ 266, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_zero", "code": "@[simp] protected theorem sub_zero (n : Nat) : n - 0 = n", "start": [ 268, 1 ], "end": [ 268, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_add_one_le_zero", "code": "theorem not_add_one_le_zero (n : Nat) : ¬ n + 1 ≤ 0", "start": [ 270, 1 ], "end": [ 270, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_add_one_le_self", "code": "theorem not_add_one_le_self : (n : Nat) → ¬ n + 1 ≤ n", "start": [ 272, 1 ], "end": [ 272, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_pos", "code": "theorem add_one_pos (n : Nat) : 0 < n + 1", "start": [ 274, 1 ], "end": [ 274, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_sub_succ_eq_sub", "code": "theorem succ_sub_succ_eq_sub (n m : Nat) : succ n - succ m = n - m", "start": [ 276, 1 ], "end": [ 279, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_le", "code": "theorem pred_le : ∀ (n : Nat), pred n ≤ n", "start": [ 281, 1 ], "end": [ 283, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_lt", "code": "theorem pred_lt : ∀ {n : Nat}, n ≠ 0 → pred n < n", "start": [ 285, 1 ], "end": [ 287, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_lt", "code": "theorem sub_one_lt : ∀ {n : Nat}, n ≠ 0 → n - 1 < n", "start": [ 289, 1 ], "end": [ 289, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le", "code": "@[simp] theorem sub_le (n m : Nat) : n - m ≤ n", "start": [ 291, 1 ], "end": [ 294, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt", "code": "theorem sub_lt : ∀ {n m : Nat}, 0 < n → 0 < m → n - m < n", "start": [ 296, 1 ], "end": [ 302, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_succ", "code": "theorem sub_succ (n m : Nat) : n - succ m = pred (n - m)", "start": [ 304, 1 ], "end": [ 304, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_sub_succ", "code": "theorem succ_sub_succ (n m : Nat) : succ n - succ m = n - m", "start": [ 306, 1 ], "end": [ 307, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_self", "code": "@[simp] protected theorem sub_self : ∀ (n : Nat), n - n = 0", "start": [ 309, 1 ], "end": [ 311, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_eq", "code": "theorem sub_add_eq (a b c : Nat) : a - (b + c) = a - b - c", "start": [ 313, 1 ], "end": [ 316, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_lt_of_le", "code": "protected theorem lt_of_lt_of_le {n m k : Nat} : n < m → m ≤ k → n < k", "start": [ 318, 1 ], "end": [ 319, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_lt_of_eq", "code": "protected theorem lt_of_lt_of_eq {n m k : Nat} : n < m → m = k → n < k", "start": [ 321, 1 ], "end": [ 322, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_eq", "code": "protected theorem le_of_eq {n m : Nat} (p : n = m) : n ≤ m", "start": [ 336, 1 ], "end": [ 337, 20 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt.step", "code": "theorem lt.step {n m : Nat} : n < m → n < succ m", "start": [ 339, 1 ], "end": [ 339, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_succ_le", "code": "theorem le_of_succ_le {n m : Nat} (h : succ n ≤ m) : n ≤ m", "start": [ 341, 1 ], "end": [ 341, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_succ_lt", "code": "theorem lt_of_succ_lt {n m : Nat} : succ n < m → n < m", "start": [ 342, 1 ], "end": [ 342, 77 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_lt", "code": "protected theorem le_of_lt {n m : Nat} : n < m → n ≤ m", "start": [ 343, 1 ], "end": [ 343, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_succ_lt_succ", "code": "theorem lt_of_succ_lt_succ {n m : Nat} : succ n < succ m → n < m", "start": [ 345, 1 ], "end": [ 345, 87 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_succ_le", "code": "theorem lt_of_succ_le {n m : Nat} (h : succ n ≤ m) : n < m", "start": [ 347, 1 ], "end": [ 347, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_le_of_lt", "code": "theorem succ_le_of_lt {n m : Nat} (h : n < m) : succ n ≤ m", "start": [ 348, 1 ], "end": [ 348, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_or_pos", "code": "theorem eq_zero_or_pos : ∀ (n : Nat), n = 0 ∨ n > 0", "start": [ 350, 1 ], "end": [ 352, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_ne_zero", "code": "protected theorem pos_of_ne_zero {n : Nat} : n ≠ 0 → 0 < n", "start": [ 354, 1 ], "end": [ 354, 94 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt.base", "code": "theorem lt.base (n : Nat) : n < succ n", "start": [ 356, 1 ], "end": [ 356, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ_self", "code": "@[simp] theorem lt_succ_self (n : Nat) : n < succ n", "start": [ 358, 1 ], "end": [ 358, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_one", "code": "@[simp] protected theorem lt_add_one (n : Nat) : n < n + 1", "start": [ 360, 1 ], "end": [ 360, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_total", "code": "protected theorem le_total (m n : Nat) : m ≤ n ∨ n ≤ m", "start": [ 362, 1 ], "end": [ 365, 25 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_le_zero", "code": "theorem eq_zero_of_le_zero {n : Nat} (h : n ≤ 0) : n = 0", "start": [ 367, 1 ], "end": [ 367, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_of_lt", "code": "theorem zero_lt_of_lt : {a b : Nat} → a < b → 0 < b", "start": [ 369, 1 ], "end": [ 373, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_of_ne_zero", "code": "theorem zero_lt_of_ne_zero {a : Nat} (h : a ≠ 0) : 0 < a", "start": [ 375, 1 ], "end": [ 378, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_of_lt", "code": "theorem ne_of_lt {a b : Nat} (h : a < b) : a ≠ b", "start": [ 382, 1 ], "end": [ 382, 96 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_or_eq_of_le_succ", "code": "theorem le_or_eq_of_le_succ {m n : Nat} (h : m ≤ succ n) : m ≤ n ∨ m = succ n", "start": [ 384, 1 ], "end": [ 390, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_or_eq_of_le_add_one", "code": "theorem le_or_eq_of_le_add_one {m n : Nat} (h : m ≤ n + 1) : m ≤ n ∨ m = n + 1", "start": [ 392, 1 ], "end": [ 393, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_add_right", "code": "theorem le_add_right : ∀ (n k : Nat), n ≤ n + k", "start": [ 395, 1 ], "end": [ 397, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_add_left", "code": "theorem le_add_left (n m : Nat): n ≤ m + n", "start": [ 399, 1 ], "end": [ 400, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_add_right_le", "code": "theorem le_of_add_right_le {n m k : Nat} (h : n + k ≤ m) : n ≤ m", "start": [ 402, 1 ], "end": [ 403, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_add_right_of_le", "code": "theorem le_add_right_of_le {n m k : Nat} (h : n ≤ m) : n ≤ m + k", "start": [ 405, 1 ], "end": [ 406, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_add_one_le", "code": "theorem lt_of_add_one_le {n m : Nat} (h : n + 1 ≤ m) : n < m", "start": [ 408, 1 ], "end": [ 408, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_le_of_lt", "code": "theorem add_one_le_of_lt {n m : Nat} (h : n < m) : n + 1 ≤ m", "start": [ 410, 1 ], "end": [ 410, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_left", "code": "protected theorem lt_add_left (c : Nat) (h : a < b) : a < c + b", "start": [ 412, 1 ], "end": [ 413, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_right", "code": "protected theorem lt_add_right (c : Nat) (h : a < b) : a < b + c", "start": [ 415, 1 ], "end": [ 416, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_add_right_lt", "code": "theorem lt_of_add_right_lt {n m k : Nat} (h : n + k < m) : n < m", "start": [ 418, 1 ], "end": [ 419, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le.dest", "code": "theorem le.dest : ∀ {n m : Nat}, n ≤ m → Exists (fun k => n + k = m)", "start": [ 421, 1 ], "end": [ 429, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le.intro", "code": "theorem le.intro {n m k : Nat} (h : n + k = m) : n ≤ m", "start": [ 431, 1 ], "end": [ 432, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_le_of_gt", "code": "protected theorem not_le_of_gt {n m : Nat} (h : n > m) : ¬ n ≤ m", "start": [ 434, 1 ], "end": [ 439, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_le_of_lt", "code": "protected theorem not_le_of_lt : ∀{a b : Nat}, a < b → ¬(b ≤ a)", "start": [ 440, 1 ], "end": [ 440, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_of_ge", "code": "protected theorem not_lt_of_ge : ∀{a b : Nat}, b ≥ a → ¬(b < a)", "start": [ 441, 1 ], "end": [ 441, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_of_le", "code": "protected theorem not_lt_of_le : ∀{a b : Nat}, a ≤ b → ¬(b < a)", "start": [ 442, 1 ], "end": [ 442, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_le_asymm", "code": "protected theorem lt_le_asymm : ∀{a b : Nat}, a < b → ¬(b ≤ a)", "start": [ 443, 1 ], "end": [ 443, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_lt_asymm", "code": "protected theorem le_lt_asymm : ∀{a b : Nat}, a ≤ b → ¬(b < a)", "start": [ 444, 1 ], "end": [ 444, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gt_of_not_le", "code": "theorem gt_of_not_le {n m : Nat} (h : ¬ n ≤ m) : n > m", "start": [ 446, 1 ], "end": [ 446, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_not_ge", "code": "protected theorem lt_of_not_ge : ∀{a b : Nat}, ¬(b ≥ a) → b < a", "start": [ 447, 1 ], "end": [ 447, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_not_le", "code": "protected theorem lt_of_not_le : ∀{a b : Nat}, ¬(a ≤ b) → b < a", "start": [ 448, 1 ], "end": [ 448, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ge_of_not_lt", "code": "theorem ge_of_not_lt {n m : Nat} (h : ¬ n < m) : n ≥ m", "start": [ 450, 1 ], "end": [ 450, 92 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_not_gt", "code": "protected theorem le_of_not_gt : ∀{a b : Nat}, ¬(b > a) → b ≤ a", "start": [ 451, 1 ], "end": [ 451, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_not_lt", "code": "protected theorem le_of_not_lt : ∀{a b : Nat}, ¬(a < b) → b ≤ a", "start": [ 452, 1 ], "end": [ 452, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_of_gt", "code": "theorem ne_of_gt {a b : Nat} (h : b < a) : a ≠ b", "start": [ 454, 1 ], "end": [ 454, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_of_lt'", "code": "protected theorem ne_of_lt' : ∀{a b : Nat}, a < b → b ≠ a", "start": [ 455, 1 ], "end": [ 455, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_le", "code": "@[simp] protected theorem not_le {a b : Nat} : ¬ a ≤ b ↔ b < a", "start": [ 457, 1 ], "end": [ 458, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt", "code": "@[simp] protected theorem not_lt {a b : Nat} : ¬ a < b ↔ b ≤ a", "start": [ 459, 1 ], "end": [ 460, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_not_le", "code": "protected theorem le_of_not_le {a b : Nat} (h : ¬ b ≤ a) : a ≤ b", "start": [ 462, 1 ], "end": [ 462, 98 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_not_ge", "code": "protected theorem le_of_not_ge : ∀{a b : Nat}, ¬(a ≥ b) → a ≤ b", "start": [ 463, 1 ], "end": [ 463, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_trichotomy", "code": "protected theorem lt_trichotomy (a b : Nat) : a < b ∨ a = b ∨ b < a", "start": [ 465, 1 ], "end": [ 471, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_or_gt_of_ne", "code": "protected theorem lt_or_gt_of_ne {a b : Nat} (ne : a ≠ b) : a < b ∨ a > b", "start": [ 473, 1 ], "end": [ 477, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_or_lt_of_ne", "code": "protected theorem lt_or_lt_of_ne : ∀{a b : Nat}, a ≠ b → a < b ∨ b < a", "start": [ 479, 1 ], "end": [ 479, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_antisymm_iff", "code": "protected theorem le_antisymm_iff {a b : Nat} : a = b ↔ a ≤ b ∧ b ≤ a", "start": [ 481, 1 ], "end": [ 483, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_iff_le_and_ge", "code": "protected theorem eq_iff_le_and_ge : ∀{a b : Nat}, a = b ↔ a ≤ b ∧ b ≤ a", "start": [ 484, 1 ], "end": [ 484, 97 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_add_left", "code": "protected theorem add_le_add_left {n m : Nat} (h : n ≤ m) (k : Nat) : k + n ≤ k + m", "start": [ 492, 1 ], "end": [ 497, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_add_right", "code": "protected theorem add_le_add_right {n m : Nat} (h : n ≤ m) (k : Nat) : n + k ≤ m + k", "start": [ 499, 1 ], "end": [ 502, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_left", "code": "protected theorem add_lt_add_left {n m : Nat} (h : n < m) (k : Nat) : k + n < k + m", "start": [ 504, 1 ], "end": [ 505, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_right", "code": "protected theorem add_lt_add_right {n m : Nat} (h : n < m) (k : Nat) : n + k < m + k", "start": [ 507, 1 ], "end": [ 508, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_of_pos_right", "code": "protected theorem lt_add_of_pos_right (h : 0 < k) : n < n + k", "start": [ 510, 1 ], "end": [ 511, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_one", "code": "protected theorem zero_lt_one : 0 < (1:Nat)", "start": [ 513, 1 ], "end": [ 514, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_iff_ne_zero", "code": "protected theorem pos_iff_ne_zero : 0 < n ↔ n ≠ 0", "start": [ 516, 1 ], "end": [ 516, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_add", "code": "theorem add_le_add {a b c d : Nat} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d", "start": [ 518, 1 ], "end": [ 519, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add", "code": "theorem add_lt_add {a b c d : Nat} (h₁ : a < b) (h₂ : c < d) : a + c < b + d", "start": [ 521, 1 ], "end": [ 522, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_add_le_add_left", "code": "protected theorem le_of_add_le_add_left {a b c : Nat} (h : a + b ≤ a + c) : b ≤ c", "start": [ 524, 1 ], "end": [ 529, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_add_le_add_right", "code": "protected theorem le_of_add_le_add_right {a b c : Nat} : a + b ≤ c + b → a ≤ c", "start": [ 531, 1 ], "end": [ 533, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_add_iff_right", "code": "protected theorem add_le_add_iff_right {n : Nat} : m + n ≤ k + n ↔ m ≤ k", "start": [ 535, 1 ], "end": [ 536, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_asymm", "code": "protected theorem lt_asymm {a b : Nat} (h : a < b) : ¬ b < a", "start": [ 540, 1 ], "end": [ 540, 94 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_of_gt", "code": "protected abbrev not_lt_of_gt := @Nat.lt_asymm", "start": [ 541, 1 ], "end": [ 542, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_of_lt", "code": "protected abbrev not_lt_of_lt := @Nat.lt_asymm", "start": [ 543, 1 ], "end": [ 544, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_iff_le_not_le", "code": "protected theorem lt_iff_le_not_le {m n : Nat} : m < n ↔ m ≤ n ∧ ¬ n ≤ m", "start": [ 546, 1 ], "end": [ 547, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_iff_le_and_not_ge", "code": "protected abbrev lt_iff_le_and_not_ge := @Nat.lt_iff_le_not_le", "start": [ 548, 1 ], "end": [ 549, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_iff_le_and_ne", "code": "protected theorem lt_iff_le_and_ne {m n : Nat} : m < n ↔ m ≤ n ∧ m ≠ n", "start": [ 551, 1 ], "end": [ 552, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_iff_lt_or_gt", "code": "protected theorem ne_iff_lt_or_gt {a b : Nat} : a ≠ b ↔ a < b ∨ b < a", "start": [ 554, 1 ], "end": [ 555, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_or_gt", "code": "protected abbrev lt_or_gt := @Nat.ne_iff_lt_or_gt", "start": [ 556, 1 ], "end": [ 557, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_or_ge", "code": "protected abbrev le_or_ge := @Nat.le_total", "start": [ 559, 1 ], "end": [ 560, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_or_le", "code": "protected abbrev le_or_le := @Nat.le_total", "start": [ 561, 1 ], "end": [ 562, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_or_lt_of_not_lt", "code": "protected theorem eq_or_lt_of_not_lt {a b : Nat} (hnlt : ¬ a < b) : a = b ∨ b < a", "start": [ 564, 1 ], "end": [ 565, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_or_eq_of_le", "code": "protected theorem lt_or_eq_of_le {n m : Nat} (h : n ≤ m) : n < m ∨ n = m", "start": [ 567, 1 ], "end": [ 568, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_iff_lt_or_eq", "code": "protected theorem le_iff_lt_or_eq {n m : Nat} : n ≤ m ↔ n < m ∨ n = m", "start": [ 570, 1 ], "end": [ 571, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ_iff", "code": "protected theorem lt_succ_iff : m < succ n ↔ m ≤ n", "start": [ 573, 1 ], "end": [ 573, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_one_iff", "code": "protected theorem lt_add_one_iff : m < n + 1 ↔ m ≤ n", "start": [ 575, 1 ], "end": [ 575, 87 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ_iff_lt_or_eq", "code": "protected theorem lt_succ_iff_lt_or_eq : m < succ n ↔ m < n ∨ m = n", "start": [ 577, 1 ], "end": [ 578, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_one_iff_lt_or_eq", "code": "protected theorem lt_add_one_iff_lt_or_eq : m < n + 1 ↔ m < n ∨ m = n", "start": [ 580, 1 ], "end": [ 581, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_of_lt_succ_of_not_lt", "code": "protected theorem eq_of_lt_succ_of_not_lt (hmn : m < n + 1) (h : ¬ m < n) : m = n", "start": [ 583, 1 ], "end": [ 584, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_of_le_of_lt_succ", "code": "protected theorem eq_of_le_of_lt_succ (h₁ : n ≤ m) (h₂ : m < n + 1) : m = n", "start": [ 586, 1 ], "end": [ 587, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_zero", "code": "theorem le_zero : i ≤ 0 ↔ i = 0", "start": [ 592, 1 ], "end": [ 592, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_pos", "code": "protected abbrev one_pos := @Nat.zero_lt_one", "start": [ 594, 1 ], "end": [ 595, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.two_pos", "code": "protected theorem two_pos : 0 < 2", "start": [ 597, 1 ], "end": [ 597, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_zero_iff_zero_lt", "code": "protected theorem ne_zero_iff_zero_lt : n ≠ 0 ↔ 0 < n", "start": [ 599, 1 ], "end": [ 599, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_two", "code": "protected theorem zero_lt_two : 0 < 2", "start": [ 601, 1 ], "end": [ 601, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_lt_two", "code": "protected theorem one_lt_two : 1 < 2", "start": [ 603, 1 ], "end": [ 603, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_not_pos", "code": "protected theorem eq_zero_of_not_pos (h : ¬0 < n) : n = 0", "start": [ 605, 1 ], "end": [ 606, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_ne_self", "code": "theorem succ_ne_self (n) : succ n ≠ n", "start": [ 612, 1 ], "end": [ 612, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_ne_self", "code": "theorem add_one_ne_self (n) : n + 1 ≠ n", "start": [ 614, 1 ], "end": [ 614, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_le", "code": "theorem succ_le : succ n ≤ m ↔ n < m", "start": [ 616, 1 ], "end": [ 616, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_le_iff", "code": "theorem add_one_le_iff : n + 1 ≤ m ↔ n < m", "start": [ 618, 1 ], "end": [ 618, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ", "code": "theorem lt_succ : m < succ n ↔ m ≤ n", "start": [ 620, 1 ], "end": [ 620, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_succ_of_lt", "code": "theorem lt_succ_of_lt (h : a < b) : a < succ b", "start": [ 622, 1 ], "end": [ 622, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_one_of_lt", "code": "theorem lt_add_one_of_lt (h : a < b) : a < b + 1", "start": [ 624, 1 ], "end": [ 624, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_pred_eq_of_ne_zero", "code": "theorem succ_pred_eq_of_ne_zero : ∀ {n}, n ≠ 0 → succ (pred n) = n", "start": [ 626, 1 ], "end": [ 627, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_or_eq_succ_pred", "code": "theorem eq_zero_or_eq_succ_pred : ∀ n, n = 0 ∨ n = succ (pred n)", "start": [ 629, 1 ], "end": [ 631, 20 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_inj'", "code": "theorem succ_inj' : succ a = succ b ↔ a = b", "start": [ 633, 1 ], "end": [ 633, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_le_succ_iff", "code": "theorem succ_le_succ_iff : succ a ≤ succ b ↔ a ≤ b", "start": [ 635, 1 ], "end": [ 635, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_lt_succ_iff", "code": "theorem succ_lt_succ_iff : succ a < succ b ↔ a < b", "start": [ 637, 1 ], "end": [ 637, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_inj", "code": "theorem add_one_inj : a + 1 = b + 1 ↔ a = b", "start": [ 639, 1 ], "end": [ 639, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_le_add_one_iff", "code": "theorem add_one_le_add_one_iff : a + 1 ≤ b + 1 ↔ a ≤ b", "start": [ 641, 1 ], "end": [ 641, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_lt_add_one_iff", "code": "theorem add_one_lt_add_one_iff : a + 1 < b + 1 ↔ a < b", "start": [ 643, 1 ], "end": [ 643, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_inj", "code": "theorem pred_inj : ∀ {a b}, 0 < a → 0 < b → pred a = pred b → a = b", "start": [ 645, 1 ], "end": [ 646, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_ne_self", "code": "theorem pred_ne_self : ∀ {a}, a ≠ 0 → pred a ≠ a", "start": [ 648, 1 ], "end": [ 649, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_ne_self", "code": "theorem sub_one_ne_self : ∀ {a}, a ≠ 0 → a - 1 ≠ a", "start": [ 651, 1 ], "end": [ 652, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_lt_self", "code": "theorem pred_lt_self : ∀ {a}, 0 < a → pred a < a", "start": [ 654, 1 ], "end": [ 655, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_lt_pred", "code": "theorem pred_lt_pred : ∀ {n m}, n ≠ 0 → n < m → pred n < pred m", "start": [ 657, 1 ], "end": [ 658, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_le_iff_le_succ", "code": "theorem pred_le_iff_le_succ : ∀ {n m}, pred n ≤ m ↔ n ≤ succ m", "start": [ 660, 1 ], "end": [ 662, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_succ_of_pred_le", "code": "theorem le_succ_of_pred_le : pred n ≤ m → n ≤ succ m", "start": [ 664, 1 ], "end": [ 664, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_le_of_le_succ", "code": "theorem pred_le_of_le_succ : n ≤ succ m → pred n ≤ m", "start": [ 666, 1 ], "end": [ 666, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_pred_iff_succ_lt", "code": "theorem lt_pred_iff_succ_lt : ∀ {n m}, n < pred m ↔ succ n < m", "start": [ 668, 1 ], "end": [ 670, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_lt_of_lt_pred", "code": "theorem succ_lt_of_lt_pred : n < pred m → succ n < m", "start": [ 672, 1 ], "end": [ 672, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_pred_of_succ_lt", "code": "theorem lt_pred_of_succ_lt : succ n < m → n < pred m", "start": [ 674, 1 ], "end": [ 674, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_pred_iff_lt", "code": "theorem le_pred_iff_lt : ∀ {n m}, 0 < m → (n ≤ pred m ↔ n < m)", "start": [ 676, 1 ], "end": [ 678, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_pred_of_lt", "code": "theorem le_pred_of_lt (h : n < m) : n ≤ pred m", "start": [ 680, 1 ], "end": [ 680, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_one_of_lt", "code": "theorem le_sub_one_of_lt : a < b → a ≤ b - 1", "start": [ 682, 1 ], "end": [ 682, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_le_pred", "code": "theorem lt_of_le_pred (h : 0 < m) : n ≤ pred m → n < m", "start": [ 684, 1 ], "end": [ 684, 79 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_le_sub_one", "code": "theorem lt_of_le_sub_one (h : 0 < m) : n ≤ m - 1 → n < m", "start": [ 686, 1 ], "end": [ 686, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_one_iff_lt", "code": "protected theorem le_sub_one_iff_lt (h : 0 < m) : n ≤ m - 1 ↔ n < m", "start": [ 688, 1 ], "end": [ 689, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.exists_eq_succ_of_ne_zero", "code": "theorem exists_eq_succ_of_ne_zero : ∀ {n}, n ≠ 0 → Exists fun k => n = succ k", "start": [ 691, 1 ], "end": [ 692, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.exists_eq_add_one_of_ne_zero", "code": "theorem exists_eq_add_one_of_ne_zero : ∀ {n}, n ≠ 0 → Exists fun k => n = k + 1", "start": [ 694, 1 ], "end": [ 695, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ctor_eq_zero", "code": "theorem ctor_eq_zero : Nat.zero = 0", "start": [ 699, 1 ], "end": [ 700, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_ne_zero", "code": "protected theorem one_ne_zero : 1 ≠ (0 : Nat)", "start": [ 702, 1 ], "end": [ 703, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_ne_one", "code": "protected theorem zero_ne_one : 0 ≠ (1 : Nat)", "start": [ 705, 1 ], "end": [ 706, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_ne_zero", "code": "@[simp] theorem succ_ne_zero (n : Nat) : succ n ≠ 0", "start": [ 708, 1 ], "end": [ 709, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_mul_left", "code": "theorem mul_le_mul_left {n m : Nat} (k : Nat) (h : n ≤ m) : k * n ≤ k * m", "start": [ 713, 1 ], "end": [ 717, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_mul_right", "code": "theorem mul_le_mul_right {n m : Nat} (k : Nat) (h : n ≤ m) : n * k ≤ m * k", "start": [ 719, 1 ], "end": [ 720, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_mul", "code": "protected theorem mul_le_mul {n₁ m₁ n₂ m₂ : Nat} (h₁ : n₁ ≤ n₂) (h₂ : m₁ ≤ m₂) : n₁ * m₁ ≤ n₂ * m₂", "start": [ 722, 1 ], "end": [ 723, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_pos_left", "code": "protected theorem mul_lt_mul_of_pos_left {n m k : Nat} (h : n < m) (hk : k > 0) : k * n < k * m", "start": [ 725, 1 ], "end": [ 726, 109 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_pos_right", "code": "protected theorem mul_lt_mul_of_pos_right {n m k : Nat} (h : n < m) (hk : k > 0) : n * k < m * k", "start": [ 728, 1 ], "end": [ 729, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pos", "code": "protected theorem mul_pos {n m : Nat} (ha : n > 0) (hb : m > 0) : n * m > 0", "start": [ 731, 1 ], "end": [ 733, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_mul_le_mul_left", "code": "protected theorem le_of_mul_le_mul_left {a b c : Nat} (h : c * a ≤ c * b) (hc : 0 < c) : a ≤ b", "start": [ 735, 1 ], "end": [ 738, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_of_mul_eq_mul_left", "code": "protected theorem eq_of_mul_eq_mul_left {m k n : Nat} (hn : 0 < n) (h : n * m = n * k) : m = k", "start": [ 740, 1 ], "end": [ 742, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_of_mul_eq_mul_right", "code": "theorem eq_of_mul_eq_mul_right {n m k : Nat} (hm : 0 < m) (h : n * m = k * m) : n = k", "start": [ 744, 1 ], "end": [ 745, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_succ", "code": "protected theorem pow_succ (n m : Nat) : n^(succ m) = n^m * n", "start": [ 749, 1 ], "end": [ 750, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_add_one", "code": "protected theorem pow_add_one (n m : Nat) : n^(m + 1) = n^m * n", "start": [ 752, 1 ], "end": [ 753, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_zero", "code": "protected theorem pow_zero (n : Nat) : n^0 = 1", "start": [ 755, 1 ], "end": [ 755, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_of_le_left", "code": "theorem pow_le_pow_of_le_left {n m : Nat} (h : n ≤ m) : ∀ (i : Nat), n^i ≤ m^i", "start": [ 757, 1 ], "end": [ 759, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_of_le_right", "code": "theorem pow_le_pow_of_le_right {n : Nat} (hx : n > 0) {i : Nat} : ∀ {j}, i ≤ j → n^i ≤ n^j", "start": [ 761, 1 ], "end": [ 771, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_pow_of_pos", "code": "theorem pos_pow_of_pos {n : Nat} (m : Nat) (h : 0 < n) : 0 < n^m", "start": [ 773, 1 ], "end": [ 774, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min", "code": "protected abbrev min (n m : Nat) := min n m", "start": [ 778, 1 ], "end": [ 783, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_def", "code": "protected theorem min_def {n m : Nat} : min n m = if n ≤ m then n else m", "start": [ 785, 1 ], "end": [ 785, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max", "code": "protected abbrev max (n m : Nat) := max n m", "start": [ 789, 1 ], "end": [ 794, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_def", "code": "protected theorem max_def {n m : Nat} : max n m = if n ≤ m then m else n", "start": [ 796, 1 ], "end": [ 796, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_eq_zero_of_lt", "code": "theorem not_eq_zero_of_lt (h : b < a) : a ≠ 0", "start": [ 801, 1 ], "end": [ 804, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_lt_of_lt", "code": "theorem pred_lt_of_lt {n m : Nat} (h : m < n) : pred n < n", "start": [ 806, 1 ], "end": [ 807, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_lt'", "code": "@[deprecated (since := \"2024-06-01\")] abbrev pred_lt' := @pred_lt_of_lt", "start": [ 810, 1 ], "end": [ 810, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_lt_of_lt", "code": "theorem sub_one_lt_of_lt {n m : Nat} (h : m < n) : n - 1 < n", "start": [ 812, 1 ], "end": [ 813, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_zero", "code": "@[simp] protected theorem pred_zero : pred 0 = 0", "start": [ 817, 1 ], "end": [ 817, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_succ", "code": "@[simp] protected theorem pred_succ (n : Nat) : pred n.succ = n", "start": [ 818, 1 ], "end": [ 818, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_pred", "code": "theorem succ_pred {a : Nat} (h : a ≠ 0) : a.pred.succ = a", "start": [ 820, 1 ], "end": [ 823, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_add_one", "code": "theorem sub_one_add_one {a : Nat} (h : a ≠ 0) : a - 1 + 1 = a", "start": [ 825, 1 ], "end": [ 828, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_pred_eq_of_pos", "code": "theorem succ_pred_eq_of_pos : ∀ {n}, 0 < n → succ (pred n) = n", "start": [ 830, 1 ], "end": [ 831, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_add_one_eq_of_pos", "code": "theorem sub_one_add_one_eq_of_pos : ∀ {n}, 0 < n → (n - 1) + 1 = n", "start": [ 833, 1 ], "end": [ 834, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_or_eq_sub_one_add_one", "code": "theorem eq_zero_or_eq_sub_one_add_one : ∀ {n}, n = 0 ∨ n = n - 1 + 1", "start": [ 836, 1 ], "end": [ 838, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_eq_sub_one", "code": "@[simp] theorem pred_eq_sub_one : pred n = n - 1", "start": [ 840, 1 ], "end": [ 840, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_self_left", "code": "theorem add_sub_self_left (a b : Nat) : (a + b) - a = b", "start": [ 844, 1 ], "end": [ 849, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_self_right", "code": "theorem add_sub_self_right (a b : Nat) : (a + b) - b = a", "start": [ 851, 1 ], "end": [ 852, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_succ_sub", "code": "theorem sub_le_succ_sub (a i : Nat) : a - i ≤ a.succ - i", "start": [ 854, 1 ], "end": [ 857, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_lt_sub_of_lt", "code": "theorem zero_lt_sub_of_lt (h : i < a) : 0 < a - i", "start": [ 859, 1 ], "end": [ 867, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_succ_lt_self", "code": "theorem sub_succ_lt_self (a i : Nat) (h : i < a) : a - (i + 1) < a - i", "start": [ 869, 1 ], "end": [ 874, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_ne_zero_of_lt", "code": "theorem sub_ne_zero_of_lt : {a b : Nat} → a < b → b - a ≠ 0", "start": [ 876, 1 ], "end": [ 880, 103 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_of_le", "code": "theorem add_sub_of_le {a b : Nat} (h : a ≤ b) : a + (b - a) = b", "start": [ 882, 1 ], "end": [ 888, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_cancel", "code": "theorem sub_one_cancel : ∀ {a b : Nat}, 0 < a → 0 < b → a - 1 = b - 1 → a = b", "start": [ 890, 1 ], "end": [ 891, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_cancel", "code": "@[simp] protected theorem sub_add_cancel {n m : Nat} (h : m ≤ n) : n - m + m = n", "start": [ 893, 1 ], "end": [ 894, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_add_right", "code": "protected theorem add_sub_add_right (n k m : Nat) : (n + k) - (m + k) = n - m", "start": [ 896, 1 ], "end": [ 899, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_add_left", "code": "protected theorem add_sub_add_left (k n m : Nat) : (k + n) - (k + m) = n - m", "start": [ 901, 1 ], "end": [ 902, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_cancel", "code": "@[simp] protected theorem add_sub_cancel (n m : Nat) : n + m - m = n", "start": [ 904, 1 ], "end": [ 906, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_cancel_left", "code": "protected theorem add_sub_cancel_left (n m : Nat) : n + m - n = m", "start": [ 908, 1 ], "end": [ 910, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_assoc", "code": "protected theorem add_sub_assoc {m k : Nat} (h : k ≤ m) (n : Nat) : n + m - k = n + (m - k)", "start": [ 912, 1 ], "end": [ 915, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_add_of_sub_eq", "code": "protected theorem eq_add_of_sub_eq {a b c : Nat} (hle : b ≤ a) (h : a - b = c) : a = c + b", "start": [ 917, 1 ], "end": [ 918, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_of_eq_add", "code": "protected theorem sub_eq_of_eq_add {a b c : Nat} (h : a = c + b) : a - b = c", "start": [ 920, 1 ], "end": [ 921, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_add_of_sub_le", "code": "theorem le_add_of_sub_le {a b c : Nat} (h : a - b ≤ c) : a ≤ c + b", "start": [ 923, 1 ], "end": [ 931, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_sub_left", "code": "protected theorem sub_lt_sub_left : ∀ {k m n : Nat}, k < m → k < n → m - n < m - k", "start": [ 933, 1 ], "end": [ 937, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_sub", "code": "@[simp] protected theorem zero_sub (n : Nat) : 0 - n = 0", "start": [ 939, 1 ], "end": [ 942, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_sub_right", "code": "protected theorem sub_lt_sub_right : ∀ {a b c : Nat}, c ≤ a → a < b → a - c < b - c", "start": [ 944, 1 ], "end": [ 953, 79 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_self_add", "code": "protected theorem sub_self_add (n m : Nat) : n - (n + m) = 0", "start": [ 955, 1 ], "end": [ 957, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_zero_of_le", "code": "protected theorem sub_eq_zero_of_le {n m : Nat} (h : n ≤ m) : n - m = 0", "start": [ 959, 1 ], "end": [ 961, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_of_le_add", "code": "theorem sub_le_of_le_add {a b c : Nat} (h : a ≤ c + b) : a - b ≤ c", "start": [ 963, 1 ], "end": [ 972, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_of_le_sub", "code": "theorem add_le_of_le_sub {a b c : Nat} (hle : b ≤ c) (h : a ≤ c - b) : a + b ≤ c", "start": [ 974, 1 ], "end": [ 979, 58 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_of_add_le", "code": "theorem le_sub_of_add_le {a b c : Nat} (h : a + b ≤ c) : a ≤ c - b", "start": [ 981, 1 ], "end": [ 987, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_of_lt_sub", "code": "theorem add_lt_of_lt_sub {a b c : Nat} (h : a < c - b) : a + b < c", "start": [ 989, 1 ], "end": [ 998, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_sub_of_add_lt", "code": "theorem lt_sub_of_add_lt {a b c : Nat} (h : a + b < c) : a < c - b", "start": [ 1000, 1 ], "end": [ 1002, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub.elim", "code": "theorem sub.elim {motive : Nat → Prop}\n (x y : Nat)\n (h₁ : y ≤ x → (k : Nat) → x = y + k → motive k)\n (h₂ : x < y → motive 0)\n : motive (x - y)", "start": [ 1004, 1 ], "end": [ 1011, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_sub", "code": "theorem succ_sub {m n : Nat} (h : n ≤ m) : succ m - n = succ (m - n)", "start": [ 1013, 1 ], "end": [ 1015, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_pos_of_lt", "code": "protected theorem sub_pos_of_lt (h : m < n) : 0 < n - m", "start": [ 1017, 1 ], "end": [ 1018, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_sub", "code": "protected theorem sub_sub (n m k : Nat) : n - m - k = n - (m + k)", "start": [ 1020, 1 ], "end": [ 1023, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_sub_left", "code": "protected theorem sub_le_sub_left (h : n ≤ m) (k : Nat) : k - m ≤ k - n", "start": [ 1025, 1 ], "end": [ 1027, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_sub_right", "code": "protected theorem sub_le_sub_right {n m : Nat} (h : n ≤ m) : ∀ k, n - k ≤ m - k", "start": [ 1029, 1 ], "end": [ 1031, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_add_right_sub", "code": "protected theorem sub_le_add_right_sub (a i j : Nat) : a - i ≤ a + j - i", "start": [ 1033, 1 ], "end": [ 1034, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_sub_ne_zero", "code": "protected theorem lt_of_sub_ne_zero (h : n - m ≠ 0) : m < n", "start": [ 1036, 1 ], "end": [ 1037, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_ne_zero_iff_lt", "code": "protected theorem sub_ne_zero_iff_lt : n - m ≠ 0 ↔ m < n", "start": [ 1039, 1 ], "end": [ 1040, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_sub_pos", "code": "protected theorem lt_of_sub_pos (h : 0 < n - m) : m < n", "start": [ 1042, 1 ], "end": [ 1043, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_sub_eq_succ", "code": "protected theorem lt_of_sub_eq_succ (h : m - n = succ l) : n < m", "start": [ 1045, 1 ], "end": [ 1046, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_sub_eq_sub_one", "code": "protected theorem lt_of_sub_eq_sub_one (h : m - n = l + 1) : n < m", "start": [ 1048, 1 ], "end": [ 1049, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_left_of_lt_add", "code": "protected theorem sub_lt_left_of_lt_add {n k m : Nat} (H : n ≤ k) (h : k < n + m) : k - n < m", "start": [ 1051, 1 ], "end": [ 1053, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_right_of_lt_add", "code": "protected theorem sub_lt_right_of_lt_add {n k m : Nat} (H : n ≤ k) (h : k < m + n) : k - n < m", "start": [ 1055, 1 ], "end": [ 1056, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_sub_eq_zero", "code": "protected theorem le_of_sub_eq_zero : ∀ {n m}, n - m = 0 → n ≤ m", "start": [ 1058, 1 ], "end": [ 1060, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_sub_le_sub_right", "code": "protected theorem le_of_sub_le_sub_right : ∀ {n m k : Nat}, k ≤ m → n - k ≤ m - k → n ≤ m", "start": [ 1062, 1 ], "end": [ 1067, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_sub_iff_right", "code": "protected theorem sub_le_sub_iff_right {n : Nat} (h : k ≤ m) : n - k ≤ m - k ↔ n ≤ m", "start": [ 1069, 1 ], "end": [ 1070, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_iff_eq_add", "code": "protected theorem sub_eq_iff_eq_add {c : Nat} (h : b ≤ a) : a - b = c ↔ a = c + b", "start": [ 1072, 1 ], "end": [ 1073, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_iff_eq_add'", "code": "protected theorem sub_eq_iff_eq_add' {c : Nat} (h : b ≤ a) : a - b = c ↔ a = b + c", "start": [ 1075, 1 ], "end": [ 1076, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_mul", "code": "theorem pred_mul (n m : Nat) : pred n * m = n * m - m", "start": [ 1080, 1 ], "end": [ 1083, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pred_left", "code": "@[deprecated (since := \"2024-06-01\")] abbrev mul_pred_left := @pred_mul", "start": [ 1086, 1 ], "end": [ 1086, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_mul", "code": "protected theorem sub_one_mul (n m : Nat) : (n - 1) * m = n * m - m", "start": [ 1088, 1 ], "end": [ 1092, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pred", "code": "theorem mul_pred (n m : Nat) : n * pred m = n * m - n", "start": [ 1094, 1 ], "end": [ 1095, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pred_right", "code": "@[deprecated (since := \"2024-06-01\")] abbrev mul_pred_right := @mul_pred", "start": [ 1098, 1 ], "end": [ 1098, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_sub_one", "code": "theorem mul_sub_one (n m : Nat) : n * (m - 1) = n * m - n", "start": [ 1100, 1 ], "end": [ 1101, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_sub_right_distrib", "code": "protected theorem mul_sub_right_distrib (n m k : Nat) : (n - m) * k = n * k - m * k", "start": [ 1103, 1 ], "end": [ 1106, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_sub_left_distrib", "code": "protected theorem mul_sub_left_distrib (n m k : Nat) : n * (m - k) = n * m - n * k", "start": [ 1108, 1 ], "end": [ 1109, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_le_eq", "code": "theorem not_le_eq (a b : Nat) : (¬ (a ≤ b)) = (b + 1 ≤ a)", "start": [ 1113, 1 ], "end": [ 1114, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_ge_eq", "code": "theorem not_ge_eq (a b : Nat) : (¬ (a ≥ b)) = (a + 1 ≤ b)", "start": [ 1115, 1 ], "end": [ 1116, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_lt_eq", "code": "theorem not_lt_eq (a b : Nat) : (¬ (a < b)) = (b ≤ a)", "start": [ 1118, 1 ], "end": [ 1119, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.not_gt_eq", "code": "theorem not_gt_eq (a b : Nat) : (¬ (a > b)) = (a ≤ b)", "start": [ 1120, 1 ], "end": [ 1121, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.fold_eq_foldTR", "code": "@[csimp] theorem fold_eq_foldTR : @fold = @foldTR", "start": [ 1125, 1 ], "end": [ 1130, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.any_eq_anyTR", "code": "@[csimp] theorem any_eq_anyTR : @any = @anyTR", "start": [ 1132, 1 ], "end": [ 1139, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.all_eq_allTR", "code": "@[csimp] theorem all_eq_allTR : @all = @allTR", "start": [ 1141, 1 ], "end": [ 1148, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.repeat_eq_repeatTR", "code": "@[csimp] theorem repeat_eq_repeatTR : @repeat = @repeatTR", "start": [ 1150, 1 ], "end": [ 1155, 16 ], "kind": "commanddeclaration" }, { "full_name": "Prod.foldI", "code": "@[inline] def foldI {α : Type u} (f : Nat → α → α) (i : Nat × Nat) (a : α) : α :=\n Nat.foldTR.loop f i.2 (i.2 - i.1) a", "start": [ 1161, 1 ], "end": [ 1167, 38 ], "kind": "commanddeclaration" }, { "full_name": "Prod.anyI", "code": "@[inline] def anyI (f : Nat → Bool) (i : Nat × Nat) : Bool :=\n Nat.anyTR.loop f i.2 (i.2 - i.1)", "start": [ 1169, 1 ], "end": [ 1175, 35 ], "kind": "commanddeclaration" }, { "full_name": "Prod.allI", "code": "@[inline] def allI (f : Nat → Bool) (i : Nat × Nat) : Bool :=\n Nat.allTR.loop f i.2 (i.2 - i.1)", "start": [ 1177, 1 ], "end": [ 1183, 35 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/MetaTypes.lean
[ ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "Lean.NameGenerator", "code": "structure NameGenerator where\n namePrefix : Name := `_uniq\n idx : Nat := 1\n deriving Inhabited", "start": [ 11, 1 ], "end": [ 14, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Module", "code": "structure Module where\n header : Syntax\n commands : Array Syntax", "start": [ 16, 1 ], "end": [ 19, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.TransparencyMode", "code": "inductive TransparencyMode where\n \n | all\n \n | default\n \n | reducible\n \n | instances\n deriving Inhabited, BEq", "start": [ 23, 1 ], "end": [ 32, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.EtaStructMode", "code": "inductive EtaStructMode where\n \n | all\n \n | notClasses\n \n | none\n deriving Inhabited, BEq", "start": [ 34, 1 ], "end": [ 41, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.DSimp.Config", "code": "structure Config where\n \n zeta : Bool := true\n \n beta : Bool := true\n \n eta : Bool := true\n \n etaStruct : EtaStructMode := .all\n \n iota : Bool := true\n \n proj : Bool := true\n \n decide : Bool := false\n \n autoUnfold : Bool := false\n \n failIfUnchanged : Bool := true\n \n unfoldPartialApp : Bool := false\n \n zetaDelta : Bool := false\n deriving Inhabited, BEq", "start": [ 45, 1 ], "end": [ 107, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.Simp.defaultMaxSteps", "code": "def defaultMaxSteps := 100000", "start": [ 113, 1 ], "end": [ 113, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.Simp.Config", "code": "structure Config where\n \n maxSteps : Nat := defaultMaxSteps\n \n maxDischargeDepth : Nat := 2\n \n contextual : Bool := false\n \n memoize : Bool := true\n \n singlePass : Bool := false\n \n zeta : Bool := true\n \n beta : Bool := true\n \n eta : Bool := true\n \n etaStruct : EtaStructMode := .all\n \n iota : Bool := true\n \n proj : Bool := true\n \n decide : Bool := false\n \n arith : Bool := false\n \n autoUnfold : Bool := false\n \n dsimp : Bool := true\n \n failIfUnchanged : Bool := true\n \n ground : Bool := false\n \n unfoldPartialApp : Bool := false\n \n zetaDelta : Bool := false\n \n index : Bool := true\n \n implicitDefEqProofs : Bool := false\n deriving Inhabited, BEq", "start": [ 115, 1 ], "end": [ 229, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.Simp.ConfigCtx", "code": "structure ConfigCtx extends Config where\n contextual := true", "start": [ 232, 1 ], "end": [ 233, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.Simp.neutralConfig", "code": "def neutralConfig : Simp.Config := {\n zeta := false\n beta := false\n eta := false\n iota := false\n proj := false\n decide := false\n arith := false\n autoUnfold := false\n ground := false\n zetaDelta := false\n}", "start": [ 235, 1 ], "end": [ 249, 2 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Meta.Occurrences", "code": "inductive Occurrences where\n | all\n | pos (idxs : List Nat)\n | neg (idxs : List Nat)\n deriving Inhabited, BEq", "start": [ 253, 1 ], "end": [ 257, 26 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/WF.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean", ".lake/packages/lean4/src/lean/Init/SizeOf.lean" ]
[ { "full_name": "Acc", "code": "inductive Acc {α : Sort u} (r : α → α → Prop) : α → Prop where\n \n | intro (x : α) (h : (y : α) → r y x → Acc r y) : Acc r x", "start": [ 12, 1 ], "end": [ 24, 60 ], "kind": "commanddeclaration" }, { "full_name": "Acc.ndrec", "code": "noncomputable abbrev Acc.ndrec.{u1, u2} {α : Sort u2} {r : α → α → Prop} {C : α → Sort u1}\n (m : (x : α) → ((y : α) → r y x → Acc r y) → ((y : α) → (a : r y x) → C y) → C x)\n {a : α} (n : Acc r a) : C a :=\n n.rec m", "start": [ 26, 1 ], "end": [ 29, 10 ], "kind": "commanddeclaration" }, { "full_name": "Acc.ndrecOn", "code": "noncomputable abbrev Acc.ndrecOn.{u1, u2} {α : Sort u2} {r : α → α → Prop} {C : α → Sort u1}\n {a : α} (n : Acc r a)\n (m : (x : α) → ((y : α) → r y x → Acc r y) → ((y : α) → (a : r y x) → C y) → C x)\n : C a :=\n n.rec m", "start": [ 31, 1 ], "end": [ 35, 10 ], "kind": "commanddeclaration" }, { "full_name": "Acc.inv", "code": "theorem inv {x y : α} (h₁ : Acc r x) (h₂ : r y x) : Acc r y", "start": [ 40, 1 ], "end": [ 41, 43 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded", "code": "inductive WellFounded {α : Sort u} (r : α → α → Prop) : Prop where\n | intro (h : ∀ a, Acc r a) : WellFounded r", "start": [ 45, 1 ], "end": [ 54, 45 ], "kind": "commanddeclaration" }, { "full_name": "WellFoundedRelation", "code": "class WellFoundedRelation (α : Sort u) where\n rel : α → α → Prop\n wf : WellFounded rel", "start": [ 56, 1 ], "end": [ 58, 24 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.apply", "code": "theorem apply {α : Sort u} {r : α → α → Prop} (wf : WellFounded r) (a : α) : Acc r a", "start": [ 61, 1 ], "end": [ 62, 24 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.recursion", "code": "noncomputable def recursion {C : α → Sort v} (a : α) (h : ∀ x, (∀ y, r y x → C y) → C x) : C a := by\n induction (apply hwf a) with\n | intro x₁ _ ih => exact h x₁ ih", "start": [ 67, 1 ], "end": [ 69, 35 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.induction", "code": "theorem induction {C : α → Prop} (a : α) (h : ∀ x, (∀ y, r y x → C y) → C x) : C a", "start": [ 71, 1 ], "end": [ 72, 20 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.fixF", "code": "noncomputable def fixF (x : α) (a : Acc r x) : C x := by\n induction a with\n | intro x₁ _ ih => exact F x₁ ih", "start": [ 77, 1 ], "end": [ 79, 35 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.fixFEq", "code": "theorem fixFEq (x : α) (acx : Acc r x) : fixF F x acx = F x (fun (y : α) (p : r y x) => fixF F y (Acc.inv acx p))", "start": [ 81, 1 ], "end": [ 83, 29 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.fix", "code": "noncomputable def fix (hwf : WellFounded r) (F : ∀ x, (∀ y, r y x → C y) → C x) (x : α) : C x :=\n fixF F x (apply hwf x)", "start": [ 90, 1 ], "end": [ 91, 25 ], "kind": "commanddeclaration" }, { "full_name": "WellFounded.fix_eq", "code": "theorem fix_eq (hwf : WellFounded r) (F : ∀ x, (∀ y, r y x → C y) → C x) (x : α) :\n fix hwf F x = F x (fun y _ => fix hwf F y)", "start": [ 94, 1 ], "end": [ 96, 27 ], "kind": "commanddeclaration" }, { "full_name": "emptyWf", "code": "def emptyWf {α : Sort u} : WellFoundedRelation α where\n rel := emptyRelation\n wf := by\n apply WellFounded.intro\n intro a\n apply Acc.intro a\n intro b h\n cases h", "start": [ 102, 1 ], "end": [ 109, 12 ], "kind": "commanddeclaration" }, { "full_name": "Subrelation.accessible", "code": "theorem accessible {a : α} (h₁ : Subrelation q r) (ac : Acc r a) : Acc q a", "start": [ 115, 1 ], "end": [ 120, 22 ], "kind": "commanddeclaration" }, { "full_name": "Subrelation.wf", "code": "theorem wf (h₁ : Subrelation q r) (h₂ : WellFounded r) : WellFounded q", "start": [ 122, 1 ], "end": [ 123, 41 ], "kind": "commanddeclaration" }, { "full_name": "InvImage.accAux", "code": "private def accAux (f : α → β) {b : β} (ac : Acc r b) : (x : α) → f x = b → Acc (InvImage r f) x := by\n induction ac with\n | intro x acx ih =>\n intro z e\n apply Acc.intro\n intro y lt\n subst x\n apply ih (f y) lt y rfl", "start": [ 130, 1 ], "end": [ 137, 28 ], "kind": "commanddeclaration" }, { "full_name": "InvImage.accessible", "code": "theorem accessible {a : α} (f : α → β) (ac : Acc r (f a)) : Acc (InvImage r f) a", "start": [ 139, 1 ], "end": [ 140, 20 ], "kind": "commanddeclaration" }, { "full_name": "InvImage.wf", "code": "theorem wf (f : α → β) (h : WellFounded r) : WellFounded (InvImage r f)", "start": [ 142, 1 ], "end": [ 143, 42 ], "kind": "commanddeclaration" }, { "full_name": "invImage", "code": "@[reducible] def invImage (f : α → β) (h : WellFoundedRelation β) : WellFoundedRelation α where\n rel := InvImage h.rel f\n wf := InvImage.wf f h.wf", "start": [ 146, 1 ], "end": [ 148, 28 ], "kind": "commanddeclaration" }, { "full_name": "TC.accessible", "code": "theorem accessible {z : α} (ac : Acc r z) : Acc (TC r) z", "start": [ 154, 1 ], "end": [ 161, 64 ], "kind": "commanddeclaration" }, { "full_name": "TC.wf", "code": "theorem wf (h : WellFounded r) : WellFounded (TC r)", "start": [ 163, 1 ], "end": [ 164, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_wfRel", "code": "def lt_wfRel : WellFoundedRelation Nat where\n rel := Nat.lt\n wf := by\n apply WellFounded.intro\n intro n\n induction n with\n | zero =>\n apply Acc.intro 0\n intro _ h\n apply absurd h (Nat.not_lt_zero _)\n | succ n ih =>\n apply Acc.intro (Nat.succ n)\n intro m h\n have : m = n ∨ m < n := Nat.eq_or_lt_of_le (Nat.le_of_succ_le_succ h)\n match this with\n | Or.inl e => subst e; assumption\n | Or.inr e => exact Acc.inv ih e", "start": [ 170, 1 ], "end": [ 186, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.strongInductionOn", "code": "protected noncomputable def strongInductionOn\n {motive : Nat → Sort u}\n (n : Nat)\n (ind : ∀ n, (∀ m, m < n → motive m) → motive n) : motive n :=\n Nat.lt_wfRel.wf.fix ind n", "start": [ 188, 1 ], "end": [ 192, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.caseStrongInductionOn", "code": "protected noncomputable def caseStrongInductionOn\n {motive : Nat → Sort u}\n (a : Nat)\n (zero : motive 0)\n (ind : ∀ n, (∀ m, m ≤ n → motive m) → motive (succ n)) : motive a :=\n Nat.strongInductionOn a fun n =>\n match n with\n | 0 => fun _ => zero\n | n+1 => fun h₁ => ind n (λ _ h₂ => h₁ _ (lt_succ_of_le h₂))", "start": [ 194, 1 ], "end": [ 202, 65 ], "kind": "commanddeclaration" }, { "full_name": "measure", "code": "abbrev measure {α : Sort u} (f : α → Nat) : WellFoundedRelation α :=\n invImage f Nat.lt_wfRel", "start": [ 206, 1 ], "end": [ 207, 26 ], "kind": "commanddeclaration" }, { "full_name": "sizeOfWFRel", "code": "abbrev sizeOfWFRel {α : Sort u} [SizeOf α] : WellFoundedRelation α :=\n measure sizeOf", "start": [ 209, 1 ], "end": [ 210, 17 ], "kind": "commanddeclaration" }, { "full_name": "Prod.Lex", "code": "protected inductive Lex : α × β → α × β → Prop where\n | left {a₁} (b₁) {a₂} (b₂) (h : ra a₁ a₂) : Prod.Lex (a₁, b₁) (a₂, b₂)\n | right (a) {b₁ b₂} (h : rb b₁ b₂) : Prod.Lex (a, b₁) (a, b₂)", "start": [ 224, 1 ], "end": [ 226, 73 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lex_def", "code": "theorem lex_def (r : α → α → Prop) (s : β → β → Prop) {p q : α × β} :\n Prod.Lex r s p q ↔ r p.1 q.1 ∨ p.1 = q.1 ∧ s p.2 q.2", "start": [ 228, 1 ], "end": [ 233, 72 ], "kind": "commanddeclaration" }, { "full_name": "Prod.Lex.right'", "code": "theorem right' {a₁ : Nat} {b₁ : β} (h₁ : a₁ ≤ a₂) (h₂ : rb b₁ b₂) : Prod.Lex Nat.lt rb (a₁, b₁) (a₂, b₂)", "start": [ 254, 1 ], "end": [ 257, 37 ], "kind": "commanddeclaration" }, { "full_name": "Prod.RProd", "code": "inductive RProd : α × β → α × β → Prop where\n | intro {a₁ b₁ a₂ b₂} (h₁ : ra a₁ a₂) (h₂ : rb b₁ b₂) : RProd (a₁, b₁) (a₂, b₂)", "start": [ 262, 1 ], "end": [ 263, 82 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lexAccessible", "code": "theorem lexAccessible {a : α} (aca : Acc ra a) (acb : (b : β) → Acc rb b) (b : β) : Acc (Prod.Lex ra rb) (a, b)", "start": [ 271, 1 ], "end": [ 280, 37 ], "kind": "commanddeclaration" }, { "full_name": "Prod.lex", "code": "@[reducible] def lex (ha : WellFoundedRelation α) (hb : WellFoundedRelation β) : WellFoundedRelation (α × β) where\n rel := Prod.Lex ha.rel hb.rel\n wf := ⟨fun (a, b) => lexAccessible (WellFounded.apply ha.wf a) (WellFounded.apply hb.wf) b⟩", "start": [ 283, 1 ], "end": [ 285, 95 ], "kind": "commanddeclaration" }, { "full_name": "Prod.RProdSubLex", "code": "def RProdSubLex (a : α × β) (b : α × β) (h : RProd ra rb a b) : Prod.Lex ra rb a b := by\n cases h with\n | intro h₁ h₂ => exact Prod.Lex.left _ _ h₁", "start": [ 291, 1 ], "end": [ 293, 46 ], "kind": "commanddeclaration" }, { "full_name": "Prod.rprod", "code": "def rprod (ha : WellFoundedRelation α) (hb : WellFoundedRelation β) : WellFoundedRelation (α × β) where\n rel := RProd ha.rel hb.rel\n wf := by\n apply Subrelation.wf (r := Prod.Lex ha.rel hb.rel) (h₂ := (lex ha hb).wf)\n intro a b h\n exact RProdSubLex a b h", "start": [ 296, 1 ], "end": [ 301, 28 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.Lex", "code": "inductive Lex : PSigma β → PSigma β → Prop where\n | left : ∀ {a₁ : α} (b₁ : β a₁) {a₂ : α} (b₂ : β a₂), r a₁ a₂ → Lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩\n | right : ∀ (a : α) {b₁ b₂ : β a}, s a b₁ b₂ → Lex ⟨a, b₁⟩ ⟨a, b₂⟩", "start": [ 314, 1 ], "end": [ 316, 70 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.lexAccessible", "code": "def lexAccessible {a} (aca : Acc r a) (acb : (a : α) → WellFounded (s a)) (b : β a) : Acc (Lex r s) ⟨a, b⟩ := by\n induction aca with\n | intro xa _ iha =>\n induction (WellFounded.apply (acb xa) b) with\n | intro xb _ ihb =>\n apply Acc.intro\n intro p lt\n cases lt with\n | left => apply iha; assumption\n | right => apply ihb; assumption", "start": [ 323, 1 ], "end": [ 332, 39 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.lex", "code": "@[reducible] def lex (ha : WellFoundedRelation α) (hb : (a : α) → WellFoundedRelation (β a)) : WellFoundedRelation (PSigma β) where\n rel := Lex ha.rel (fun a => hb a |>.rel)\n wf := WellFounded.intro fun ⟨a, b⟩ => lexAccessible (WellFounded.apply ha.wf a) (fun a => hb a |>.wf) b", "start": [ 335, 1 ], "end": [ 337, 107 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.lexNdep", "code": "def lexNdep (r : α → α → Prop) (s : β → β → Prop) :=\n Lex r (fun _ => s)", "start": [ 347, 1 ], "end": [ 348, 21 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.lexNdepWf", "code": "theorem lexNdepWf {r : α → α → Prop} {s : β → β → Prop} (ha : WellFounded r) (hb : WellFounded s) : WellFounded (lexNdep r s)", "start": [ 350, 1 ], "end": [ 351, 89 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.RevLex", "code": "inductive RevLex (r : α → α → Prop) (s : β → β → Prop) : @PSigma α (fun _ => β) → @PSigma α (fun _ => β) → Prop where\n | left : {a₁ a₂ : α} → (b : β) → r a₁ a₂ → RevLex r s ⟨a₁, b⟩ ⟨a₂, b⟩\n | right : (a₁ : α) → {b₁ : β} → (a₂ : α) → {b₂ : β} → s b₁ b₂ → RevLex r s ⟨a₁, b₁⟩ ⟨a₂, b₂⟩", "start": [ 358, 1 ], "end": [ 360, 95 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.revLexAccessible", "code": "theorem revLexAccessible {b} (acb : Acc s b) (aca : (a : α) → Acc r a): (a : α) → Acc (RevLex r s) ⟨a, b⟩", "start": [ 368, 1 ], "end": [ 378, 39 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.revLex", "code": "theorem revLex (ha : WellFounded r) (hb : WellFounded s) : WellFounded (RevLex r s)", "start": [ 380, 1 ], "end": [ 381, 89 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.SkipLeft", "code": "def SkipLeft (α : Type u) {β : Type v} (s : β → β → Prop) : @PSigma α (fun _ => β) → @PSigma α (fun _ => β) → Prop :=\n RevLex emptyRelation s", "start": [ 385, 1 ], "end": [ 386, 25 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.skipLeft", "code": "def skipLeft (α : Type u) {β : Type v} (hb : WellFoundedRelation β) : WellFoundedRelation (PSigma fun _ : α => β) where\n rel := SkipLeft α hb.rel\n wf := revLex emptyWf.wf hb.wf", "start": [ 388, 1 ], "end": [ 390, 33 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.mkSkipLeft", "code": "theorem mkSkipLeft {α : Type u} {β : Type v} {b₁ b₂ : β} {s : β → β → Prop} (a₁ a₂ : α) (h : s b₁ b₂) : SkipLeft α s ⟨a₁, b₁⟩ ⟨a₂, b₂⟩", "start": [ 392, 1 ], "end": [ 393, 21 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/WFTactics.lean
[ ".lake/packages/lean4/src/lean/Init/WF.lean", ".lake/packages/lean4/src/lean/Init/MetaTypes.lean", ".lake/packages/lean4/src/lean/Init/SizeOf.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean
[ ".lake/packages/lean4/src/lean/Init/WF.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean", ".lake/packages/lean4/src/lean/Init/WFTactics.lean" ]
[ { "full_name": "Nat.div_rec_lemma", "code": "theorem div_rec_lemma {x y : Nat} : 0 < y ∧ y ≤ x → x - y < x", "start": [ 20, 1 ], "end": [ 21, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div", "code": "@[extern \"lean_nat_div\"]\nprotected def div (x y : @& Nat) : Nat :=\n if 0 < y ∧ y ≤ x then\n Nat.div (x - y) y + 1\n else\n 0\ndecreasing_by apply div_rec_lemma; assumption", "start": [ 23, 1 ], "end": [ 29, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.instDiv", "code": "instance instDiv : Div Nat := ⟨Nat.div⟩", "start": [ 31, 1 ], "end": [ 31, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq", "code": "theorem div_eq (x y : Nat) : x / y = if 0 < y ∧ y ≤ x then (x - y) / y + 1 else 0", "start": [ 33, 1 ], "end": [ 36, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div.inductionOn", "code": "def div.inductionOn.{u}\n {motive : Nat → Nat → Sort u}\n (x y : Nat)\n (ind : ∀ x y, 0 < y ∧ y ≤ x → motive (x - y) y → motive x y)\n (base : ∀ x y, ¬(0 < y ∧ y ≤ x) → motive x y)\n : motive x y :=\n if h : 0 < y ∧ y ≤ x then\n ind x y h (inductionOn (x - y) y ind base)\n else\n base x y h\ndecreasing_by apply div_rec_lemma; assumption", "start": [ 38, 1 ], "end": [ 48, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_le_self", "code": "theorem div_le_self (n k : Nat) : n / k ≤ n", "start": [ 50, 1 ], "end": [ 62, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_lt_self", "code": "theorem div_lt_self {n k : Nat} (hLtN : 0 < n) (hLtK : 1 < k) : n / k < n", "start": [ 64, 1 ], "end": [ 73, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.modCore", "code": "@[extern \"lean_nat_mod\"]\nprotected def modCore (x y : @& Nat) : Nat :=\n if 0 < y ∧ y ≤ x then\n Nat.modCore (x - y) y\n else\n x\ndecreasing_by apply div_rec_lemma; assumption", "start": [ 75, 1 ], "end": [ 81, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod", "code": "@[extern \"lean_nat_mod\"]\nprotected def mod : @& Nat → @& Nat → Nat\n \n | 0, _ => 0\n | n@(_ + 1), m =>\n if m ≤ n then Nat.modCore n m\n else n", "start": [ 83, 1 ], "end": [ 98, 11 ], "kind": "commanddeclaration" }, { "full_name": "Nat.instMod", "code": "instance instMod : Mod Nat := ⟨Nat.mod⟩", "start": [ 100, 1 ], "end": [ 100, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.modCore_eq_mod", "code": "protected theorem modCore_eq_mod (n m : Nat) : Nat.modCore n m = n % m", "start": [ 102, 1 ], "end": [ 112, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_eq", "code": "theorem mod_eq (x y : Nat) : x % y = if 0 < y ∧ y ≤ x then (x - y) % y else x", "start": [ 114, 1 ], "end": [ 115, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod.inductionOn", "code": "def mod.inductionOn.{u}\n {motive : Nat → Nat → Sort u}\n (x y : Nat)\n (ind : ∀ x y, 0 < y ∧ y ≤ x → motive (x - y) y → motive x y)\n (base : ∀ x y, ¬(0 < y ∧ y ≤ x) → motive x y)\n : motive x y :=\n div.inductionOn x y ind base", "start": [ 117, 1 ], "end": [ 123, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_zero", "code": "@[simp] theorem mod_zero (a : Nat) : a % 0 = a", "start": [ 125, 1 ], "end": [ 129, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_eq_of_lt", "code": "theorem mod_eq_of_lt {a b : Nat} (h : a < b) : a % b = a", "start": [ 131, 1 ], "end": [ 135, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_eq_sub_mod", "code": "theorem mod_eq_sub_mod {a b : Nat} (h : a ≥ b) : a % b = (a - b) % b", "start": [ 137, 1 ], "end": [ 140, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_lt", "code": "theorem mod_lt (x : Nat) {y : Nat} : y > 0 → x % y < y", "start": [ 142, 1 ], "end": [ 158, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_le", "code": "theorem mod_le (x y : Nat) : x % y ≤ x", "start": [ 160, 1 ], "end": [ 165, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_mod", "code": "@[simp] theorem zero_mod (b : Nat) : 0 % b = 0", "start": [ 167, 1 ], "end": [ 172, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_self", "code": "@[simp] theorem mod_self (n : Nat) : n % n = 0", "start": [ 174, 1 ], "end": [ 175, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_one", "code": "theorem mod_one (x : Nat) : x % 1 = 0", "start": [ 177, 1 ], "end": [ 184, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_add_mod", "code": "theorem div_add_mod (m n : Nat) : n * (m / n) + m % n = m", "start": [ 186, 1 ], "end": [ 195, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_sub_div", "code": "theorem div_eq_sub_div (h₁ : 0 < b) (h₂ : b ≤ a) : a / b = (a - b) / b + 1", "start": [ 197, 1 ], "end": [ 198, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_add_div", "code": "theorem mod_add_div (m k : Nat) : m % k + k * (m / k) = m", "start": [ 201, 1 ], "end": [ 204, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_one", "code": "@[simp] protected theorem div_one (n : Nat) : n / 1 = n", "start": [ 206, 1 ], "end": [ 208, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_zero", "code": "@[simp] protected theorem div_zero (n : Nat) : n / 0 = 0", "start": [ 210, 1 ], "end": [ 211, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_div", "code": "@[simp] protected theorem zero_div (b : Nat) : 0 / b = 0", "start": [ 213, 1 ], "end": [ 214, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_div_iff_mul_le", "code": "theorem le_div_iff_mul_le (k0 : 0 < k) : x ≤ y / k ↔ x * k ≤ y", "start": [ 216, 1 ], "end": [ 225, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_div_eq_div_mul", "code": "protected theorem div_div_eq_div_mul (m n k : Nat) : m / n / k = m / (n * k)", "start": [ 227, 1 ], "end": [ 245, 20 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_mul_le_self", "code": "theorem div_mul_le_self : ∀ (m n : Nat), m / n * n ≤ m", "start": [ 247, 1 ], "end": [ 249, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_lt_iff_lt_mul", "code": "theorem div_lt_iff_lt_mul (Hk : 0 < k) : x / k < y ↔ x < y * k", "start": [ 251, 1 ], "end": [ 252, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_div_right", "code": "@[simp] theorem add_div_right (x : Nat) {z : Nat} (H : 0 < z) : (x + z) / z = (x / z) + 1", "start": [ 254, 1 ], "end": [ 255, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_div_left", "code": "@[simp] theorem add_div_left (x : Nat) {z : Nat} (H : 0 < z) : (z + x) / z = (x / z) + 1", "start": [ 257, 1 ], "end": [ 258, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mul_div_left", "code": "theorem add_mul_div_left (x z : Nat) {y : Nat} (H : 0 < y) : (x + y * z) / y = x / y + z", "start": [ 260, 1 ], "end": [ 263, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mul_div_right", "code": "theorem add_mul_div_right (x y : Nat) {z : Nat} (H : 0 < z) : (x + y * z) / z = x / z + y", "start": [ 265, 1 ], "end": [ 266, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mod_right", "code": "@[simp] theorem add_mod_right (x z : Nat) : (x + z) % z = x % z", "start": [ 268, 1 ], "end": [ 269, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mod_left", "code": "@[simp] theorem add_mod_left (x z : Nat) : (x + z) % x = z % x", "start": [ 271, 1 ], "end": [ 272, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mul_mod_self_left", "code": "@[simp] theorem add_mul_mod_self_left (x y z : Nat) : (x + y * z) % y = x % y", "start": [ 274, 1 ], "end": [ 277, 92 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mul_mod_self_right", "code": "@[simp] theorem add_mul_mod_self_right (x y z : Nat) : (x + y * z) % z = x % z", "start": [ 279, 1 ], "end": [ 280, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mod_right", "code": "@[simp] theorem mul_mod_right (m n : Nat) : (m * n) % m = 0", "start": [ 282, 1 ], "end": [ 283, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mod_left", "code": "@[simp] theorem mul_mod_left (m n : Nat) : (m * n) % n = 0", "start": [ 285, 1 ], "end": [ 286, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_of_lt_le", "code": "protected theorem div_eq_of_lt_le (lo : k * n ≤ m) (hi : m < (k + 1) * n) : m / n = k", "start": [ 288, 1 ], "end": [ 293, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_mul_div", "code": "theorem sub_mul_div (x n p : Nat) (h₁ : n*p ≤ x) : (x - n*p) / n = x / n - p", "start": [ 295, 1 ], "end": [ 308, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_sub_div", "code": "theorem mul_sub_div (x n p : Nat) (h₁ : x < n*p) : (n * p - (x + 1)) / n = p - ((x / n) + 1)", "start": [ 310, 1 ], "end": [ 325, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mod_mul_left", "code": "theorem mul_mod_mul_left (z x y : Nat) : (z * x) % (z * y) = z * (x % y)", "start": [ 327, 1 ], "end": [ 342, 58 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_of_lt", "code": "theorem div_eq_of_lt (h₀ : a < b) : a / b = 0", "start": [ 344, 1 ], "end": [ 347, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_cancel", "code": "protected theorem mul_div_cancel (m : Nat) {n : Nat} (H : 0 < n) : m * n / n = m", "start": [ 349, 1 ], "end": [ 351, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_cancel_left", "code": "protected theorem mul_div_cancel_left (m : Nat) {n : Nat} (H : 0 < n) : n * m / n = m", "start": [ 353, 1 ], "end": [ 354, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_le_of_le_mul", "code": "protected theorem div_le_of_le_mul {m n : Nat} : ∀ {k}, m ≤ k * n → m / k ≤ n", "start": [ 356, 1 ], "end": [ 365, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_right", "code": "@[simp] theorem mul_div_right (n : Nat) {m : Nat} (H : 0 < m) : m * n / m = n", "start": [ 367, 1 ], "end": [ 368, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_left", "code": "@[simp] theorem mul_div_left (m : Nat) {n : Nat} (H : 0 < n) : m * n / n = m", "start": [ 370, 1 ], "end": [ 371, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_self", "code": "protected theorem div_self (H : 0 < n) : n / n = 1", "start": [ 373, 1 ], "end": [ 375, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_of_eq_mul_left", "code": "protected theorem div_eq_of_eq_mul_left (H1 : 0 < n) (H2 : m = k * n) : m / n = k", "start": [ 377, 1 ], "end": [ 378, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_of_eq_mul_right", "code": "protected theorem div_eq_of_eq_mul_right (H1 : 0 < n) (H2 : m = n * k) : m / n = k", "start": [ 380, 1 ], "end": [ 381, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_mul_left", "code": "protected theorem mul_div_mul_left {m : Nat} (n k : Nat) (H : 0 < m) :\n m * n / (m * k) = n / k", "start": [ 383, 1 ], "end": [ 384, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_mul_right", "code": "protected theorem mul_div_mul_right {m : Nat} (n k : Nat) (H : 0 < m) :\n n * m / (k * m) = n / k", "start": [ 386, 1 ], "end": [ 387, 96 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_le", "code": "theorem mul_div_le (m n : Nat) : n * (m / n) ≤ m", "start": [ 389, 1 ], "end": [ 392, 85 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean", ".lake/packages/lean4/src/lean/Init/Coe.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean" ]
[ { "full_name": "Nat.bitwise_rec_lemma", "code": "theorem bitwise_rec_lemma {n : Nat} (hNe : n ≠ 0) : n / 2 < n", "start": [ 13, 1 ], "end": [ 14, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.bitwise", "code": "def bitwise (f : Bool → Bool → Bool) (n m : Nat) : Nat :=\n if n = 0 then\n if f false true then m else 0\n else if m = 0 then\n if f true false then n else 0\n else\n let n' := n / 2\n let m' := m / 2\n let b₁ := n % 2 = 1\n let b₂ := m % 2 = 1\n let r := bitwise f n' m'\n if f b₁ b₂ then\n r+r+1\n else\n r+r\ndecreasing_by apply bitwise_rec_lemma; assumption", "start": [ 16, 1 ], "end": [ 31, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.land", "code": "@[extern \"lean_nat_land\"]\ndef land : @& Nat → @& Nat → Nat := bitwise and", "start": [ 33, 1 ], "end": [ 34, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lor", "code": "@[extern \"lean_nat_lor\"]\ndef lor : @& Nat → @& Nat → Nat := bitwise or", "start": [ 35, 1 ], "end": [ 36, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.xor", "code": "@[extern \"lean_nat_lxor\"]\ndef xor : @& Nat → @& Nat → Nat := bitwise bne", "start": [ 37, 1 ], "end": [ 38, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft", "code": "@[extern \"lean_nat_shiftl\"]\ndef shiftLeft : @& Nat → @& Nat → Nat\n | n, 0 => n\n | n, succ m => shiftLeft (2*n) m", "start": [ 39, 1 ], "end": [ 42, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight", "code": "@[extern \"lean_nat_shiftr\"]\ndef shiftRight : @& Nat → @& Nat → Nat\n | n, 0 => n\n | n, succ m => shiftRight n m / 2", "start": [ 43, 1 ], "end": [ 46, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_eq", "code": "theorem shiftLeft_eq (a b : Nat) : a <<< b = a * 2 ^ b", "start": [ 54, 1 ], "end": [ 58, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight_zero", "code": "@[simp] theorem shiftRight_zero : n >>> 0 = n", "start": [ 60, 1 ], "end": [ 60, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight_succ", "code": "theorem shiftRight_succ (m n) : m >>> (n + 1) = (m >>> n) / 2", "start": [ 62, 1 ], "end": [ 62, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight_add", "code": "theorem shiftRight_add (m n : Nat) : ∀ k, m >>> (n + k) = (m >>> n) >>> k", "start": [ 64, 1 ], "end": [ 66, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight_eq_div_pow", "code": "theorem shiftRight_eq_div_pow (m : Nat) : ∀ n, m >>> n = m / 2 ^ n", "start": [ 68, 1 ], "end": [ 72, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.testBit", "code": "def testBit (m n : Nat) : Bool :=\n 1 &&& (m >>> n) != 0", "start": [ 80, 1 ], "end": [ 83, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Fin/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Bitwise/Basic.lean" ]
[ { "full_name": "Fin.coeToNat", "code": "instance coeToNat : CoeOut (Fin n) Nat :=\n ⟨fun v => v.val⟩", "start": [ 13, 1 ], "end": [ 14, 19 ], "kind": "commanddeclaration" }, { "full_name": "Fin.elim0", "code": "def elim0.{u} {α : Sort u} : Fin 0 → α\n | ⟨_, h⟩ => absurd h (not_lt_zero _)", "start": [ 16, 1 ], "end": [ 20, 39 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ", "code": "def succ : Fin n → Fin n.succ\n | ⟨i, h⟩ => ⟨i+1, Nat.succ_lt_succ h⟩", "start": [ 22, 1 ], "end": [ 35, 40 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ofNat", "code": "protected def ofNat {n : Nat} (a : Nat) : Fin n.succ :=\n ⟨a % (n+1), Nat.mod_lt _ (Nat.zero_lt_succ _)⟩", "start": [ 39, 1 ], "end": [ 43, 49 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ofNat'", "code": "protected def ofNat' {n : Nat} (a : Nat) (h : n > 0) : Fin n :=\n ⟨a % n, Nat.mod_lt _ h⟩", "start": [ 45, 1 ], "end": [ 51, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mlt", "code": "private theorem mlt {b : Nat} : {a : Nat} → a < n → b % n < n", "start": [ 53, 1 ], "end": [ 57, 22 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add", "code": "protected def add : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a + b) % n, mlt h⟩", "start": [ 59, 1 ], "end": [ 61, 43 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul", "code": "protected def mul : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a * b) % n, mlt h⟩", "start": [ 63, 1 ], "end": [ 65, 43 ], "kind": "commanddeclaration" }, { "full_name": "Fin.sub", "code": "protected def sub : Fin n → Fin n → Fin n\n \n | ⟨a, h⟩, ⟨b, _⟩ => ⟨((n - b) + a) % n, mlt h⟩", "start": [ 67, 1 ], "end": [ 86, 49 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mod", "code": "protected def mod : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨a % b, Nat.lt_of_le_of_lt (Nat.mod_le _ _) h⟩", "start": [ 94, 1 ], "end": [ 95, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.div", "code": "protected def div : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨a / b, Nat.lt_of_le_of_lt (Nat.div_le_self _ _) h⟩", "start": [ 97, 1 ], "end": [ 98, 74 ], "kind": "commanddeclaration" }, { "full_name": "Fin.modn", "code": "def modn : Fin n → Nat → Fin n\n | ⟨a, h⟩, m => ⟨a % m, Nat.lt_of_le_of_lt (Nat.mod_le _ _) h⟩", "start": [ 100, 1 ], "end": [ 101, 64 ], "kind": "commanddeclaration" }, { "full_name": "Fin.land", "code": "def land : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.land a b) % n, mlt h⟩", "start": [ 103, 1 ], "end": [ 104, 50 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lor", "code": "def lor : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.lor a b) % n, mlt h⟩", "start": [ 106, 1 ], "end": [ 107, 49 ], "kind": "commanddeclaration" }, { "full_name": "Fin.xor", "code": "def xor : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(Nat.xor a b) % n, mlt h⟩", "start": [ 109, 1 ], "end": [ 110, 49 ], "kind": "commanddeclaration" }, { "full_name": "Fin.shiftLeft", "code": "def shiftLeft : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a <<< b) % n, mlt h⟩", "start": [ 112, 1 ], "end": [ 113, 45 ], "kind": "commanddeclaration" }, { "full_name": "Fin.shiftRight", "code": "def shiftRight : Fin n → Fin n → Fin n\n | ⟨a, h⟩, ⟨b, _⟩ => ⟨(a >>> b) % n, mlt h⟩", "start": [ 115, 1 ], "end": [ 116, 45 ], "kind": "commanddeclaration" }, { "full_name": "Fin.instOfNat", "code": "instance instOfNat : OfNat (Fin (no_index (n+1))) i where\n ofNat := Fin.ofNat i", "start": [ 144, 1 ], "end": [ 145, 23 ], "kind": "commanddeclaration" }, { "full_name": "Fin.zero_eta", "code": "@[simp] theorem zero_eta : (⟨0, Nat.zero_lt_succ _⟩ : Fin (n + 1)) = 0", "start": [ 150, 1 ], "end": [ 150, 78 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_ne_of_ne", "code": "theorem val_ne_of_ne {i j : Fin n} (h : i ≠ j) : val i ≠ val j", "start": [ 152, 1 ], "end": [ 153, 39 ], "kind": "commanddeclaration" }, { "full_name": "Fin.modn_lt", "code": "theorem modn_lt : ∀ {m : Nat} (i : Fin n), m > 0 → (modn i m).val < m", "start": [ 155, 1 ], "end": [ 156, 67 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_lt_of_le", "code": "theorem val_lt_of_le (i : Fin b) (h : b ≤ n) : i.val < n", "start": [ 158, 1 ], "end": [ 159, 30 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pos", "code": "protected theorem pos (i : Fin n) : 0 < n", "start": [ 161, 1 ], "end": [ 162, 41 ], "kind": "commanddeclaration" }, { "full_name": "Fin.last", "code": "@[inline] def last (n : Nat) : Fin (n + 1) := ⟨n, n.lt_succ_self⟩", "start": [ 164, 1 ], "end": [ 165, 66 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLT", "code": "@[inline] def castLT (i : Fin m) (h : i.1 < n) : Fin n := ⟨i.1, h⟩", "start": [ 167, 1 ], "end": [ 168, 67 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE", "code": "@[inline] def castLE (h : n ≤ m) (i : Fin n) : Fin m := ⟨i, Nat.lt_of_lt_of_le i.2 h⟩", "start": [ 170, 1 ], "end": [ 171, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast", "code": "@[inline] def cast (eq : n = m) (i : Fin n) : Fin m := ⟨i, eq ▸ i.2⟩", "start": [ 173, 1 ], "end": [ 174, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd", "code": "@[inline] def castAdd (m) : Fin n → Fin (n + m) :=\n castLE <| Nat.le_add_right n m", "start": [ 176, 1 ], "end": [ 178, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc", "code": "@[inline] def castSucc : Fin n → Fin (n + 1) := castAdd 1", "start": [ 180, 1 ], "end": [ 181, 58 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addNat", "code": "def addNat (i : Fin n) (m) : Fin (n + m) := ⟨i + m, Nat.add_lt_add_right i.2 _⟩", "start": [ 183, 1 ], "end": [ 184, 80 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd", "code": "def natAdd (n) (i : Fin m) : Fin (n + m) := ⟨n + i, Nat.add_lt_add_left i.2 _⟩", "start": [ 186, 1 ], "end": [ 187, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev", "code": "@[inline] def rev (i : Fin n) : Fin n := ⟨n - (i + 1), Nat.sub_lt i.pos (Nat.succ_pos _)⟩", "start": [ 189, 1 ], "end": [ 190, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subNat", "code": "@[inline] def subNat (m) (i : Fin (n + m)) (h : m ≤ i) : Fin n :=\n ⟨i - m, Nat.sub_lt_right_of_lt_add h i.2⟩", "start": [ 192, 1 ], "end": [ 194, 44 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred", "code": "@[inline] def pred {n : Nat} (i : Fin (n + 1)) (h : i ≠ 0) : Fin n :=\n subNat 1 i <| Nat.pos_of_ne_zero <| mt (Fin.eq_of_val_eq (j := 0)) h", "start": [ 196, 1 ], "end": [ 198, 71 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_inj", "code": "theorem val_inj {a b : Fin n} : a.1 = b.1 ↔ a = b", "start": [ 200, 1 ], "end": [ 200, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_congr", "code": "theorem val_congr {n : Nat} {a b : Fin n} (h : a = b) : (a : Nat) = (b : Nat)", "start": [ 202, 1 ], "end": [ 203, 20 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_le_of_le", "code": "theorem val_le_of_le {n : Nat} {a b : Fin n} (h : a ≤ b) : (a : Nat) ≤ (b : Nat)", "start": [ 205, 1 ], "end": [ 205, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_le_of_ge", "code": "theorem val_le_of_ge {n : Nat} {a b : Fin n} (h : a ≥ b) : (b : Nat) ≤ (a : Nat)", "start": [ 207, 1 ], "end": [ 207, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_add_one_le_of_lt", "code": "theorem val_add_one_le_of_lt {n : Nat} {a b : Fin n} (h : a < b) : (a : Nat) + 1 ≤ (b : Nat)", "start": [ 209, 1 ], "end": [ 209, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_add_one_le_of_gt", "code": "theorem val_add_one_le_of_gt {n : Nat} {a b : Fin n} (h : a > b) : (b : Nat) + 1 ≤ (a : Nat)", "start": [ 211, 1 ], "end": [ 211, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.exists_iff", "code": "theorem exists_iff {p : Fin n → Prop} : (Exists fun i => p i) ↔ Exists fun i => Exists fun h => p ⟨i, h⟩", "start": [ 213, 1 ], "end": [ 214, 75 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/List/Notation.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Control/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "Functor.mapRev", "code": "@[reducible]\ndef Functor.mapRev {f : Type u → Type v} [Functor f] {α β : Type u} : f α → (α → β) → f β :=\n fun a f => f <$> a", "start": [ 11, 1 ], "end": [ 13, 21 ], "kind": "commanddeclaration" }, { "full_name": "Functor.discard", "code": "@[always_inline, inline]\ndef Functor.discard {f : Type u → Type v} {α : Type u} [Functor f] (x : f α) : f PUnit :=\n Functor.mapConst PUnit.unit x", "start": [ 17, 1 ], "end": [ 19, 32 ], "kind": "commanddeclaration" }, { "full_name": "Alternative", "code": "class Alternative (f : Type u → Type v) extends Applicative f : Type (max (u+1) v) where\n \n failure : {α : Type u} → f α\n \n orElse : {α : Type u} → f α → (Unit → f α) → f α", "start": [ 23, 1 ], "end": [ 46, 52 ], "kind": "commanddeclaration" }, { "full_name": "guard", "code": "@[always_inline, inline] def guard {f : Type → Type v} [Alternative f] (p : Prop) [Decidable p] : f Unit :=\n if p then pure () else failure", "start": [ 54, 1 ], "end": [ 58, 33 ], "kind": "commanddeclaration" }, { "full_name": "optional", "code": "@[always_inline, inline] def optional (x : f α) : f (Option α) :=\n some <$> x <|> pure none", "start": [ 60, 1 ], "end": [ 64, 27 ], "kind": "commanddeclaration" }, { "full_name": "ToBool", "code": "class ToBool (α : Type u) where\n toBool : α → Bool", "start": [ 66, 1 ], "end": [ 67, 20 ], "kind": "commanddeclaration" }, { "full_name": "bool", "code": "@[macro_inline] def bool {β : Type u} {α : Type v} [ToBool β] (f t : α) (b : β) : α :=\n match toBool b with\n | true => t\n | false => f", "start": [ 74, 1 ], "end": [ 77, 15 ], "kind": "commanddeclaration" }, { "full_name": "orM", "code": "@[macro_inline] def orM {m : Type u → Type v} {β : Type u} [Monad m] [ToBool β] (x y : m β) : m β := do\n let b ← x\n match toBool b with\n | true => pure b\n | false => y", "start": [ 79, 1 ], "end": [ 83, 15 ], "kind": "commanddeclaration" }, { "full_name": "andM", "code": "@[macro_inline] def andM {m : Type u → Type v} {β : Type u} [Monad m] [ToBool β] (x y : m β) : m β := do\n let b ← x\n match toBool b with\n | true => y\n | false => pure b", "start": [ 87, 1 ], "end": [ 91, 20 ], "kind": "commanddeclaration" }, { "full_name": "notM", "code": "@[macro_inline] def notM {m : Type → Type v} [Applicative m] (x : m Bool) : m Bool :=\n not <$> x", "start": [ 95, 1 ], "end": [ 96, 12 ], "kind": "commanddeclaration" }, { "full_name": "MonadControl", "code": "class MonadControl (m : semiOutParam (Type u → Type v)) (n : Type u → Type w) where\n stM : Type u → Type u\n liftWith : {α : Type u} → (({β : Type u} → n β → m (stM β)) → m α) → n α\n restoreM : {α : Type u} → m (stM α) → n α", "start": [ 210, 1 ], "end": [ 219, 44 ], "kind": "commanddeclaration" }, { "full_name": "MonadControlT", "code": "class MonadControlT (m : Type u → Type v) (n : Type u → Type w) where\n stM : Type u → Type u\n liftWith : {α : Type u} → (({β : Type u} → n β → m (stM β)) → m α) → n α\n restoreM {α : Type u} : stM α → n α", "start": [ 221, 1 ], "end": [ 225, 38 ], "kind": "commanddeclaration" }, { "full_name": "controlAt", "code": "@[always_inline, inline]\ndef controlAt (m : Type u → Type v) {n : Type u → Type w} [MonadControlT m n] [Bind n] {α : Type u}\n (f : ({β : Type u} → n β → m (stM m n β)) → m (stM m n α)) : n α :=\n liftWith f >>= restoreM", "start": [ 240, 1 ], "end": [ 243, 26 ], "kind": "commanddeclaration" }, { "full_name": "control", "code": "@[always_inline, inline]\ndef control {m : Type u → Type v} {n : Type u → Type w} [MonadControlT m n] [Bind n] {α : Type u}\n (f : ({β : Type u} → n β → m (stM m n β)) → m (stM m n α)) : n α :=\n controlAt m f", "start": [ 245, 1 ], "end": [ 248, 16 ], "kind": "commanddeclaration" }, { "full_name": "ForM", "code": "class ForM (m : Type u → Type v) (γ : Type w₁) (α : outParam (Type w₂)) where\n forM [Monad m] : γ → (α → m PUnit) → m PUnit", "start": [ 250, 1 ], "end": [ 258, 47 ], "kind": "commanddeclaration" }, { "full_name": "Bind.kleisliRight", "code": "@[always_inline]\ndef Bind.kleisliRight [Bind m] (f₁ : α → m β) (f₂ : β → m γ) (a : α) : m γ :=\n f₁ a >>= f₂", "start": [ 262, 1 ], "end": [ 265, 14 ], "kind": "commanddeclaration" }, { "full_name": "Bind.kleisliLeft", "code": "@[always_inline]\ndef Bind.kleisliLeft [Bind m] (f₂ : β → m γ) (f₁ : α → m β) (a : α) : m γ :=\n f₁ a >>= f₂", "start": [ 267, 1 ], "end": [ 270, 14 ], "kind": "commanddeclaration" }, { "full_name": "Bind.bindLeft", "code": "@[always_inline]\ndef Bind.bindLeft [Bind m] (f : α → m β) (ma : m α) : m β :=\n ma >>= f", "start": [ 272, 1 ], "end": [ 275, 11 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Fin/Basic.lean" ]
[ { "full_name": "UInt8.ofNat", "code": "@[extern \"lean_uint8_of_nat\"]\ndef UInt8.ofNat (n : @& Nat) : UInt8 := ⟨Fin.ofNat n⟩", "start": [ 11, 1 ], "end": [ 12, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toUInt8", "code": "abbrev Nat.toUInt8 := UInt8.ofNat", "start": [ 13, 1 ], "end": [ 13, 34 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.toNat", "code": "@[extern \"lean_uint8_to_nat\"]\ndef UInt8.toNat (n : UInt8) : Nat := n.val.val", "start": [ 14, 1 ], "end": [ 15, 47 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.add", "code": "@[extern \"lean_uint8_add\"]\ndef UInt8.add (a b : UInt8) : UInt8 := ⟨a.val + b.val⟩", "start": [ 16, 1 ], "end": [ 17, 55 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.sub", "code": "@[extern \"lean_uint8_sub\"]\ndef UInt8.sub (a b : UInt8) : UInt8 := ⟨a.val - b.val⟩", "start": [ 18, 1 ], "end": [ 19, 55 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.mul", "code": "@[extern \"lean_uint8_mul\"]\ndef UInt8.mul (a b : UInt8) : UInt8 := ⟨a.val * b.val⟩", "start": [ 20, 1 ], "end": [ 21, 55 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.div", "code": "@[extern \"lean_uint8_div\"]\ndef UInt8.div (a b : UInt8) : UInt8 := ⟨a.val / b.val⟩", "start": [ 22, 1 ], "end": [ 23, 55 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.mod", "code": "@[extern \"lean_uint8_mod\"]\ndef UInt8.mod (a b : UInt8) : UInt8 := ⟨a.val % b.val⟩", "start": [ 24, 1 ], "end": [ 25, 55 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.modn", "code": "@[extern \"lean_uint8_modn\"]\ndef UInt8.modn (a : UInt8) (n : @& Nat) : UInt8 := ⟨Fin.modn a.val n⟩", "start": [ 26, 1 ], "end": [ 27, 70 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.land", "code": "@[extern \"lean_uint8_land\"]\ndef UInt8.land (a b : UInt8) : UInt8 := ⟨Fin.land a.val b.val⟩", "start": [ 28, 1 ], "end": [ 29, 63 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.lor", "code": "@[extern \"lean_uint8_lor\"]\ndef UInt8.lor (a b : UInt8) : UInt8 := ⟨Fin.lor a.val b.val⟩", "start": [ 30, 1 ], "end": [ 31, 61 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.xor", "code": "@[extern \"lean_uint8_xor\"]\ndef UInt8.xor (a b : UInt8) : UInt8 := ⟨Fin.xor a.val b.val⟩", "start": [ 32, 1 ], "end": [ 33, 61 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.shiftLeft", "code": "@[extern \"lean_uint8_shift_left\"]\ndef UInt8.shiftLeft (a b : UInt8) : UInt8 := ⟨a.val <<< (modn b 8).val⟩", "start": [ 34, 1 ], "end": [ 35, 72 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.shiftRight", "code": "@[extern \"lean_uint8_shift_right\"]\ndef UInt8.shiftRight (a b : UInt8) : UInt8 := ⟨a.val >>> (modn b 8).val⟩", "start": [ 36, 1 ], "end": [ 37, 73 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.lt", "code": "def UInt8.lt (a b : UInt8) : Prop := a.val < b.val", "start": [ 38, 1 ], "end": [ 38, 51 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.le", "code": "def UInt8.le (a b : UInt8) : Prop := a.val ≤ b.val", "start": [ 39, 1 ], "end": [ 39, 51 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.instOfNat", "code": "instance UInt8.instOfNat : OfNat UInt8 n := ⟨UInt8.ofNat n⟩", "start": [ 41, 1 ], "end": [ 41, 60 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.complement", "code": "@[extern \"lean_uint8_complement\"]\ndef UInt8.complement (a:UInt8) : UInt8 := 0-(a+1)", "start": [ 51, 1 ], "end": [ 52, 50 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.decLt", "code": "@[extern \"lean_uint8_dec_lt\"]\ndef UInt8.decLt (a b : UInt8) : Decidable (a < b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m))", "start": [ 62, 1 ], "end": [ 65, 52 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.decLe", "code": "@[extern \"lean_uint8_dec_le\"]\ndef UInt8.decLe (a b : UInt8) : Decidable (a ≤ b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m))", "start": [ 68, 1 ], "end": [ 71, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.ofNat", "code": "@[extern \"lean_uint16_of_nat\"]\ndef UInt16.ofNat (n : @& Nat) : UInt16 := ⟨Fin.ofNat n⟩", "start": [ 78, 1 ], "end": [ 79, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toUInt16", "code": "abbrev Nat.toUInt16 := UInt16.ofNat", "start": [ 80, 1 ], "end": [ 80, 36 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.toNat", "code": "@[extern \"lean_uint16_to_nat\"]\ndef UInt16.toNat (n : UInt16) : Nat := n.val.val", "start": [ 81, 1 ], "end": [ 82, 49 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.add", "code": "@[extern \"lean_uint16_add\"]\ndef UInt16.add (a b : UInt16) : UInt16 := ⟨a.val + b.val⟩", "start": [ 83, 1 ], "end": [ 84, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.sub", "code": "@[extern \"lean_uint16_sub\"]\ndef UInt16.sub (a b : UInt16) : UInt16 := ⟨a.val - b.val⟩", "start": [ 85, 1 ], "end": [ 86, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.mul", "code": "@[extern \"lean_uint16_mul\"]\ndef UInt16.mul (a b : UInt16) : UInt16 := ⟨a.val * b.val⟩", "start": [ 87, 1 ], "end": [ 88, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.div", "code": "@[extern \"lean_uint16_div\"]\ndef UInt16.div (a b : UInt16) : UInt16 := ⟨a.val / b.val⟩", "start": [ 89, 1 ], "end": [ 90, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.mod", "code": "@[extern \"lean_uint16_mod\"]\ndef UInt16.mod (a b : UInt16) : UInt16 := ⟨a.val % b.val⟩", "start": [ 91, 1 ], "end": [ 92, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.modn", "code": "@[extern \"lean_uint16_modn\"]\ndef UInt16.modn (a : UInt16) (n : @& Nat) : UInt16 := ⟨Fin.modn a.val n⟩", "start": [ 93, 1 ], "end": [ 94, 73 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.land", "code": "@[extern \"lean_uint16_land\"]\ndef UInt16.land (a b : UInt16) : UInt16 := ⟨Fin.land a.val b.val⟩", "start": [ 95, 1 ], "end": [ 96, 66 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.lor", "code": "@[extern \"lean_uint16_lor\"]\ndef UInt16.lor (a b : UInt16) : UInt16 := ⟨Fin.lor a.val b.val⟩", "start": [ 97, 1 ], "end": [ 98, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.xor", "code": "@[extern \"lean_uint16_xor\"]\ndef UInt16.xor (a b : UInt16) : UInt16 := ⟨Fin.xor a.val b.val⟩", "start": [ 99, 1 ], "end": [ 100, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.shiftLeft", "code": "@[extern \"lean_uint16_shift_left\"]\ndef UInt16.shiftLeft (a b : UInt16) : UInt16 := ⟨a.val <<< (modn b 16).val⟩", "start": [ 101, 1 ], "end": [ 102, 76 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.toUInt8", "code": "@[extern \"lean_uint16_to_uint8\"]\ndef UInt16.toUInt8 (a : UInt16) : UInt8 := a.toNat.toUInt8", "start": [ 103, 1 ], "end": [ 104, 59 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.toUInt16", "code": "@[extern \"lean_uint8_to_uint16\"]\ndef UInt8.toUInt16 (a : UInt8) : UInt16 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 105, 1 ], "end": [ 106, 83 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.shiftRight", "code": "@[extern \"lean_uint16_shift_right\"]\ndef UInt16.shiftRight (a b : UInt16) : UInt16 := ⟨a.val >>> (modn b 16).val⟩", "start": [ 107, 1 ], "end": [ 108, 77 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.lt", "code": "def UInt16.lt (a b : UInt16) : Prop := a.val < b.val", "start": [ 109, 1 ], "end": [ 109, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.le", "code": "def UInt16.le (a b : UInt16) : Prop := a.val ≤ b.val", "start": [ 110, 1 ], "end": [ 110, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.instOfNat", "code": "instance UInt16.instOfNat : OfNat UInt16 n := ⟨UInt16.ofNat n⟩", "start": [ 112, 1 ], "end": [ 112, 63 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.complement", "code": "@[extern \"lean_uint16_complement\"]\ndef UInt16.complement (a:UInt16) : UInt16 := 0-(a+1)", "start": [ 122, 1 ], "end": [ 123, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.decLt", "code": "@[extern \"lean_uint16_dec_lt\"]\ndef UInt16.decLt (a b : UInt16) : Decidable (a < b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m))", "start": [ 133, 1 ], "end": [ 136, 52 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.decLe", "code": "@[extern \"lean_uint16_dec_le\"]\ndef UInt16.decLe (a b : UInt16) : Decidable (a ≤ b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m))", "start": [ 139, 1 ], "end": [ 142, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.ofNat", "code": "@[extern \"lean_uint32_of_nat\"]\ndef UInt32.ofNat (n : @& Nat) : UInt32 := ⟨Fin.ofNat n⟩", "start": [ 149, 1 ], "end": [ 150, 56 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.ofNat'", "code": "@[extern \"lean_uint32_of_nat\"]\ndef UInt32.ofNat' (n : Nat) (h : n < UInt32.size) : UInt32 := ⟨⟨n, h⟩⟩", "start": [ 151, 1 ], "end": [ 152, 71 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.ofNatTruncate", "code": "def UInt32.ofNatTruncate (n : Nat) : UInt32 :=\n if h : n < UInt32.size then\n UInt32.ofNat' n h\n else\n UInt32.ofNat' (UInt32.size - 1) (by decide)", "start": [ 153, 1 ], "end": [ 160, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toUInt32", "code": "abbrev Nat.toUInt32 := UInt32.ofNat", "start": [ 161, 1 ], "end": [ 161, 36 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.add", "code": "@[extern \"lean_uint32_add\"]\ndef UInt32.add (a b : UInt32) : UInt32 := ⟨a.val + b.val⟩", "start": [ 162, 1 ], "end": [ 163, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.sub", "code": "@[extern \"lean_uint32_sub\"]\ndef UInt32.sub (a b : UInt32) : UInt32 := ⟨a.val - b.val⟩", "start": [ 164, 1 ], "end": [ 165, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.mul", "code": "@[extern \"lean_uint32_mul\"]\ndef UInt32.mul (a b : UInt32) : UInt32 := ⟨a.val * b.val⟩", "start": [ 166, 1 ], "end": [ 167, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.div", "code": "@[extern \"lean_uint32_div\"]\ndef UInt32.div (a b : UInt32) : UInt32 := ⟨a.val / b.val⟩", "start": [ 168, 1 ], "end": [ 169, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.mod", "code": "@[extern \"lean_uint32_mod\"]\ndef UInt32.mod (a b : UInt32) : UInt32 := ⟨a.val % b.val⟩", "start": [ 170, 1 ], "end": [ 171, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.modn", "code": "@[extern \"lean_uint32_modn\"]\ndef UInt32.modn (a : UInt32) (n : @& Nat) : UInt32 := ⟨Fin.modn a.val n⟩", "start": [ 172, 1 ], "end": [ 173, 73 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.land", "code": "@[extern \"lean_uint32_land\"]\ndef UInt32.land (a b : UInt32) : UInt32 := ⟨Fin.land a.val b.val⟩", "start": [ 174, 1 ], "end": [ 175, 66 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.lor", "code": "@[extern \"lean_uint32_lor\"]\ndef UInt32.lor (a b : UInt32) : UInt32 := ⟨Fin.lor a.val b.val⟩", "start": [ 176, 1 ], "end": [ 177, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.xor", "code": "@[extern \"lean_uint32_xor\"]\ndef UInt32.xor (a b : UInt32) : UInt32 := ⟨Fin.xor a.val b.val⟩", "start": [ 178, 1 ], "end": [ 179, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.shiftLeft", "code": "@[extern \"lean_uint32_shift_left\"]\ndef UInt32.shiftLeft (a b : UInt32) : UInt32 := ⟨a.val <<< (modn b 32).val⟩", "start": [ 180, 1 ], "end": [ 181, 76 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.shiftRight", "code": "@[extern \"lean_uint32_shift_right\"]\ndef UInt32.shiftRight (a b : UInt32) : UInt32 := ⟨a.val >>> (modn b 32).val⟩", "start": [ 182, 1 ], "end": [ 183, 77 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.toUInt8", "code": "@[extern \"lean_uint32_to_uint8\"]\ndef UInt32.toUInt8 (a : UInt32) : UInt8 := a.toNat.toUInt8", "start": [ 184, 1 ], "end": [ 185, 59 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.toUInt16", "code": "@[extern \"lean_uint32_to_uint16\"]\ndef UInt32.toUInt16 (a : UInt32) : UInt16 := a.toNat.toUInt16", "start": [ 186, 1 ], "end": [ 187, 62 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.toUInt32", "code": "@[extern \"lean_uint8_to_uint32\"]\ndef UInt8.toUInt32 (a : UInt8) : UInt32 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 188, 1 ], "end": [ 189, 83 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.toUInt32", "code": "@[extern \"lean_uint16_to_uint32\"]\ndef UInt16.toUInt32 (a : UInt16) : UInt32 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 190, 1 ], "end": [ 191, 85 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.instOfNat", "code": "instance UInt32.instOfNat : OfNat UInt32 n := ⟨UInt32.ofNat n⟩", "start": [ 193, 1 ], "end": [ 193, 63 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.complement", "code": "@[extern \"lean_uint32_complement\"]\ndef UInt32.complement (a:UInt32) : UInt32 := 0-(a+1)", "start": [ 201, 1 ], "end": [ 202, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.ofNat", "code": "@[extern \"lean_uint64_of_nat\"]\ndef UInt64.ofNat (n : @& Nat) : UInt64 := ⟨Fin.ofNat n⟩", "start": [ 211, 1 ], "end": [ 212, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toUInt64", "code": "abbrev Nat.toUInt64 := UInt64.ofNat", "start": [ 213, 1 ], "end": [ 213, 36 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.toNat", "code": "@[extern \"lean_uint64_to_nat\"]\ndef UInt64.toNat (n : UInt64) : Nat := n.val.val", "start": [ 214, 1 ], "end": [ 215, 49 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.add", "code": "@[extern \"lean_uint64_add\"]\ndef UInt64.add (a b : UInt64) : UInt64 := ⟨a.val + b.val⟩", "start": [ 216, 1 ], "end": [ 217, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.sub", "code": "@[extern \"lean_uint64_sub\"]\ndef UInt64.sub (a b : UInt64) : UInt64 := ⟨a.val - b.val⟩", "start": [ 218, 1 ], "end": [ 219, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.mul", "code": "@[extern \"lean_uint64_mul\"]\ndef UInt64.mul (a b : UInt64) : UInt64 := ⟨a.val * b.val⟩", "start": [ 220, 1 ], "end": [ 221, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.div", "code": "@[extern \"lean_uint64_div\"]\ndef UInt64.div (a b : UInt64) : UInt64 := ⟨a.val / b.val⟩", "start": [ 222, 1 ], "end": [ 223, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.mod", "code": "@[extern \"lean_uint64_mod\"]\ndef UInt64.mod (a b : UInt64) : UInt64 := ⟨a.val % b.val⟩", "start": [ 224, 1 ], "end": [ 225, 58 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.modn", "code": "@[extern \"lean_uint64_modn\"]\ndef UInt64.modn (a : UInt64) (n : @& Nat) : UInt64 := ⟨Fin.modn a.val n⟩", "start": [ 226, 1 ], "end": [ 227, 73 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.land", "code": "@[extern \"lean_uint64_land\"]\ndef UInt64.land (a b : UInt64) : UInt64 := ⟨Fin.land a.val b.val⟩", "start": [ 228, 1 ], "end": [ 229, 66 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.lor", "code": "@[extern \"lean_uint64_lor\"]\ndef UInt64.lor (a b : UInt64) : UInt64 := ⟨Fin.lor a.val b.val⟩", "start": [ 230, 1 ], "end": [ 231, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.xor", "code": "@[extern \"lean_uint64_xor\"]\ndef UInt64.xor (a b : UInt64) : UInt64 := ⟨Fin.xor a.val b.val⟩", "start": [ 232, 1 ], "end": [ 233, 64 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.shiftLeft", "code": "@[extern \"lean_uint64_shift_left\"]\ndef UInt64.shiftLeft (a b : UInt64) : UInt64 := ⟨a.val <<< (modn b 64).val⟩", "start": [ 234, 1 ], "end": [ 235, 76 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.shiftRight", "code": "@[extern \"lean_uint64_shift_right\"]\ndef UInt64.shiftRight (a b : UInt64) : UInt64 := ⟨a.val >>> (modn b 64).val⟩", "start": [ 236, 1 ], "end": [ 237, 77 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.lt", "code": "def UInt64.lt (a b : UInt64) : Prop := a.val < b.val", "start": [ 238, 1 ], "end": [ 238, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.le", "code": "def UInt64.le (a b : UInt64) : Prop := a.val ≤ b.val", "start": [ 239, 1 ], "end": [ 239, 53 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.toUInt8", "code": "@[extern \"lean_uint64_to_uint8\"]\ndef UInt64.toUInt8 (a : UInt64) : UInt8 := a.toNat.toUInt8", "start": [ 240, 1 ], "end": [ 241, 59 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.toUInt16", "code": "@[extern \"lean_uint64_to_uint16\"]\ndef UInt64.toUInt16 (a : UInt64) : UInt16 := a.toNat.toUInt16", "start": [ 242, 1 ], "end": [ 243, 62 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.toUInt32", "code": "@[extern \"lean_uint64_to_uint32\"]\ndef UInt64.toUInt32 (a : UInt64) : UInt32 := a.toNat.toUInt32", "start": [ 244, 1 ], "end": [ 245, 62 ], "kind": "commanddeclaration" }, { "full_name": "UInt8.toUInt64", "code": "@[extern \"lean_uint8_to_uint64\"]\ndef UInt8.toUInt64 (a : UInt8) : UInt64 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 246, 1 ], "end": [ 247, 83 ], "kind": "commanddeclaration" }, { "full_name": "UInt16.toUInt64", "code": "@[extern \"lean_uint16_to_uint64\"]\ndef UInt16.toUInt64 (a : UInt16) : UInt64 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 248, 1 ], "end": [ 249, 85 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.toUInt64", "code": "@[extern \"lean_uint32_to_uint64\"]\ndef UInt32.toUInt64 (a : UInt32) : UInt64 := ⟨a.val, Nat.lt_trans a.1.2 (by decide)⟩", "start": [ 250, 1 ], "end": [ 251, 85 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.instOfNat", "code": "instance UInt64.instOfNat : OfNat UInt64 n := ⟨UInt64.ofNat n⟩", "start": [ 253, 1 ], "end": [ 253, 63 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.complement", "code": "@[extern \"lean_uint64_complement\"]\ndef UInt64.complement (a:UInt64) : UInt64 := 0-(a+1)", "start": [ 263, 1 ], "end": [ 264, 53 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toUInt64", "code": "@[extern \"lean_bool_to_uint64\"]\ndef Bool.toUInt64 (b : Bool) : UInt64 := if b then 1 else 0", "start": [ 273, 1 ], "end": [ 274, 60 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.decLt", "code": "@[extern \"lean_uint64_dec_lt\"]\ndef UInt64.decLt (a b : UInt64) : Decidable (a < b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m))", "start": [ 277, 1 ], "end": [ 280, 52 ], "kind": "commanddeclaration" }, { "full_name": "UInt64.decLe", "code": "@[extern \"lean_uint64_dec_le\"]\ndef UInt64.decLe (a b : UInt64) : Decidable (a ≤ b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m))", "start": [ 283, 1 ], "end": [ 286, 53 ], "kind": "commanddeclaration" }, { "full_name": "usize_size_gt_zero", "code": "theorem usize_size_gt_zero : USize.size > 0", "start": [ 293, 1 ], "end": [ 294, 22 ], "kind": "commanddeclaration" }, { "full_name": "USize.ofNat", "code": "@[extern \"lean_usize_of_nat\"]\ndef USize.ofNat (n : @& Nat) : USize := ⟨Fin.ofNat' n usize_size_gt_zero⟩", "start": [ 296, 1 ], "end": [ 297, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toUSize", "code": "abbrev Nat.toUSize := USize.ofNat", "start": [ 298, 1 ], "end": [ 298, 34 ], "kind": "commanddeclaration" }, { "full_name": "USize.toNat", "code": "@[extern \"lean_usize_to_nat\"]\ndef USize.toNat (n : USize) : Nat := n.val.val", "start": [ 299, 1 ], "end": [ 300, 47 ], "kind": "commanddeclaration" }, { "full_name": "USize.add", "code": "@[extern \"lean_usize_add\"]\ndef USize.add (a b : USize) : USize := ⟨a.val + b.val⟩", "start": [ 301, 1 ], "end": [ 302, 55 ], "kind": "commanddeclaration" }, { "full_name": "USize.sub", "code": "@[extern \"lean_usize_sub\"]\ndef USize.sub (a b : USize) : USize := ⟨a.val - b.val⟩", "start": [ 303, 1 ], "end": [ 304, 55 ], "kind": "commanddeclaration" }, { "full_name": "USize.mul", "code": "@[extern \"lean_usize_mul\"]\ndef USize.mul (a b : USize) : USize := ⟨a.val * b.val⟩", "start": [ 305, 1 ], "end": [ 306, 55 ], "kind": "commanddeclaration" }, { "full_name": "USize.div", "code": "@[extern \"lean_usize_div\"]\ndef USize.div (a b : USize) : USize := ⟨a.val / b.val⟩", "start": [ 307, 1 ], "end": [ 308, 55 ], "kind": "commanddeclaration" }, { "full_name": "USize.mod", "code": "@[extern \"lean_usize_mod\"]\ndef USize.mod (a b : USize) : USize := ⟨a.val % b.val⟩", "start": [ 309, 1 ], "end": [ 310, 55 ], "kind": "commanddeclaration" }, { "full_name": "USize.modn", "code": "@[extern \"lean_usize_modn\"]\ndef USize.modn (a : USize) (n : @& Nat) : USize := ⟨Fin.modn a.val n⟩", "start": [ 311, 1 ], "end": [ 312, 70 ], "kind": "commanddeclaration" }, { "full_name": "USize.land", "code": "@[extern \"lean_usize_land\"]\ndef USize.land (a b : USize) : USize := ⟨Fin.land a.val b.val⟩", "start": [ 313, 1 ], "end": [ 314, 63 ], "kind": "commanddeclaration" }, { "full_name": "USize.lor", "code": "@[extern \"lean_usize_lor\"]\ndef USize.lor (a b : USize) : USize := ⟨Fin.lor a.val b.val⟩", "start": [ 315, 1 ], "end": [ 316, 61 ], "kind": "commanddeclaration" }, { "full_name": "USize.xor", "code": "@[extern \"lean_usize_xor\"]\ndef USize.xor (a b : USize) : USize := ⟨Fin.xor a.val b.val⟩", "start": [ 317, 1 ], "end": [ 318, 61 ], "kind": "commanddeclaration" }, { "full_name": "USize.shiftLeft", "code": "@[extern \"lean_usize_shift_left\"]\ndef USize.shiftLeft (a b : USize) : USize := ⟨a.val <<< (modn b System.Platform.numBits).val⟩", "start": [ 319, 1 ], "end": [ 320, 94 ], "kind": "commanddeclaration" }, { "full_name": "USize.shiftRight", "code": "@[extern \"lean_usize_shift_right\"]\ndef USize.shiftRight (a b : USize) : USize := ⟨a.val >>> (modn b System.Platform.numBits).val⟩", "start": [ 321, 1 ], "end": [ 322, 95 ], "kind": "commanddeclaration" }, { "full_name": "UInt32.toUSize", "code": "@[extern \"lean_uint32_to_usize\"]\ndef UInt32.toUSize (a : UInt32) : USize := USize.ofNat32 a.val a.1.2", "start": [ 323, 1 ], "end": [ 324, 69 ], "kind": "commanddeclaration" }, { "full_name": "USize.toUInt32", "code": "@[extern \"lean_usize_to_uint32\"]\ndef USize.toUInt32 (a : USize) : UInt32 := a.toNat.toUInt32", "start": [ 325, 1 ], "end": [ 326, 60 ], "kind": "commanddeclaration" }, { "full_name": "USize.lt", "code": "def USize.lt (a b : USize) : Prop := a.val < b.val", "start": [ 328, 1 ], "end": [ 328, 51 ], "kind": "commanddeclaration" }, { "full_name": "USize.le", "code": "def USize.le (a b : USize) : Prop := a.val ≤ b.val", "start": [ 329, 1 ], "end": [ 329, 51 ], "kind": "commanddeclaration" }, { "full_name": "USize.instOfNat", "code": "instance USize.instOfNat : OfNat USize n := ⟨USize.ofNat n⟩", "start": [ 331, 1 ], "end": [ 331, 60 ], "kind": "commanddeclaration" }, { "full_name": "USize.complement", "code": "@[extern \"lean_usize_complement\"]\ndef USize.complement (a:USize) : USize := 0-(a+1)", "start": [ 341, 1 ], "end": [ 342, 50 ], "kind": "commanddeclaration" }, { "full_name": "USize.decLt", "code": "@[extern \"lean_usize_dec_lt\"]\ndef USize.decLt (a b : USize) : Decidable (a < b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n < m))", "start": [ 352, 1 ], "end": [ 355, 52 ], "kind": "commanddeclaration" }, { "full_name": "USize.decLe", "code": "@[extern \"lean_usize_dec_le\"]\ndef USize.decLe (a b : USize) : Decidable (a ≤ b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (n <= m))", "start": [ 358, 1 ], "end": [ 361, 53 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/Id.lean
[ ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "Id", "code": "def Id (type : Type u) : Type u := type", "start": [ 13, 1 ], "end": [ 13, 40 ], "kind": "commanddeclaration" }, { "full_name": "Id.hasBind", "code": "def hasBind : Bind Id :=\n inferInstance", "start": [ 23, 1 ], "end": [ 24, 16 ], "kind": "commanddeclaration" }, { "full_name": "Id.run", "code": "@[always_inline, inline]\nprotected def run (x : Id α) : α := x", "start": [ 26, 1 ], "end": [ 27, 38 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Cast.lean
[ ".lake/packages/lean4/src/lean/Init/Coe.lean" ]
[ { "full_name": "NatCast", "code": "class NatCast (R : Type u) where\n \n protected natCast : Nat → R", "start": [ 47, 1 ], "end": [ 50, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.cast", "code": "@[coe, reducible, match_pattern] protected def Nat.cast {R : Type u} [NatCast R] : Nat → R :=\n NatCast.natCast", "start": [ 54, 1 ], "end": [ 66, 18 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/List/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/SimpLemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/List/Notation.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean" ]
[ { "full_name": "List.length_nil", "code": "@[simp] theorem length_nil : length ([] : List α) = 0", "start": [ 65, 1 ], "end": [ 66, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.length_singleton", "code": "@[simp 1100] theorem length_singleton (a : α) : length [a] = 1", "start": [ 68, 1 ], "end": [ 68, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.length_cons", "code": "@[simp] theorem length_cons {α} (a : α) (as : List α) : (cons a as).length = as.length + 1", "start": [ 70, 1 ], "end": [ 71, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.length_set", "code": "@[simp] theorem length_set (as : List α) (i : Nat) (a : α) : (as.set i a).length = as.length", "start": [ 75, 1 ], "end": [ 81, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_nil", "code": "@[simp] theorem foldl_nil : [].foldl f b = b", "start": [ 86, 1 ], "end": [ 86, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_cons", "code": "@[simp] theorem foldl_cons (l : List α) (b : β) : (a :: l).foldl f b = l.foldl f (f b a)", "start": [ 87, 1 ], "end": [ 87, 96 ], "kind": "commanddeclaration" }, { "full_name": "List.length_concat", "code": "@[simp] theorem length_concat (as : List α) (a : α) : (concat as a).length = as.length + 1", "start": [ 91, 1 ], "end": [ 94, 38 ], "kind": "commanddeclaration" }, { "full_name": "List.of_concat_eq_concat", "code": "theorem of_concat_eq_concat {as bs : List α} {a b : α} (h : as.concat a = bs.concat b) : as = bs ∧ a = b", "start": [ 96, 1 ], "end": [ 103, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.beq", "code": "protected def beq [BEq α] : List α → List α → Bool\n | [], [] => true\n | a::as, b::bs => a == b && List.beq as bs\n | _, _ => false", "start": [ 107, 1 ], "end": [ 114, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.isEqv", "code": "@[specialize] def isEqv : (as bs : List α) → (eqv : α → α → Bool) → Bool\n | [], [], _ => true\n | a::as, b::bs, eqv => eqv a b && isEqv as bs eqv\n | _, _, _ => false", "start": [ 134, 1 ], "end": [ 141, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.isEqv_nil_nil", "code": "@[simp] theorem isEqv_nil_nil : isEqv ([] : List α) [] eqv = true", "start": [ 143, 1 ], "end": [ 143, 73 ], "kind": "commanddeclaration" }, { "full_name": "List.isEqv_nil_cons", "code": "@[simp] theorem isEqv_nil_cons : isEqv ([] : List α) (a::as) eqv = false", "start": [ 144, 1 ], "end": [ 144, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.isEqv_cons_nil", "code": "@[simp] theorem isEqv_cons_nil : isEqv (a::as : List α) [] eqv = false", "start": [ 145, 1 ], "end": [ 145, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.isEqv_cons₂", "code": "theorem isEqv_cons₂ : isEqv (a::as) (b::bs) eqv = (eqv a b && isEqv as bs eqv)", "start": [ 146, 1 ], "end": [ 146, 86 ], "kind": "commanddeclaration" }, { "full_name": "List.lt", "code": "inductive lt [LT α] : List α → List α → Prop where\n \n | nil (b : α) (bs : List α) : lt [] (b::bs)\n \n | head {a : α} (as : List α) {b : α} (bs : List α) : a < b → lt (a::as) (b::bs)\n \n | tail {a : α} {as : List α} {b : α} {bs : List α} : ¬ a < b → ¬ b < a → lt as bs → lt (a::as) (b::bs)", "start": [ 151, 1 ], "end": [ 161, 105 ], "kind": "commanddeclaration" }, { "full_name": "List.hasDecidableLt", "code": "instance hasDecidableLt [LT α] [h : DecidableRel (α := α) (· < ·)] : (l₁ l₂ : List α) → Decidable (l₁ < l₂)\n | [], [] => isFalse nofun\n | [], _::_ => isTrue (List.lt.nil _ _)\n | _::_, [] => isFalse nofun\n | a::as, b::bs =>\n match h a b with\n | isTrue h₁ => isTrue (List.lt.head _ _ h₁)\n | isFalse h₁ =>\n match h b a with\n | isTrue h₂ => isFalse (fun h => match h with\n | List.lt.head _ _ h₁' => absurd h₁' h₁\n | List.lt.tail _ h₂' _ => absurd h₂ h₂')\n | isFalse h₂ =>\n match hasDecidableLt as bs with\n | isTrue h₃ => isTrue (List.lt.tail h₁ h₂ h₃)\n | isFalse h₃ => isFalse (fun h => match h with\n | List.lt.head _ _ h₁' => absurd h₁' h₁\n | List.lt.tail _ _ h₃' => absurd h₃' h₃)", "start": [ 165, 1 ], "end": [ 182, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.le", "code": "@[reducible] protected def le [LT α] (a b : List α) : Prop := ¬ b < a", "start": [ 184, 1 ], "end": [ 185, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.get?", "code": "def get? : (as : List α) → (i : Nat) → Option α\n | a::_, 0 => some a\n | _::as, n+1 => get? as n\n | _, _ => none", "start": [ 196, 1 ], "end": [ 205, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_nil", "code": "@[simp] theorem get?_nil : @get? α [] n = none", "start": [ 207, 1 ], "end": [ 207, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_cons_zero", "code": "@[simp] theorem get?_cons_zero : @get? α (a::l) 0 = some a", "start": [ 208, 1 ], "end": [ 208, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_cons_succ", "code": "@[simp] theorem get?_cons_succ : @get? α (a::l) (n+1) = get? l n", "start": [ 209, 1 ], "end": [ 209, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.ext_get?", "code": "theorem ext_get? : ∀ {l₁ l₂ : List α}, (∀ n, l₁.get? n = l₂.get? n) → l₁ = l₂", "start": [ 211, 1 ], "end": [ 217, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.ext", "code": "@[deprecated (since := \"2024-06-07\")] abbrev ext := @ext_get?", "start": [ 219, 1 ], "end": [ 220, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.getD", "code": "def getD (as : List α) (i : Nat) (fallback : α) : α :=\n (as.get? i).getD fallback", "start": [ 224, 1 ], "end": [ 231, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.getD_nil", "code": "@[simp] theorem getD_nil : getD [] n d = d", "start": [ 233, 1 ], "end": [ 233, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.getD_cons_zero", "code": "@[simp] theorem getD_cons_zero : getD (x :: xs) 0 d = x", "start": [ 234, 1 ], "end": [ 234, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.getD_cons_succ", "code": "@[simp] theorem getD_cons_succ : getD (x :: xs) (n + 1) d = getD xs n d", "start": [ 235, 1 ], "end": [ 235, 79 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast", "code": "def getLast : ∀ (as : List α), as ≠ [] → α\n | [], h => absurd rfl h\n | [a], _ => a\n | _::b::as, _ => getLast (b::as) (fun h => List.noConfusion h)", "start": [ 239, 1 ], "end": [ 245, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?", "code": "def getLast? : List α → Option α\n | [] => none\n | a::as => some (getLast (a::as) (fun h => List.noConfusion h))", "start": [ 249, 1 ], "end": [ 257, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_nil", "code": "@[simp] theorem getLast?_nil : @getLast? α [] = none", "start": [ 259, 1 ], "end": [ 259, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD", "code": "def getLastD : (as : List α) → (fallback : α) → α\n | [], a₀ => a₀\n | a::as, _ => getLast (a::as) (fun h => List.noConfusion h)", "start": [ 263, 1 ], "end": [ 271, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_nil", "code": "@[simp] theorem getLastD_nil (a) : @getLastD α [] a = a", "start": [ 273, 1 ], "end": [ 273, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_cons", "code": "@[simp] theorem getLastD_cons (a b l) : @getLastD α (b::l) a = getLastD l b", "start": [ 274, 1 ], "end": [ 274, 98 ], "kind": "commanddeclaration" }, { "full_name": "List.head", "code": "def head : (as : List α) → as ≠ [] → α\n | a::_, _ => a", "start": [ 280, 1 ], "end": [ 284, 17 ], "kind": "commanddeclaration" }, { "full_name": "List.head_cons", "code": "@[simp] theorem head_cons : @head α (a::l) h = a", "start": [ 286, 1 ], "end": [ 286, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.head?", "code": "def head? : List α → Option α\n | [] => none\n | a::_ => some a", "start": [ 290, 1 ], "end": [ 298, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.head?_nil", "code": "@[simp] theorem head?_nil : @head? α [] = none", "start": [ 300, 1 ], "end": [ 300, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.head?_cons", "code": "@[simp] theorem head?_cons : @head? α (a::l) = some a", "start": [ 301, 1 ], "end": [ 301, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.headD", "code": "def headD : (as : List α) → (fallback : α) → α\n | [], fallback => fallback\n | a::_, _ => a", "start": [ 305, 1 ], "end": [ 313, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.headD_nil", "code": "@[simp 1100] theorem headD_nil : @headD α [] d = d", "start": [ 315, 1 ], "end": [ 315, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.headD_cons", "code": "@[simp 1100] theorem headD_cons : @headD α (a::l) d = a", "start": [ 316, 1 ], "end": [ 316, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.tail?", "code": "def tail? : List α → Option (List α)\n | [] => none\n | _::as => some as", "start": [ 320, 1 ], "end": [ 328, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.tail?_nil", "code": "@[simp] theorem tail?_nil : @tail? α [] = none", "start": [ 330, 1 ], "end": [ 330, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.tail?_cons", "code": "@[simp] theorem tail?_cons : @tail? α (a::l) = some l", "start": [ 331, 1 ], "end": [ 331, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.tailD", "code": "def tailD (list fallback : List α) : List α :=\n match list with\n | [] => fallback\n | _ :: tl => tl", "start": [ 335, 1 ], "end": [ 344, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.tailD_nil", "code": "@[simp 1100] theorem tailD_nil : @tailD α [] l' = l'", "start": [ 346, 1 ], "end": [ 346, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.tailD_cons", "code": "@[simp 1100] theorem tailD_cons : @tailD α (a::l) l' = l", "start": [ 347, 1 ], "end": [ 347, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.map", "code": "@[specialize] def map (f : α → β) : List α → List β\n | [] => []\n | a::as => f a :: map f as", "start": [ 357, 1 ], "end": [ 363, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.map_nil", "code": "@[simp] theorem map_nil {f : α → β} : map f [] = []", "start": [ 365, 1 ], "end": [ 365, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.map_cons", "code": "@[simp] theorem map_cons (f : α → β) a l : map f (a :: l) = f a :: map f l", "start": [ 366, 1 ], "end": [ 366, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.filter", "code": "def filter (p : α → Bool) : List α → List α\n | [] => []\n | a::as => match p a with\n | true => a :: filter p as\n | false => filter p as", "start": [ 370, 1 ], "end": [ 380, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_nil", "code": "@[simp] theorem filter_nil (p : α → Bool) : filter p [] = []", "start": [ 382, 1 ], "end": [ 382, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap", "code": "@[specialize] def filterMap (f : α → Option β) : List α → List β\n | [] => []\n | a::as =>\n match f a with\n | none => filterMap f as\n | some b => b :: filterMap f as", "start": [ 386, 1 ], "end": [ 401, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_nil", "code": "@[simp] theorem filterMap_nil (f : α → Option β) : filterMap f [] = []", "start": [ 403, 1 ], "end": [ 403, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_cons", "code": "theorem filterMap_cons (f : α → Option β) (a : α) (l : List α) :\n filterMap f (a :: l) =\n match f a with\n | none => filterMap f l\n | some b => b :: filterMap f l", "start": [ 404, 1 ], "end": [ 408, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr", "code": "@[specialize] def foldr (f : α → β → β) (init : β) : List α → β\n | [] => init\n | a :: l => f a (foldr f init l)", "start": [ 412, 1 ], "end": [ 418, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_nil", "code": "@[simp] theorem foldr_nil : [].foldr f b = b", "start": [ 420, 1 ], "end": [ 420, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_cons", "code": "@[simp] theorem foldr_cons (l : List α) : (a :: l).foldr f b = f a (l.foldr f b)", "start": [ 421, 1 ], "end": [ 421, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux", "code": "def reverseAux : List α → List α → List α\n | [], r => r\n | a::l, r => reverseAux l (a::r)", "start": [ 425, 1 ], "end": [ 428, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_nil", "code": "@[simp] theorem reverseAux_nil : reverseAux [] r = r", "start": [ 430, 1 ], "end": [ 430, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_cons", "code": "@[simp] theorem reverseAux_cons : reverseAux (a::l) r = reverseAux l (a::r)", "start": [ 431, 1 ], "end": [ 431, 83 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse", "code": "def reverse (as : List α) : List α :=\n reverseAux as []", "start": [ 433, 1 ], "end": [ 442, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_nil", "code": "@[simp] theorem reverse_nil : reverse ([] : List α) = []", "start": [ 444, 1 ], "end": [ 444, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_reverseAux", "code": "theorem reverseAux_reverseAux (as bs cs : List α) : reverseAux (reverseAux as bs) cs = reverseAux bs (reverseAux (reverseAux as []) cs)", "start": [ 446, 1 ], "end": [ 449, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.append", "code": "protected def append : (xs ys : List α) → List α\n | [], bs => bs\n | a::as, bs => a :: List.append as bs", "start": [ 453, 1 ], "end": [ 459, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.appendTR", "code": "def appendTR (as bs : List α) : List α :=\n reverseAux as.reverse bs", "start": [ 461, 1 ], "end": [ 468, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq_appendTR", "code": "@[csimp] theorem append_eq_appendTR : @List.append = @appendTR", "start": [ 470, 1 ], "end": [ 477, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq", "code": "@[simp] theorem append_eq (as bs : List α) : List.append as bs = as ++ bs", "start": [ 481, 1 ], "end": [ 481, 81 ], "kind": "commanddeclaration" }, { "full_name": "List.nil_append", "code": "@[simp] theorem nil_append (as : List α) : [] ++ as = as", "start": [ 483, 1 ], "end": [ 483, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_append", "code": "@[simp] theorem cons_append (a : α) (as bs : List α) : (a::as) ++ bs = a::(as ++ bs)", "start": [ 484, 1 ], "end": [ 484, 92 ], "kind": "commanddeclaration" }, { "full_name": "List.append_nil", "code": "@[simp] theorem append_nil (as : List α) : as ++ [] = as", "start": [ 486, 1 ], "end": [ 490, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.length_append", "code": "@[simp] theorem length_append (as bs : List α) : (as ++ bs).length = as.length + bs.length", "start": [ 496, 1 ], "end": [ 499, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.append_assoc", "code": "@[simp] theorem append_assoc (as bs cs : List α) : (as ++ bs) ++ cs = as ++ (bs ++ cs)", "start": [ 501, 1 ], "end": [ 504, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.append_cons", "code": "theorem append_cons (as : List α) (b : α) (bs : List α) : as ++ b :: bs = as ++ [b] ++ bs", "start": [ 508, 1 ], "end": [ 509, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_eq_append", "code": "@[simp] theorem concat_eq_append (as : List α) (a : α) : as.concat a = as ++ [a]", "start": [ 511, 1 ], "end": [ 512, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_eq_append", "code": "theorem reverseAux_eq_append (as bs : List α) : reverseAux as bs = reverseAux as [] ++ bs", "start": [ 514, 1 ], "end": [ 520, 8 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_cons", "code": "@[simp] theorem reverse_cons (a : α) (as : List α) : reverse (a :: as) = reverse as ++ [a]", "start": [ 522, 1 ], "end": [ 524, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.join", "code": "def join : List (List α) → List α\n | [] => []\n | a :: as => a ++ join as", "start": [ 528, 1 ], "end": [ 534, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.join_nil", "code": "@[simp] theorem join_nil : List.join ([] : List (List α)) = []", "start": [ 536, 1 ], "end": [ 536, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.join_cons", "code": "@[simp] theorem join_cons : (l :: ls).join = l ++ ls.join", "start": [ 537, 1 ], "end": [ 537, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.pure", "code": "@[inline] protected def pure {α : Type u} (a : α) : List α := [a]", "start": [ 541, 1 ], "end": [ 542, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.bind", "code": "@[inline] protected def bind {α : Type u} {β : Type v} (a : List α) (b : α → List β) : List β := join (map b a)", "start": [ 546, 1 ], "end": [ 551, 112 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_nil", "code": "@[simp] theorem bind_nil (f : α → List β) : List.bind [] f = []", "start": [ 553, 1 ], "end": [ 553, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_cons", "code": "@[simp] theorem bind_cons x xs (f : α → List β) :\n List.bind (x :: xs) f = f x ++ List.bind xs f", "start": [ 554, 1 ], "end": [ 555, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.nil_bind", "code": "@[deprecated bind_nil (since := \"2024-06-15\")] abbrev nil_bind := @bind_nil", "start": [ 558, 1 ], "end": [ 558, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_bind", "code": "@[deprecated bind_cons (since := \"2024-06-15\")] abbrev cons_bind := @bind_cons", "start": [ 560, 1 ], "end": [ 560, 79 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate", "code": "def replicate : (n : Nat) → (a : α) → List α\n | 0, _ => []\n | n+1, a => a :: replicate n a", "start": [ 564, 1 ], "end": [ 570, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate_zero", "code": "@[simp] theorem replicate_zero : replicate 0 a = []", "start": [ 572, 1 ], "end": [ 572, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate_succ", "code": "theorem replicate_succ (a : α) (n) : replicate (n+1) a = a :: replicate n a", "start": [ 573, 1 ], "end": [ 573, 83 ], "kind": "commanddeclaration" }, { "full_name": "List.length_replicate", "code": "@[simp] theorem length_replicate (n : Nat) (a : α) : (replicate n a).length = n", "start": [ 575, 1 ], "end": [ 578, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.empty_eq", "code": "@[simp] theorem empty_eq : (∅ : List α) = []", "start": [ 590, 1 ], "end": [ 590, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.isEmpty", "code": "def isEmpty : List α → Bool\n | [] => true\n | _ :: _ => false", "start": [ 594, 1 ], "end": [ 602, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.isEmpty_nil", "code": "@[simp] theorem isEmpty_nil : ([] : List α).isEmpty = true", "start": [ 604, 1 ], "end": [ 604, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.isEmpty_cons", "code": "@[simp] theorem isEmpty_cons : (x :: xs : List α).isEmpty = false", "start": [ 605, 1 ], "end": [ 605, 73 ], "kind": "commanddeclaration" }, { "full_name": "List.elem", "code": "def elem [BEq α] (a : α) : List α → Bool\n | [] => false\n | b::bs => match a == b with\n | true => true\n | false => elem a bs", "start": [ 609, 1 ], "end": [ 619, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_nil", "code": "@[simp] theorem elem_nil [BEq α] : ([] : List α).elem a = false", "start": [ 621, 1 ], "end": [ 621, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_cons", "code": "theorem elem_cons [BEq α] {a : α} :\n (b::bs).elem a = match a == b with | true => true | false => bs.elem a", "start": [ 622, 1 ], "end": [ 623, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.notElem", "code": "@[deprecated (since := \"2024-06-15\")]\ndef notElem [BEq α] (a : α) (as : List α) : Bool :=\n !(as.elem a)", "start": [ 625, 1 ], "end": [ 628, 15 ], "kind": "commanddeclaration" }, { "full_name": "List.contains", "code": "@[inherit_doc elem] abbrev contains [BEq α] (as : List α) (a : α) : Bool :=\n elem a as", "start": [ 632, 1 ], "end": [ 633, 12 ], "kind": "commanddeclaration" }, { "full_name": "List.contains_nil", "code": "@[simp] theorem contains_nil [BEq α] : ([] : List α).contains a = false", "start": [ 635, 1 ], "end": [ 635, 79 ], "kind": "commanddeclaration" }, { "full_name": "List.Mem", "code": "inductive Mem (a : α) : List α → Prop\n \n | head (as : List α) : Mem a (a::as)\n \n | tail (b : α) {as : List α} : Mem a as → Mem a (b::as)", "start": [ 639, 1 ], "end": [ 648, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_of_elem_eq_true", "code": "theorem mem_of_elem_eq_true [BEq α] [LawfulBEq α] {a : α} {as : List α} : elem a as = true → a ∈ as", "start": [ 653, 1 ], "end": [ 660, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_eq_true_of_mem", "code": "theorem elem_eq_true_of_mem [BEq α] [LawfulBEq α] {a : α} {as : List α} (h : a ∈ as) : elem a as = true", "start": [ 662, 1 ], "end": [ 665, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append_of_mem_left", "code": "theorem mem_append_of_mem_left {a : α} {as : List α} (bs : List α) : a ∈ as → a ∈ as ++ bs", "start": [ 670, 1 ], "end": [ 674, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append_of_mem_right", "code": "theorem mem_append_of_mem_right {b : α} {bs : List α} (as : List α) : b ∈ bs → b ∈ as ++ bs", "start": [ 676, 1 ], "end": [ 680, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.decidableBEx", "code": "instance decidableBEx (p : α → Prop) [DecidablePred p] :\n ∀ l : List α, Decidable (Exists fun x => x ∈ l ∧ p x)\n | [] => isFalse nofun\n | x :: xs =>\n if h₁ : p x then isTrue ⟨x, .head .., h₁⟩ else\n match decidableBEx p xs with\n | isTrue h₂ => isTrue <| let ⟨y, hm, hp⟩ := h₂; ⟨y, .tail _ hm, hp⟩\n | isFalse h₂ => isFalse fun\n | ⟨y, .tail _ h, hp⟩ => h₂ ⟨y, h, hp⟩\n | ⟨_, .head .., hp⟩ => h₁ hp", "start": [ 682, 1 ], "end": [ 691, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.decidableBAll", "code": "instance decidableBAll (p : α → Prop) [DecidablePred p] :\n ∀ l : List α, Decidable (∀ x, x ∈ l → p x)\n | [] => isTrue nofun\n | x :: xs =>\n if h₁ : p x then\n match decidableBAll p xs with\n | isTrue h₂ => isTrue fun\n | y, .tail _ h => h₂ y h\n | _, .head .. => h₁\n | isFalse h₂ => isFalse fun H => h₂ fun y hm => H y (.tail _ hm)\n else isFalse fun H => h₁ <| H x (.head ..)", "start": [ 693, 1 ], "end": [ 703, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.take", "code": "def take : Nat → List α → List α\n | 0, _ => []\n | _+1, [] => []\n | n+1, a::as => a :: take n as", "start": [ 709, 1 ], "end": [ 718, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.take_nil", "code": "@[simp] theorem take_nil : ([] : List α).take i = []", "start": [ 720, 1 ], "end": [ 720, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.take_zero", "code": "@[simp] theorem take_zero (l : List α) : l.take 0 = []", "start": [ 721, 1 ], "end": [ 721, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.take_cons_succ", "code": "@[simp] theorem take_cons_succ : (a::as).take (i+1) = a :: as.take i", "start": [ 722, 1 ], "end": [ 722, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.drop", "code": "def drop : Nat → List α → List α\n | 0, a => a\n | _+1, [] => []\n | n+1, _::as => drop n as", "start": [ 726, 1 ], "end": [ 735, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_nil", "code": "@[simp] theorem drop_nil : ([] : List α).drop i = []", "start": [ 737, 1 ], "end": [ 738, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_zero", "code": "@[simp] theorem drop_zero (l : List α) : l.drop 0 = l", "start": [ 739, 1 ], "end": [ 739, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_succ_cons", "code": "@[simp] theorem drop_succ_cons : (a :: l).drop (n + 1) = l.drop n", "start": [ 740, 1 ], "end": [ 740, 73 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_eq_nil_of_le", "code": "theorem drop_eq_nil_of_le {as : List α} {i : Nat} (h : as.length ≤ i) : as.drop i = []", "start": [ 742, 1 ], "end": [ 746, 105 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile", "code": "def takeWhile (p : α → Bool) : (xs : List α) → List α\n | [] => []\n | hd :: tl => match p hd with\n | true => hd :: takeWhile p tl\n | false => []", "start": [ 750, 1 ], "end": [ 759, 17 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_nil", "code": "@[simp] theorem takeWhile_nil : ([] : List α).takeWhile p = []", "start": [ 761, 1 ], "end": [ 761, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile", "code": "def dropWhile (p : α → Bool) : List α → List α\n | [] => []\n | a::l => match p a with\n | true => dropWhile p l\n | false => a::l", "start": [ 765, 1 ], "end": [ 776, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_nil", "code": "@[simp] theorem dropWhile_nil : ([] : List α).dropWhile p = []", "start": [ 778, 1 ], "end": [ 778, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.partition", "code": "@[inline] def partition (p : α → Bool) (as : List α) : List α × List α :=\n loop as ([], [])\nwhere\n @[specialize] loop : List α → List α × List α → List α × List α\n | [], (bs, cs) => (bs.reverse, cs.reverse)\n | a::as, (bs, cs) =>\n match p a with\n | true => loop as (a::bs, cs)\n | false => loop as (bs, a::cs)", "start": [ 782, 1 ], "end": [ 800, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast", "code": "def dropLast {α} : List α → List α\n | [] => []\n | [_] => []\n | a::as => a :: dropLast as", "start": [ 804, 1 ], "end": [ 813, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_nil", "code": "@[simp] theorem dropLast_nil : ([] : List α).dropLast = []", "start": [ 815, 1 ], "end": [ 815, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_single", "code": "@[simp] theorem dropLast_single : [x].dropLast = []", "start": [ 816, 1 ], "end": [ 816, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_cons₂", "code": "@[simp] theorem dropLast_cons₂ :\n (x::y::zs).dropLast = x :: (y::zs).dropLast", "start": [ 817, 1 ], "end": [ 818, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.length_dropLast_cons", "code": "@[simp] theorem length_dropLast_cons (a : α) (as : List α) : (a :: as).dropLast.length = as.length", "start": [ 820, 1 ], "end": [ 825, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf", "code": "def isPrefixOf [BEq α] : List α → List α → Bool\n | [], _ => true\n | _, [] => false\n | a::as, b::bs => a == b && isPrefixOf as bs", "start": [ 829, 1 ], "end": [ 834, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_nil_left", "code": "@[simp] theorem isPrefixOf_nil_left [BEq α] : isPrefixOf ([] : List α) l = true", "start": [ 836, 1 ], "end": [ 837, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_cons_nil", "code": "@[simp] theorem isPrefixOf_cons_nil [BEq α] : isPrefixOf (a::as) ([] : List α) = false", "start": [ 838, 1 ], "end": [ 838, 94 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_cons₂", "code": "theorem isPrefixOf_cons₂ [BEq α] {a : α} :\n isPrefixOf (a::as) (b::bs) = (a == b && isPrefixOf as bs)", "start": [ 839, 1 ], "end": [ 840, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf?", "code": "def isPrefixOf? [BEq α] : List α → List α → Option (List α)\n | [], l₂ => some l₂\n | _, [] => none\n | (x₁ :: l₁), (x₂ :: l₂) =>\n if x₁ == x₂ then isPrefixOf? l₁ l₂ else none", "start": [ 844, 1 ], "end": [ 849, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.isSuffixOf", "code": "def isSuffixOf [BEq α] (l₁ l₂ : List α) : Bool :=\n isPrefixOf l₁.reverse l₂.reverse", "start": [ 853, 1 ], "end": [ 856, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.isSuffixOf_nil_left", "code": "@[simp] theorem isSuffixOf_nil_left [BEq α] : isSuffixOf ([] : List α) l = true", "start": [ 858, 1 ], "end": [ 859, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.isSuffixOf?", "code": "def isSuffixOf? [BEq α] (l₁ l₂ : List α) : Option (List α) :=\n Option.map List.reverse <| isPrefixOf? l₁.reverse l₂.reverse", "start": [ 863, 1 ], "end": [ 865, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateLeft", "code": "def rotateLeft (xs : List α) (n : Nat := 1) : List α :=\n let len := xs.length\n if len ≤ 1 then\n xs\n else\n let n := n % len\n let b := xs.take n\n let e := xs.drop n\n e ++ b", "start": [ 869, 1 ], "end": [ 884, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateLeft_nil", "code": "@[simp] theorem rotateLeft_nil : ([] : List α).rotateLeft n = []", "start": [ 886, 1 ], "end": [ 886, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateRight", "code": "def rotateRight (xs : List α) (n : Nat := 1) : List α :=\n let len := xs.length\n if len ≤ 1 then\n xs\n else\n let n := len - n % len\n let b := xs.take n\n let e := xs.drop n\n e ++ b", "start": [ 890, 1 ], "end": [ 905, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateRight_nil", "code": "@[simp] theorem rotateRight_nil : ([] : List α).rotateRight n = []", "start": [ 907, 1 ], "end": [ 907, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.replace", "code": "def replace [BEq α] : List α → α → α → List α\n | [], _, _ => []\n | a::as, b, c => match b == a with\n | true => c::as\n | false => a :: replace as b c", "start": [ 913, 1 ], "end": [ 923, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_nil", "code": "@[simp] theorem replace_nil [BEq α] : ([] : List α).replace a b = []", "start": [ 925, 1 ], "end": [ 925, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_cons", "code": "theorem replace_cons [BEq α] {a : α} :\n (a::as).replace b c = match b == a with | true => c::as | false => a :: replace as b c", "start": [ 926, 1 ], "end": [ 928, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.insert", "code": "@[inline] protected def insert [BEq α] (a : α) (l : List α) : List α :=\n if l.elem a then l else a :: l", "start": [ 932, 1 ], "end": [ 934, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.erase", "code": "protected def erase {α} [BEq α] : List α → α → List α\n | [], _ => []\n | a::as, b => match a == b with\n | true => as\n | false => a :: List.erase as b", "start": [ 938, 1 ], "end": [ 947, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_nil", "code": "@[simp] theorem erase_nil [BEq α] (a : α) : [].erase a = []", "start": [ 949, 1 ], "end": [ 949, 67 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_cons", "code": "theorem erase_cons [BEq α] (a b : α) (l : List α) :\n (b :: l).erase a = if b == a then l else b :: l.erase a", "start": [ 950, 1 ], "end": [ 952, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseIdx", "code": "def eraseIdx : List α → Nat → List α\n | [], _ => []\n | _::as, 0 => as\n | a::as, n+1 => a :: eraseIdx as n", "start": [ 956, 1 ], "end": [ 965, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseIdx_nil", "code": "@[simp] theorem eraseIdx_nil : ([] : List α).eraseIdx i = []", "start": [ 967, 1 ], "end": [ 967, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseIdx_cons_zero", "code": "@[simp] theorem eraseIdx_cons_zero : (a::as).eraseIdx 0 = as", "start": [ 968, 1 ], "end": [ 968, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseIdx_cons_succ", "code": "@[simp] theorem eraseIdx_cons_succ : (a::as).eraseIdx (i+1) = a :: as.eraseIdx i", "start": [ 969, 1 ], "end": [ 969, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.find?", "code": "def find? (p : α → Bool) : List α → Option α\n | [] => none\n | a::as => match p a with\n | true => some a\n | false => find? p as", "start": [ 973, 1 ], "end": [ 984, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_nil", "code": "@[simp] theorem find?_nil : ([] : List α).find? p = none", "start": [ 986, 1 ], "end": [ 986, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_cons", "code": "theorem find?_cons : (a::as).find? p = match p a with | true => some a | false => as.find? p", "start": [ 987, 1 ], "end": [ 988, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?", "code": "def findSome? (f : α → Option β) : List α → Option β\n | [] => none\n | a::as => match f a with\n | some b => some b\n | none => findSome? f as", "start": [ 992, 1 ], "end": [ 1001, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_nil", "code": "@[simp] theorem findSome?_nil : ([] : List α).findSome? f = none", "start": [ 1003, 1 ], "end": [ 1003, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_cons", "code": "theorem findSome?_cons {f : α → Option β} :\n (a::as).findSome? f = match f a with | some b => some b | none => as.findSome? f", "start": [ 1004, 1 ], "end": [ 1006, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup", "code": "def lookup [BEq α] : α → List (α × β) → Option β\n | _, [] => none\n | a, (k,b)::es => match a == k with\n | true => some b\n | false => lookup a es", "start": [ 1010, 1 ], "end": [ 1021, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_nil", "code": "@[simp] theorem lookup_nil [BEq α] : ([] : List (α × β)).lookup a = none", "start": [ 1023, 1 ], "end": [ 1023, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_cons", "code": "theorem lookup_cons [BEq α] {k : α} :\n ((k,b)::es).lookup a = match a == k with | true => some b | false => es.lookup a", "start": [ 1024, 1 ], "end": [ 1026, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.any", "code": "def any : List α → (α → Bool) → Bool\n | [], _ => false\n | h :: t, p => p h || any t p", "start": [ 1032, 1 ], "end": [ 1040, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.any_nil", "code": "@[simp] theorem any_nil : [].any f = false", "start": [ 1042, 1 ], "end": [ 1042, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.any_cons", "code": "@[simp] theorem any_cons : (a::l).any f = (f a || l.any f)", "start": [ 1043, 1 ], "end": [ 1043, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.all", "code": "def all : List α → (α → Bool) → Bool\n | [], _ => true\n | h :: t, p => p h && all t p", "start": [ 1047, 1 ], "end": [ 1055, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.all_nil", "code": "@[simp] theorem all_nil : [].all f = true", "start": [ 1057, 1 ], "end": [ 1057, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.all_cons", "code": "@[simp] theorem all_cons : (a::l).all f = (f a && l.all f)", "start": [ 1058, 1 ], "end": [ 1058, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.or", "code": "def or (bs : List Bool) : Bool := bs.any id", "start": [ 1062, 1 ], "end": [ 1066, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.or_nil", "code": "@[simp] theorem or_nil : [].or = false", "start": [ 1068, 1 ], "end": [ 1068, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.or_cons", "code": "@[simp] theorem or_cons : (a::l).or = (a || l.or)", "start": [ 1069, 1 ], "end": [ 1069, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.and", "code": "def and (bs : List Bool) : Bool := bs.all id", "start": [ 1073, 1 ], "end": [ 1077, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.and_nil", "code": "@[simp] theorem and_nil : [].and = true", "start": [ 1079, 1 ], "end": [ 1079, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.and_cons", "code": "@[simp] theorem and_cons : (a::l).and = (a && l.and)", "start": [ 1080, 1 ], "end": [ 1080, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith", "code": "@[specialize] def zipWith (f : α → β → γ) : (xs : List α) → (ys : List β) → List γ\n | x::xs, y::ys => f x y :: zipWith f xs ys\n | _, _ => []", "start": [ 1086, 1 ], "end": [ 1092, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_nil_left", "code": "@[simp] theorem zipWith_nil_left {f : α → β → γ} : zipWith f [] l = []", "start": [ 1094, 1 ], "end": [ 1094, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_nil_right", "code": "@[simp] theorem zipWith_nil_right {f : α → β → γ} : zipWith f l [] = []", "start": [ 1095, 1 ], "end": [ 1095, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_cons_cons", "code": "@[simp] theorem zipWith_cons_cons {f : α → β → γ} :\n zipWith f (a :: as) (b :: bs) = f a b :: zipWith f as bs", "start": [ 1096, 1 ], "end": [ 1097, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.zip", "code": "def zip : List α → List β → List (Prod α β) :=\n zipWith Prod.mk", "start": [ 1101, 1 ], "end": [ 1107, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_nil_left", "code": "@[simp] theorem zip_nil_left : zip ([] : List α) (l : List β) = []", "start": [ 1109, 1 ], "end": [ 1109, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_nil_right", "code": "@[simp] theorem zip_nil_right : zip (l : List α) ([] : List β) = []", "start": [ 1110, 1 ], "end": [ 1110, 95 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_cons_cons", "code": "@[simp] theorem zip_cons_cons : zip (a :: as) (b :: bs) = (a, b) :: zip as bs", "start": [ 1111, 1 ], "end": [ 1111, 85 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll", "code": "def zipWithAll (f : Option α → Option β → γ) : List α → List β → List γ\n | [], bs => bs.map fun b => f none (some b)\n | a :: as, [] => (a :: as).map fun a => f (some a) none\n | a :: as, b :: bs => f a b :: zipWithAll f as bs", "start": [ 1115, 1 ], "end": [ 1123, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_nil_right", "code": "@[simp] theorem zipWithAll_nil_right :\n zipWithAll f as [] = as.map fun a => f (some a) none", "start": [ 1125, 1 ], "end": [ 1127, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_nil_left", "code": "@[simp] theorem zipWithAll_nil_left :\n zipWithAll f [] bs = bs.map fun b => f none (some b)", "start": [ 1128, 1 ], "end": [ 1129, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_cons_cons", "code": "@[simp] theorem zipWithAll_cons_cons :\n zipWithAll f (a :: as) (b :: bs) = f (some a) (some b) :: zipWithAll f as bs", "start": [ 1130, 1 ], "end": [ 1131, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.unzip", "code": "def unzip : List (α × β) → List α × List β\n | [] => ([], [])\n | (a, b) :: t => match unzip t with | (al, bl) => (a::al, b::bl)", "start": [ 1135, 1 ], "end": [ 1141, 67 ], "kind": "commanddeclaration" }, { "full_name": "List.unzip_nil", "code": "@[simp] theorem unzip_nil : ([] : List (α × β)).unzip = ([], [])", "start": [ 1143, 1 ], "end": [ 1143, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.unzip_cons", "code": "@[simp] theorem unzip_cons {h : α × β} :\n (h :: t).unzip = match unzip t with | (al, bl) => (h.1::al, h.2::bl)", "start": [ 1144, 1 ], "end": [ 1145, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.range", "code": "def range (n : Nat) : List Nat :=\n loop n []\nwhere\n loop : Nat → List Nat → List Nat\n | 0, ns => ns\n | n+1, ns => loop n (n::ns)", "start": [ 1151, 1 ], "end": [ 1160, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.range_zero", "code": "@[simp] theorem range_zero : range 0 = []", "start": [ 1162, 1 ], "end": [ 1162, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.iota", "code": "def iota : Nat → List Nat\n | 0 => []\n | m@(n+1) => m :: iota n", "start": [ 1166, 1 ], "end": [ 1172, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.iota_zero", "code": "@[simp] theorem iota_zero : iota 0 = []", "start": [ 1174, 1 ], "end": [ 1174, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.iota_succ", "code": "@[simp] theorem iota_succ : iota (i+1) = (i+1) :: iota i", "start": [ 1175, 1 ], "end": [ 1175, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.enumFrom", "code": "def enumFrom : Nat → List α → List (Nat × α)\n | _, [] => nil\n | n, x :: xs => (n, x) :: enumFrom (n + 1) xs", "start": [ 1179, 1 ], "end": [ 1185, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.enumFrom_nil", "code": "@[simp] theorem enumFrom_nil : ([] : List α).enumFrom i = []", "start": [ 1187, 1 ], "end": [ 1187, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.enumFrom_cons", "code": "@[simp] theorem enumFrom_cons : (a::as).enumFrom i = (i, a) :: as.enumFrom (i+1)", "start": [ 1188, 1 ], "end": [ 1188, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.enum", "code": "def enum : List α → List (Nat × α) := enumFrom 0", "start": [ 1192, 1 ], "end": [ 1196, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.enum_nil", "code": "@[simp] theorem enum_nil : ([] : List α).enum = []", "start": [ 1198, 1 ], "end": [ 1198, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?", "code": "def minimum? [Min α] : List α → Option α\n | [] => none\n | a::as => some <| as.foldl min a", "start": [ 1204, 1 ], "end": [ 1212, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?", "code": "def maximum? [Max α] : List α → Option α\n | [] => none\n | a::as => some <| as.foldl max a", "start": [ 1216, 1 ], "end": [ 1224, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.intersperse", "code": "def intersperse (sep : α) : List α → List α\n | [] => []\n | [x] => [x]\n | x::xs => x :: sep :: intersperse sep xs", "start": [ 1234, 1 ], "end": [ 1244, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.intersperse_nil", "code": "@[simp] theorem intersperse_nil (sep : α) : ([] : List α).intersperse sep = []", "start": [ 1246, 1 ], "end": [ 1246, 86 ], "kind": "commanddeclaration" }, { "full_name": "List.intersperse_single", "code": "@[simp] theorem intersperse_single (sep : α) : [x].intersperse sep = [x]", "start": [ 1247, 1 ], "end": [ 1247, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.intersperse_cons₂", "code": "@[simp] theorem intersperse_cons₂ (sep : α) :\n (x::y::zs).intersperse sep = x::sep::((y::zs).intersperse sep)", "start": [ 1248, 1 ], "end": [ 1249, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.intercalate", "code": "def intercalate (sep : List α) (xs : List (List α)) : List α :=\n join (intersperse sep xs)", "start": [ 1253, 1 ], "end": [ 1261, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseDups", "code": "def eraseDups {α} [BEq α] (as : List α) : List α :=\n loop as []\nwhere\n loop : List α → List α → List α\n | [], bs => bs.reverse\n | a::as, bs => match bs.elem a with\n | true => loop as bs\n | false => loop as (a::bs)", "start": [ 1265, 1 ], "end": [ 1276, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.eraseReps", "code": "def eraseReps {α} [BEq α] : List α → List α\n | [] => []\n | a::as => loop a as []\nwhere\n loop {α} [BEq α] : α → List α → List α → List α\n | a, [], rs => (a::rs).reverse\n | a, a'::as, rs => match a == a' with\n | true => loop a as rs\n | false => loop a' as (a::rs)", "start": [ 1280, 1 ], "end": [ 1292, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.span", "code": "@[inline] def span (p : α → Bool) (as : List α) : List α × List α :=\n loop as []\nwhere\n @[specialize] loop : List α → List α → List α × List α\n | [], rs => (rs.reverse, [])\n | a::as, rs => match p a with\n | true => loop as (a::rs)\n | false => (rs.reverse, a::as)", "start": [ 1296, 1 ], "end": [ 1311, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.groupBy", "code": "@[specialize] def groupBy (R : α → α → Bool) : List α → List (List α)\n | [] => []\n | a::as => loop as a [] []\nwhere\n @[specialize] loop : List α → α → List α → List (List α) → List (List α)\n | a::as, ag, g, gs => match R ag a with\n | true => loop as a (ag::g) gs\n | false => loop as a [] ((ag::g).reverse::gs)\n | [], ag, g, gs => ((ag::g).reverse::gs).reverse", "start": [ 1315, 1 ], "end": [ 1330, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.removeAll", "code": "def removeAll [BEq α] (xs ys : List α) : List α :=\n xs.filter (fun x => !ys.elem x)", "start": [ 1334, 1 ], "end": [ 1339, 34 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Coe.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean", ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "Option.getM", "code": "def getM [Alternative m] : Option α → m α\n | none => failure\n | some a => pure a", "start": [ 16, 1 ], "end": [ 19, 23 ], "kind": "commanddeclaration" }, { "full_name": "Option.toMonad", "code": "@[deprecated getM (since := \"2024-04-17\")]\ndef toMonad [Monad m] [Alternative m] : Option α → m α := getM", "start": [ 21, 1 ], "end": [ 22, 63 ], "kind": "commanddeclaration" }, { "full_name": "Option.isSome", "code": "@[inline] def isSome : Option α → Bool\n | some _ => true\n | none => false", "start": [ 24, 1 ], "end": [ 27, 20 ], "kind": "commanddeclaration" }, { "full_name": "Option.toBool", "code": "@[deprecated isSome, inline] def toBool : Option α → Bool := isSome", "start": [ 29, 1 ], "end": [ 29, 68 ], "kind": "commanddeclaration" }, { "full_name": "Option.isNone", "code": "@[inline] def isNone : Option α → Bool\n | some _ => false\n | none => true", "start": [ 31, 1 ], "end": [ 34, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.isEqSome", "code": "@[inline] def isEqSome [BEq α] : Option α → α → Bool\n | some a, b => a == b\n | none, _ => false", "start": [ 36, 1 ], "end": [ 41, 23 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind", "code": "@[inline] protected def bind : Option α → (α → Option β) → Option β\n | none, _ => none\n | some a, f => f a", "start": [ 43, 1 ], "end": [ 45, 21 ], "kind": "commanddeclaration" }, { "full_name": "Option.bindM", "code": "@[inline] protected def bindM [Monad m] (f : α → m (Option β)) (o : Option α) : m (Option β) := do\n if let some a := o then\n return (← f a)\n else\n return none", "start": [ 47, 1 ], "end": [ 52, 16 ], "kind": "commanddeclaration" }, { "full_name": "Option.mapM", "code": "@[inline] protected def mapM [Monad m] (f : α → m β) (o : Option α) : m (Option β) := do\n if let some a := o then\n return some (← f a)\n else\n return none", "start": [ 54, 1 ], "end": [ 62, 16 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_id", "code": "theorem map_id : (Option.map id : Option α → Option α) = id", "start": [ 64, 1 ], "end": [ 65, 63 ], "kind": "commanddeclaration" }, { "full_name": "Option.filter", "code": "@[always_inline, inline] protected def filter (p : α → Bool) : Option α → Option α\n | some a => if p a then some a else none\n | none => none", "start": [ 67, 1 ], "end": [ 70, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.all", "code": "@[always_inline, inline] protected def all (p : α → Bool) : Option α → Bool\n | some a => p a\n | none => true", "start": [ 72, 1 ], "end": [ 75, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.any", "code": "@[always_inline, inline] protected def any (p : α → Bool) : Option α → Bool\n | some a => p a\n | none => false", "start": [ 77, 1 ], "end": [ 80, 20 ], "kind": "commanddeclaration" }, { "full_name": "Option.orElse", "code": "@[always_inline, macro_inline] protected def orElse : Option α → (Unit → Option α) → Option α\n | some a, _ => some a\n | none, b => b ()", "start": [ 82, 1 ], "end": [ 87, 22 ], "kind": "commanddeclaration" }, { "full_name": "Option.lt", "code": "@[inline] protected def lt (r : α → α → Prop) : Option α → Option α → Prop\n | none, some _ => True\n | some x, some y => r x y\n | _, _ => False", "start": [ 92, 1 ], "end": [ 95, 30 ], "kind": "commanddeclaration" }, { "full_name": "Option.merge", "code": "def merge (fn : α → α → α) : Option α → Option α → Option α\n | none , none => none\n | some x, none => some x\n | none , some y => some y\n | some x, some y => some <| fn x y", "start": [ 103, 1 ], "end": [ 109, 37 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD_none", "code": "@[simp] theorem getD_none : getD none a = a", "start": [ 111, 1 ], "end": [ 111, 51 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD_some", "code": "@[simp] theorem getD_some : getD (some a) b = a", "start": [ 112, 1 ], "end": [ 112, 55 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_none'", "code": "@[simp] theorem map_none' (f : α → β) : none.map f = none", "start": [ 114, 1 ], "end": [ 114, 65 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_some'", "code": "@[simp] theorem map_some' (a) (f : α → β) : (some a).map f = some (f a)", "start": [ 115, 1 ], "end": [ 115, 79 ], "kind": "commanddeclaration" }, { "full_name": "Option.none_bind", "code": "@[simp] theorem none_bind (f : α → Option β) : none.bind f = none", "start": [ 117, 1 ], "end": [ 117, 73 ], "kind": "commanddeclaration" }, { "full_name": "Option.some_bind", "code": "@[simp] theorem some_bind (a) (f : α → Option β) : (some a).bind f = f a", "start": [ 118, 1 ], "end": [ 118, 80 ], "kind": "commanddeclaration" }, { "full_name": "Option.elim", "code": "@[inline] protected def elim : Option α → β → (α → β) → β\n | some x, _, f => f x\n | none, y, _ => y", "start": [ 121, 1 ], "end": [ 124, 20 ], "kind": "commanddeclaration" }, { "full_name": "Option.get", "code": "@[inline] def get {α : Type u} : (o : Option α) → isSome o → α\n | some x, _ => x", "start": [ 126, 1 ], "end": [ 128, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.guard", "code": "@[inline] def guard (p : α → Prop) [DecidablePred p] (a : α) : Option α :=\n if p a then some a else none", "start": [ 130, 1 ], "end": [ 132, 31 ], "kind": "commanddeclaration" }, { "full_name": "Option.toList", "code": "@[inline] def toList : Option α → List α\n | none => .nil\n | some a => .cons a .nil", "start": [ 134, 1 ], "end": [ 139, 27 ], "kind": "commanddeclaration" }, { "full_name": "Option.toArray", "code": "@[inline] def toArray : Option α → Array α\n | none => List.toArray .nil\n | some a => List.toArray (.cons a .nil)", "start": [ 141, 1 ], "end": [ 146, 42 ], "kind": "commanddeclaration" }, { "full_name": "Option.liftOrGet", "code": "def liftOrGet (f : α → α → α) : Option α → Option α → Option α\n | none, none => none\n | some a, none => some a\n | none, some b => some b\n | some a, some b => some (f a b)", "start": [ 148, 1 ], "end": [ 156, 35 ], "kind": "commanddeclaration" }, { "full_name": "Option.Rel", "code": "inductive Rel (r : α → β → Prop) : Option α → Option β → Prop\n \n | some {a b} : r a b → Rel r (some a) (some b)\n \n | none : Rel r none none", "start": [ 158, 1 ], "end": [ 164, 27 ], "kind": "commanddeclaration" }, { "full_name": "Option.join", "code": "@[simp, inline] def join (x : Option (Option α)) : Option α := x.bind id", "start": [ 166, 1 ], "end": [ 167, 73 ], "kind": "commanddeclaration" }, { "full_name": "Option.mapA", "code": "@[inline] protected def mapA [Applicative m] {α β} (f : α → m β) : Option α → m (Option β)\n | none => pure none\n | some x => some <$> f x", "start": [ 169, 1 ], "end": [ 172, 27 ], "kind": "commanddeclaration" }, { "full_name": "Option.sequence", "code": "@[inline] def sequence [Monad m] {α : Type u} : Option (m α) → m (Option α)\n | none => pure none\n | some fn => some <$> fn", "start": [ 174, 1 ], "end": [ 181, 27 ], "kind": "commanddeclaration" }, { "full_name": "Option.elimM", "code": "@[inline] def elimM [Monad m] (x : m (Option α)) (y : m β) (z : α → m β) : m β :=\n do (← x).elim y z", "start": [ 183, 1 ], "end": [ 185, 20 ], "kind": "commanddeclaration" }, { "full_name": "Option.getDM", "code": "@[inline] def getDM [Monad m] (x : Option α) (y : m α) : m α :=\n match x with\n | some a => pure a\n | none => y", "start": [ 187, 1 ], "end": [ 191, 14 ], "kind": "commanddeclaration" }, { "full_name": "Option.all_none", "code": "@[simp] theorem all_none : Option.all p none = true", "start": [ 203, 1 ], "end": [ 203, 59 ], "kind": "commanddeclaration" }, { "full_name": "Option.all_some", "code": "@[simp] theorem all_some : Option.all p (some x) = p x", "start": [ 204, 1 ], "end": [ 204, 62 ], "kind": "commanddeclaration" }, { "full_name": "Option.min", "code": "protected def min [Min α] : Option α → Option α → Option α\n | some x, some y => some (Min.min x y)\n | some x, none => some x\n | none, some y => some y\n | none, none => none", "start": [ 206, 1 ], "end": [ 211, 23 ], "kind": "commanddeclaration" }, { "full_name": "Option.min_some_some", "code": "@[simp] theorem min_some_some [Min α] {a b : α} : min (some a) (some b) = some (min a b)", "start": [ 215, 1 ], "end": [ 215, 96 ], "kind": "commanddeclaration" }, { "full_name": "Option.min_some_none", "code": "@[simp] theorem min_some_none [Min α] {a : α} : min (some a) none = some a", "start": [ 216, 1 ], "end": [ 216, 82 ], "kind": "commanddeclaration" }, { "full_name": "Option.min_none_some", "code": "@[simp] theorem min_none_some [Min α] {b : α} : min none (some b) = some b", "start": [ 217, 1 ], "end": [ 217, 82 ], "kind": "commanddeclaration" }, { "full_name": "Option.min_none_none", "code": "@[simp] theorem min_none_none [Min α] : min (none : Option α) none = none", "start": [ 218, 1 ], "end": [ 218, 81 ], "kind": "commanddeclaration" }, { "full_name": "Option.max", "code": "protected def max [Max α] : Option α → Option α → Option α\n | some x, some y => some (Max.max x y)\n | some x, none => some x\n | none, some y => some y\n | none, none => none", "start": [ 220, 1 ], "end": [ 225, 23 ], "kind": "commanddeclaration" }, { "full_name": "Option.max_some_some", "code": "@[simp] theorem max_some_some [Max α] {a b : α} : max (some a) (some b) = some (max a b)", "start": [ 229, 1 ], "end": [ 229, 96 ], "kind": "commanddeclaration" }, { "full_name": "Option.max_some_none", "code": "@[simp] theorem max_some_none [Max α] {a : α} : max (some a) none = some a", "start": [ 230, 1 ], "end": [ 230, 82 ], "kind": "commanddeclaration" }, { "full_name": "Option.max_none_some", "code": "@[simp] theorem max_none_some [Max α] {b : α} : max none (some b) = some b", "start": [ 231, 1 ], "end": [ 231, 82 ], "kind": "commanddeclaration" }, { "full_name": "Option.max_none_none", "code": "@[simp] theorem max_none_none [Max α] : max (none : Option α) none = none", "start": [ 232, 1 ], "end": [ 232, 81 ], "kind": "commanddeclaration" }, { "full_name": "liftOption", "code": "def liftOption [Alternative m] : Option α → m α\n | some a => pure a\n | none => failure", "start": [ 254, 1 ], "end": [ 256, 22 ], "kind": "commanddeclaration" }, { "full_name": "Option.tryCatch", "code": "@[always_inline, inline] protected def Option.tryCatch (x : Option α) (handle : Unit → Option α) : Option α :=\n match x with\n | some _ => x\n | none => handle ()", "start": [ 258, 1 ], "end": [ 261, 22 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Char/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean" ]
[ { "full_name": "isValidChar", "code": "@[inline, reducible] def isValidChar (n : UInt32) : Prop :=\n n < 0xd800 ∨ (0xdfff < n ∧ n < 0x110000)", "start": [ 9, 1 ], "end": [ 14, 43 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt", "code": "protected def lt (a b : Char) : Prop := a.val < b.val", "start": [ 18, 1 ], "end": [ 18, 54 ], "kind": "commanddeclaration" }, { "full_name": "Char.le", "code": "protected def le (a b : Char) : Prop := a.val ≤ b.val", "start": [ 19, 1 ], "end": [ 19, 54 ], "kind": "commanddeclaration" }, { "full_name": "Char.isValidCharNat", "code": "abbrev isValidCharNat (n : Nat) : Prop :=\n n < 0xd800 ∨ (0xdfff < n ∧ n < 0x110000)", "start": [ 30, 1 ], "end": [ 32, 43 ], "kind": "commanddeclaration" }, { "full_name": "Char.isValidUInt32", "code": "theorem isValidUInt32 (n : Nat) (h : isValidCharNat n) : n < UInt32.size", "start": [ 34, 1 ], "end": [ 41, 11 ], "kind": "commanddeclaration" }, { "full_name": "Char.isValidChar_of_isValidCharNat", "code": "theorem isValidChar_of_isValidCharNat (n : Nat) (h : isValidCharNat n) : isValidChar (UInt32.ofNat' n (isValidUInt32 n h))", "start": [ 43, 1 ], "end": [ 46, 39 ], "kind": "commanddeclaration" }, { "full_name": "Char.isValidChar_zero", "code": "theorem isValidChar_zero : isValidChar 0", "start": [ 48, 1 ], "end": [ 49, 21 ], "kind": "commanddeclaration" }, { "full_name": "Char.toNat", "code": "@[inline] def toNat (c : Char) : Nat :=\n c.val.toNat", "start": [ 51, 1 ], "end": [ 53, 14 ], "kind": "commanddeclaration" }, { "full_name": "Char.toUInt8", "code": "@[inline] def toUInt8 (c : Char) : UInt8 :=\n c.val.toUInt8", "start": [ 55, 1 ], "end": [ 57, 16 ], "kind": "commanddeclaration" }, { "full_name": "Char.ofUInt8", "code": "def ofUInt8 (n : UInt8) : Char := ⟨n.toUInt32, .inl (Nat.lt_trans n.1.2 (by decide))⟩", "start": [ 59, 1 ], "end": [ 60, 86 ], "kind": "commanddeclaration" }, { "full_name": "Char.isWhitespace", "code": "def isWhitespace (c : Char) : Bool :=\n c = ' ' || c = '\\t' || c = '\\r' || c = '\\n'", "start": [ 65, 1 ], "end": [ 67, 46 ], "kind": "commanddeclaration" }, { "full_name": "Char.isUpper", "code": "def isUpper (c : Char) : Bool :=\n c.val ≥ 65 && c.val ≤ 90", "start": [ 69, 1 ], "end": [ 71, 27 ], "kind": "commanddeclaration" }, { "full_name": "Char.isLower", "code": "def isLower (c : Char) : Bool :=\n c.val ≥ 97 && c.val ≤ 122", "start": [ 73, 1 ], "end": [ 75, 28 ], "kind": "commanddeclaration" }, { "full_name": "Char.isAlpha", "code": "def isAlpha (c : Char) : Bool :=\n c.isUpper || c.isLower", "start": [ 77, 1 ], "end": [ 79, 25 ], "kind": "commanddeclaration" }, { "full_name": "Char.isDigit", "code": "def isDigit (c : Char) : Bool :=\n c.val ≥ 48 && c.val ≤ 57", "start": [ 81, 1 ], "end": [ 83, 27 ], "kind": "commanddeclaration" }, { "full_name": "Char.isAlphanum", "code": "def isAlphanum (c : Char) : Bool :=\n c.isAlpha || c.isDigit", "start": [ 85, 1 ], "end": [ 87, 25 ], "kind": "commanddeclaration" }, { "full_name": "Char.toLower", "code": "def toLower (c : Char) : Char :=\n let n := toNat c;\n if n >= 65 ∧ n <= 90 then ofNat (n + 32) else c", "start": [ 89, 1 ], "end": [ 95, 50 ], "kind": "commanddeclaration" }, { "full_name": "Char.toUpper", "code": "def toUpper (c : Char) : Char :=\n let n := toNat c;\n if n >= 97 ∧ n <= 122 then ofNat (n - 32) else c", "start": [ 97, 1 ], "end": [ 103, 51 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/Except.lean
[ ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Coe.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean" ]
[ { "full_name": "Except.pure", "code": "@[always_inline, inline]\nprotected def pure (a : α) : Except ε α :=\n Except.ok a", "start": [ 16, 1 ], "end": [ 18, 14 ], "kind": "commanddeclaration" }, { "full_name": "Except.map", "code": "@[always_inline, inline]\nprotected def map (f : α → β) : Except ε α → Except ε β\n | Except.error err => Except.error err\n | Except.ok v => Except.ok <| f v", "start": [ 20, 1 ], "end": [ 23, 36 ], "kind": "commanddeclaration" }, { "full_name": "Except.map_id", "code": "@[simp] theorem map_id : Except.map (ε := ε) (α := α) (β := α) id = id", "start": [ 25, 1 ], "end": [ 28, 37 ], "kind": "commanddeclaration" }, { "full_name": "Except.mapError", "code": "@[always_inline, inline]\nprotected def mapError (f : ε → ε') : Except ε α → Except ε' α\n | Except.error err => Except.error <| f err\n | Except.ok v => Except.ok v", "start": [ 30, 1 ], "end": [ 33, 36 ], "kind": "commanddeclaration" }, { "full_name": "Except.bind", "code": "@[always_inline, inline]\nprotected def bind (ma : Except ε α) (f : α → Except ε β) : Except ε β :=\n match ma with\n | Except.error err => Except.error err\n | Except.ok v => f v", "start": [ 35, 1 ], "end": [ 39, 28 ], "kind": "commanddeclaration" }, { "full_name": "Except.toBool", "code": "@[always_inline, inline]\nprotected def toBool : Except ε α → Bool\n | Except.ok _ => true\n | Except.error _ => false", "start": [ 41, 1 ], "end": [ 45, 28 ], "kind": "commanddeclaration" }, { "full_name": "Except.isOk", "code": "abbrev isOk : Except ε α → Bool := Except.toBool", "start": [ 47, 1 ], "end": [ 47, 49 ], "kind": "commanddeclaration" }, { "full_name": "Except.toOption", "code": "@[always_inline, inline]\nprotected def toOption : Except ε α → Option α\n | Except.ok a => some a\n | Except.error _ => none", "start": [ 49, 1 ], "end": [ 52, 27 ], "kind": "commanddeclaration" }, { "full_name": "Except.tryCatch", "code": "@[always_inline, inline]\nprotected def tryCatch (ma : Except ε α) (handle : ε → Except ε α) : Except ε α :=\n match ma with\n | Except.ok a => Except.ok a\n | Except.error e => handle e", "start": [ 54, 1 ], "end": [ 58, 31 ], "kind": "commanddeclaration" }, { "full_name": "Except.orElseLazy", "code": "def orElseLazy (x : Except ε α) (y : Unit → Except ε α) : Except ε α :=\n match x with\n | Except.ok a => Except.ok a\n | Except.error _ => y ()", "start": [ 60, 1 ], "end": [ 63, 27 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT", "code": "def ExceptT (ε : Type u) (m : Type u → Type v) (α : Type u) : Type v :=\n m (Except ε α)", "start": [ 73, 1 ], "end": [ 74, 17 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.mk", "code": "@[always_inline, inline]\ndef ExceptT.mk {ε : Type u} {m : Type u → Type v} {α : Type u} (x : m (Except ε α)) : ExceptT ε m α := x", "start": [ 76, 1 ], "end": [ 77, 105 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.run", "code": "@[always_inline, inline]\ndef ExceptT.run {ε : Type u} {m : Type u → Type v} {α : Type u} (x : ExceptT ε m α) : m (Except ε α) := x", "start": [ 79, 1 ], "end": [ 80, 106 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.pure", "code": "@[always_inline, inline]\nprotected def pure {α : Type u} (a : α) : ExceptT ε m α :=\n ExceptT.mk <| pure (Except.ok a)", "start": [ 86, 1 ], "end": [ 88, 35 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.bindCont", "code": "@[always_inline, inline]\nprotected def bindCont {α β : Type u} (f : α → ExceptT ε m β) : Except ε α → m (Except ε β)\n | Except.ok a => f a\n | Except.error e => pure (Except.error e)", "start": [ 90, 1 ], "end": [ 93, 44 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.bind", "code": "@[always_inline, inline]\nprotected def bind {α β : Type u} (ma : ExceptT ε m α) (f : α → ExceptT ε m β) : ExceptT ε m β :=\n ExceptT.mk <| ma >>= ExceptT.bindCont f", "start": [ 95, 1 ], "end": [ 97, 42 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.map", "code": "@[always_inline, inline]\nprotected def map {α β : Type u} (f : α → β) (x : ExceptT ε m α) : ExceptT ε m β :=\n ExceptT.mk <| x >>= fun a => match a with\n | (Except.ok a) => pure <| Except.ok (f a)\n | (Except.error e) => pure <| Except.error e", "start": [ 99, 1 ], "end": [ 103, 49 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.lift", "code": "@[always_inline, inline]\nprotected def lift {α : Type u} (t : m α) : ExceptT ε m α :=\n ExceptT.mk <| Except.ok <$> t", "start": [ 105, 1 ], "end": [ 107, 32 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.tryCatch", "code": "@[always_inline, inline]\nprotected def tryCatch {α : Type u} (ma : ExceptT ε m α) (handle : ε → ExceptT ε m α) : ExceptT ε m α :=\n ExceptT.mk <| ma >>= fun res => match res with\n | Except.ok a => pure (Except.ok a)\n | Except.error e => (handle e)", "start": [ 113, 1 ], "end": [ 117, 34 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.adapt", "code": "@[always_inline, inline]\nprotected def adapt {ε' α : Type u} (f : ε → ε') : ExceptT ε m α → ExceptT ε' m α := fun x =>\n ExceptT.mk <| Except.mapError f <$> x", "start": [ 127, 1 ], "end": [ 129, 40 ], "kind": "commanddeclaration" }, { "full_name": "MonadExcept.orelse'", "code": "@[always_inline, inline]\ndef orelse' [MonadExcept ε m] {α : Type v} (t₁ t₂ : m α) (useFirstEx := true) : m α :=\n tryCatch t₁ fun e₁ => tryCatch t₂ fun e₂ => throw (if useFirstEx then e₁ else e₂)", "start": [ 153, 1 ], "end": [ 157, 84 ], "kind": "commanddeclaration" }, { "full_name": "observing", "code": "@[always_inline, inline]\ndef observing {ε α : Type u} {m : Type u → Type v} [Monad m] [MonadExcept ε m] (x : m α) : m (Except ε α) :=\n tryCatch (do let a ← x; pure (Except.ok a)) (fun ex => pure (Except.error ex))", "start": [ 161, 1 ], "end": [ 163, 81 ], "kind": "commanddeclaration" }, { "full_name": "liftExcept", "code": "def liftExcept [MonadExceptOf ε m] [Pure m] : Except ε α → m α\n | Except.ok a => pure a\n | Except.error e => throw e", "start": [ 165, 1 ], "end": [ 167, 30 ], "kind": "commanddeclaration" }, { "full_name": "MonadFinally", "code": "class MonadFinally (m : Type u → Type v) where\n \n tryFinally' {α β} : m α → (Option α → m β) → m (α × β)", "start": [ 174, 1 ], "end": [ 180, 57 ], "kind": "commanddeclaration" }, { "full_name": "tryFinally", "code": "@[always_inline, inline]\ndef tryFinally {m : Type u → Type v} {α β : Type u} [MonadFinally m] [Functor m] (x : m α) (finalizer : m β) : m α :=\n let y := tryFinally' x (fun _ => finalizer)\n (·.1) <$> y", "start": [ 184, 1 ], "end": [ 188, 14 ], "kind": "commanddeclaration" }, { "full_name": "Id.finally", "code": "@[always_inline]\ninstance Id.finally : MonadFinally Id where\n tryFinally' := fun x h =>\n let a := x\n let b := h (some x)\n pure (a, b)", "start": [ 190, 1 ], "end": [ 195, 15 ], "kind": "commanddeclaration" }, { "full_name": "ExceptT.finally", "code": "@[always_inline]\ninstance ExceptT.finally {m : Type u → Type v} {ε : Type u} [MonadFinally m] [Monad m] : MonadFinally (ExceptT ε m) where\n tryFinally' := fun x h => ExceptT.mk do\n let r ← tryFinally' x fun e? => match e? with\n | some (.ok a) => h (some a)\n | _ => h none\n match r with\n | (.ok a, .ok b) => pure (.ok (a, b))\n | (_, .error e) => pure (.error e) | (.error e, _) => pure (.error e)", "start": [ 197, 1 ], "end": [ 206, 46 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/List/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Cast.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean" ]
[ { "full_name": "Int", "code": "inductive Int : Type where\n \n | ofNat : Nat → Int\n \n | negSucc : Nat → Int", "start": [ 26, 1 ], "end": [ 45, 24 ], "kind": "commanddeclaration" }, { "full_name": "instOfNat", "code": "instance instOfNat : OfNat Int n where\n ofNat := Int.ofNat n", "start": [ 52, 1 ], "end": [ 53, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.default_eq_zero", "code": "@[simp] theorem default_eq_zero : default = (0 : Int)", "start": [ 65, 1 ], "end": [ 65, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_ne_one", "code": "protected theorem zero_ne_one : (0 : Int) ≠ 1", "start": [ 67, 1 ], "end": [ 67, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_eq_coe", "code": "@[simp] theorem ofNat_eq_coe : Int.ofNat n = Nat.cast n", "start": [ 71, 1 ], "end": [ 71, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_zero", "code": "@[simp] theorem ofNat_zero : ((0 : Nat) : Int) = 0", "start": [ 73, 1 ], "end": [ 73, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_one", "code": "@[simp] theorem ofNat_one : ((1 : Nat) : Int) = 1", "start": [ 75, 1 ], "end": [ 75, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_two", "code": "theorem ofNat_two : ((2 : Nat) : Int) = 2", "start": [ 77, 1 ], "end": [ 77, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat", "code": "def negOfNat : Nat → Int\n | 0 => 0\n | succ m => negSucc m", "start": [ 79, 1 ], "end": [ 82, 24 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg", "code": "@[extern \"lean_int_neg\"]\nprotected def neg (n : @& Int) : Int :=\n match n with\n | ofNat n => negOfNat n\n | negSucc n => succ n", "start": [ 85, 1 ], "end": [ 92, 24 ], "kind": "commanddeclaration" }, { "full_name": "Int.instNegInt", "code": "@[default_instance mid]\ninstance instNegInt : Neg Int where\n neg := Int.neg", "start": [ 102, 1 ], "end": [ 104, 17 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat", "code": "def subNatNat (m n : Nat) : Int :=\n match (n - m : Nat) with\n | 0 => ofNat (m - n) | (succ k) => negSucc k", "start": [ 106, 1 ], "end": [ 110, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.add", "code": "@[extern \"lean_int_add\"]\nprotected def add (m n : @& Int) : Int :=\n match m, n with\n | ofNat m, ofNat n => ofNat (m + n)\n | ofNat m, -[n +1] => subNatNat m (succ n)\n | -[m +1], ofNat n => subNatNat n (succ m)\n | -[m +1], -[n +1] => negSucc (succ (m + n))", "start": [ 113, 1 ], "end": [ 127, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul", "code": "@[extern \"lean_int_mul\"]\nprotected def mul (m n : @& Int) : Int :=\n match m, n with\n | ofNat m, ofNat n => ofNat (m * n)\n | ofNat m, -[n +1] => negOfNat (m * succ n)\n | -[m +1], ofNat n => negOfNat (succ m * n)\n | -[m +1], -[n +1] => ofNat (succ m * succ n)", "start": [ 133, 1 ], "end": [ 148, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub", "code": "@[extern \"lean_int_sub\"]\nprotected def sub (m n : @& Int) : Int := m + (- n)", "start": [ 153, 1 ], "end": [ 163, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.NonNeg", "code": "inductive NonNeg : Int → Prop where\n \n | mk (n : Nat) : NonNeg (ofNat n)", "start": [ 168, 1 ], "end": [ 171, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.le", "code": "protected def le (a b : Int) : Prop := NonNeg (b - a)", "start": [ 173, 1 ], "end": [ 174, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.instLEInt", "code": "instance instLEInt : LE Int where\n le := Int.le", "start": [ 176, 1 ], "end": [ 177, 15 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt", "code": "protected def lt (a b : Int) : Prop := (a + 1) ≤ b", "start": [ 179, 1 ], "end": [ 180, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.instLTInt", "code": "instance instLTInt : LT Int where\n lt := Int.lt", "start": [ 182, 1 ], "end": [ 183, 15 ], "kind": "commanddeclaration" }, { "full_name": "Int.decEq", "code": "@[extern \"lean_int_dec_eq\"]\nprotected def decEq (a b : @& Int) : Decidable (a = b) :=\n match a, b with\n | ofNat a, ofNat b => match decEq a b with\n | isTrue h => isTrue <| h ▸ rfl\n | isFalse h => isFalse <| fun h' => Int.noConfusion h' (fun h' => absurd h' h)\n | ofNat _, -[_ +1] => isFalse <| fun h => Int.noConfusion h\n | -[_ +1], ofNat _ => isFalse <| fun h => Int.noConfusion h\n | -[a +1], -[b +1] => match decEq a b with\n | isTrue h => isTrue <| h ▸ rfl\n | isFalse h => isFalse <| fun h' => Int.noConfusion h' (fun h' => absurd h' h)", "start": [ 186, 1 ], "end": [ 205, 83 ], "kind": "commanddeclaration" }, { "full_name": "Int.decNonneg", "code": "@[extern \"lean_int_dec_nonneg\"]\nprivate def decNonneg (m : @& Int) : Decidable (NonNeg m) :=\n match m with\n | ofNat m => isTrue <| NonNeg.mk m\n | -[_ +1] => isFalse <| fun h => nomatch h", "start": [ 210, 1 ], "end": [ 223, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.decLe", "code": "@[extern \"lean_int_dec_le\"]\ninstance decLe (a b : @& Int) : Decidable (a ≤ b) :=\n decNonneg _", "start": [ 225, 1 ], "end": [ 236, 14 ], "kind": "commanddeclaration" }, { "full_name": "Int.decLt", "code": "@[extern \"lean_int_dec_lt\"]\ninstance decLt (a b : @& Int) : Decidable (a < b) :=\n decNonneg _", "start": [ 238, 1 ], "end": [ 249, 14 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs", "code": "@[extern \"lean_nat_abs\"]\ndef natAbs (m : @& Int) : Nat :=\n match m with\n | ofNat m => m\n | -[m +1] => m.succ", "start": [ 252, 1 ], "end": [ 265, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign", "code": "def sign : Int → Int\n | Int.ofNat (succ _) => 1\n | Int.ofNat 0 => 0\n | -[_+1] => -1", "start": [ 269, 1 ], "end": [ 276, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat", "code": "def toNat : Int → Nat\n | ofNat n => n\n | negSucc _ => 0", "start": [ 280, 1 ], "end": [ 291, 19 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat'", "code": "def toNat' : Int → Option Nat\n | (n : Nat) => some n\n | -[_+1] => none", "start": [ 293, 1 ], "end": [ 299, 19 ], "kind": "commanddeclaration" }, { "full_name": "Int.pow", "code": "protected def pow (m : Int) : Nat → Int\n | 0 => 1\n | succ n => Int.pow m n * m", "start": [ 312, 1 ], "end": [ 323, 30 ], "kind": "commanddeclaration" }, { "full_name": "IntCast", "code": "class IntCast (R : Type u) where\n \n protected intCast : Int → R", "start": [ 338, 1 ], "end": [ 344, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.cast", "code": "@[coe, reducible, match_pattern] protected def Int.cast {R : Type u} [IntCast R] : Int → R :=\n IntCast.intCast", "start": [ 348, 1 ], "end": [ 354, 18 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/String/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Char/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/List/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean" ]
[ { "full_name": "List.asString", "code": "def List.asString (s : List Char) : String :=\n ⟨s⟩", "start": [ 13, 1 ], "end": [ 14, 6 ], "kind": "commanddeclaration" }, { "full_name": "String.decLt", "code": "@[extern \"lean_string_dec_lt\"]\ninstance decLt (s₁ s₂ : @& String) : Decidable (s₁ < s₂) :=\n List.hasDecidableLt s₁.data s₂.data", "start": [ 24, 1 ], "end": [ 26, 38 ], "kind": "commanddeclaration" }, { "full_name": "String.le", "code": "@[reducible] protected def le (a b : String) : Prop := ¬ b < a", "start": [ 28, 1 ], "end": [ 28, 63 ], "kind": "commanddeclaration" }, { "full_name": "String.decLE", "code": "instance decLE (s₁ s₂ : String) : Decidable (s₁ ≤ s₂) :=\n inferInstanceAs (Decidable (Not _))", "start": [ 33, 1 ], "end": [ 34, 38 ], "kind": "commanddeclaration" }, { "full_name": "String.length", "code": "@[extern \"lean_string_length\"]\ndef length : (@& String) → Nat\n | ⟨s⟩ => s.length", "start": [ 36, 1 ], "end": [ 46, 20 ], "kind": "commanddeclaration" }, { "full_name": "String.push", "code": "@[extern \"lean_string_push\"]\ndef push : String → Char → String\n | ⟨s⟩, c => ⟨s ++ [c]⟩", "start": [ 48, 1 ], "end": [ 58, 25 ], "kind": "commanddeclaration" }, { "full_name": "String.append", "code": "@[extern \"lean_string_append\"]\ndef append : String → (@& String) → String\n | ⟨a⟩, ⟨b⟩ => ⟨a ++ b⟩", "start": [ 60, 1 ], "end": [ 70, 25 ], "kind": "commanddeclaration" }, { "full_name": "String.toList", "code": "def toList (s : String) : List Char :=\n s.data", "start": [ 72, 1 ], "end": [ 82, 9 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.isValid", "code": "@[extern \"lean_string_is_valid_pos\"]\ndef Pos.isValid (s : @&String) (p : @& Pos) : Bool :=\n go s.data 0\nwhere\n go : List Char → Pos → Bool\n | [], i => i = p\n | c::cs, i => if i = p then true else go cs (i + c)", "start": [ 84, 1 ], "end": [ 92, 54 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8GetAux", "code": "def utf8GetAux : List Char → Pos → Pos → Char\n | [], _, _ => default\n | c::cs, i, p => if i = p then c else utf8GetAux cs (i + c) p", "start": [ 94, 1 ], "end": [ 96, 64 ], "kind": "commanddeclaration" }, { "full_name": "String.get", "code": "@[extern \"lean_string_utf8_get\"]\ndef get (s : @& String) (p : @& Pos) : Char :=\n match s with\n | ⟨s⟩ => utf8GetAux s 0 p", "start": [ 98, 1 ], "end": [ 114, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8GetAux?", "code": "def utf8GetAux? : List Char → Pos → Pos → Option Char\n | [], _, _ => none\n | c::cs, i, p => if i = p then c else utf8GetAux? cs (i + c) p", "start": [ 116, 1 ], "end": [ 118, 65 ], "kind": "commanddeclaration" }, { "full_name": "String.get?", "code": "@[extern \"lean_string_utf8_get_opt\"]\ndef get? : (@& String) → (@& Pos) → Option Char\n | ⟨s⟩, p => utf8GetAux? s 0 p", "start": [ 120, 1 ], "end": [ 132, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.get!", "code": "@[extern \"lean_string_utf8_get_bang\"]\ndef get! (s : @& String) (p : @& Pos) : Char :=\n match s with\n | ⟨s⟩ => utf8GetAux s 0 p", "start": [ 134, 1 ], "end": [ 148, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8SetAux", "code": "def utf8SetAux (c' : Char) : List Char → Pos → Pos → List Char\n | [], _, _ => []\n | c::cs, i, p =>\n if i = p then (c'::cs) else c::(utf8SetAux c' cs (i + c) p)", "start": [ 150, 1 ], "end": [ 153, 64 ], "kind": "commanddeclaration" }, { "full_name": "String.set", "code": "@[extern \"lean_string_utf8_set\"]\ndef set : String → (@& Pos) → Char → String\n | ⟨s⟩, i, c => ⟨utf8SetAux c s 0 i⟩", "start": [ 155, 1 ], "end": [ 172, 38 ], "kind": "commanddeclaration" }, { "full_name": "String.modify", "code": "def modify (s : String) (i : Pos) (f : Char → Char) : String :=\n s.set i <| f <| s.get i", "start": [ 174, 1 ], "end": [ 183, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.next", "code": "@[extern \"lean_string_utf8_next\"]\ndef next (s : @& String) (p : @& Pos) : Pos :=\n let c := get s p\n p + c", "start": [ 185, 1 ], "end": [ 201, 8 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8PrevAux", "code": "def utf8PrevAux : List Char → Pos → Pos → Pos\n | [], _, _ => 0\n | c::cs, i, p =>\n let i' := i + c\n if i' = p then i else utf8PrevAux cs i' p", "start": [ 203, 1 ], "end": [ 207, 46 ], "kind": "commanddeclaration" }, { "full_name": "String.prev", "code": "@[extern \"lean_string_utf8_prev\"]\ndef prev : (@& String) → (@& Pos) → Pos\n | ⟨s⟩, p => if p = 0 then 0 else utf8PrevAux s 0 p", "start": [ 209, 1 ], "end": [ 221, 53 ], "kind": "commanddeclaration" }, { "full_name": "String.front", "code": "def front (s : String) : Char :=\n get s 0", "start": [ 223, 1 ], "end": [ 231, 10 ], "kind": "commanddeclaration" }, { "full_name": "String.back", "code": "def back (s : String) : Char :=\n get s (prev s s.endPos)", "start": [ 233, 1 ], "end": [ 241, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.atEnd", "code": "@[extern \"lean_string_utf8_at_end\"]\ndef atEnd : (@& String) → (@& Pos) → Bool\n | s, p => p.byteIdx ≥ utf8ByteSize s", "start": [ 243, 1 ], "end": [ 257, 39 ], "kind": "commanddeclaration" }, { "full_name": "String.get'", "code": "@[extern \"lean_string_utf8_get_fast\"]\ndef get' (s : @& String) (p : @& Pos) (h : ¬ s.atEnd p) : Char :=\n match s with\n | ⟨s⟩ => utf8GetAux s 0 p", "start": [ 259, 1 ], "end": [ 284, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.next'", "code": "@[extern \"lean_string_utf8_next_fast\"]\ndef next' (s : @& String) (p : @& Pos) (h : ¬ s.atEnd p) : Pos :=\n let c := get s p\n p + c", "start": [ 286, 1 ], "end": [ 306, 8 ], "kind": "commanddeclaration" }, { "full_name": "Char.utf8Size_pos", "code": "theorem _root_.Char.utf8Size_pos (c : Char) : 0 < c.utf8Size", "start": [ 308, 1 ], "end": [ 309, 76 ], "kind": "commanddeclaration" }, { "full_name": "Char.utf8Size_le_four", "code": "theorem _root_.Char.utf8Size_le_four (c : Char) : c.utf8Size ≤ 4", "start": [ 311, 1 ], "end": [ 312, 76 ], "kind": "commanddeclaration" }, { "full_name": "String.one_le_csize", "code": "@[deprecated Char.utf8Size_pos (since := \"2026-06-04\")] abbrev one_le_csize := Char.utf8Size_pos", "start": [ 314, 1 ], "end": [ 314, 97 ], "kind": "commanddeclaration" }, { "full_name": "String.pos_lt_eq", "code": "@[simp] theorem pos_lt_eq (p₁ p₂ : Pos) : (p₁ < p₂) = (p₁.1 < p₂.1)", "start": [ 316, 1 ], "end": [ 316, 75 ], "kind": "commanddeclaration" }, { "full_name": "String.pos_add_char", "code": "@[simp] theorem pos_add_char (p : Pos) (c : Char) : (p + c).byteIdx = p.byteIdx + c.utf8Size", "start": [ 318, 1 ], "end": [ 318, 100 ], "kind": "commanddeclaration" }, { "full_name": "String.lt_next", "code": "theorem lt_next (s : String) (i : Pos) : i.1 < (s.next i).1", "start": [ 320, 1 ], "end": [ 321, 46 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8PrevAux_lt_of_pos", "code": "theorem utf8PrevAux_lt_of_pos : ∀ (cs : List Char) (i p : Pos), p ≠ 0 →\n (utf8PrevAux cs i p).1 < p.1", "start": [ 323, 1 ], "end": [ 332, 48 ], "kind": "commanddeclaration" }, { "full_name": "String.prev_lt_of_pos", "code": "theorem prev_lt_of_pos (s : String) (i : Pos) (h : i ≠ 0) : (s.prev i).1 < i.1", "start": [ 334, 1 ], "end": [ 336, 38 ], "kind": "commanddeclaration" }, { "full_name": "String.posOfAux", "code": "def posOfAux (s : String) (c : Char) (stopPos : Pos) (pos : Pos) : Pos :=\n if h : pos < stopPos then\n if s.get pos == c then pos\n else\n have := Nat.sub_lt_sub_left h (lt_next s pos)\n posOfAux s c stopPos (s.next pos)\n else pos\ntermination_by stopPos.1 - pos.1", "start": [ 338, 1 ], "end": [ 345, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.posOf", "code": "@[inline] def posOf (s : String) (c : Char) : Pos :=\n posOfAux s c s.endPos 0", "start": [ 347, 1 ], "end": [ 357, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.revPosOfAux", "code": "def revPosOfAux (s : String) (c : Char) (pos : Pos) : Option Pos :=\n if h : pos = 0 then none\n else\n have := prev_lt_of_pos s pos h\n let pos := s.prev pos\n if s.get pos == c then some pos\n else revPosOfAux s c pos\ntermination_by pos.1", "start": [ 359, 1 ], "end": [ 366, 21 ], "kind": "commanddeclaration" }, { "full_name": "String.revPosOf", "code": "def revPosOf (s : String) (c : Char) : Option Pos :=\n revPosOfAux s c s.endPos", "start": [ 368, 1 ], "end": [ 378, 27 ], "kind": "commanddeclaration" }, { "full_name": "String.findAux", "code": "def findAux (s : String) (p : Char → Bool) (stopPos : Pos) (pos : Pos) : Pos :=\n if h : pos < stopPos then\n if p (s.get pos) then pos\n else\n have := Nat.sub_lt_sub_left h (lt_next s pos)\n findAux s p stopPos (s.next pos)\n else pos\ntermination_by stopPos.1 - pos.1", "start": [ 380, 1 ], "end": [ 387, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.find", "code": "@[inline] def find (s : String) (p : Char → Bool) : Pos :=\n findAux s p s.endPos 0", "start": [ 389, 1 ], "end": [ 390, 25 ], "kind": "commanddeclaration" }, { "full_name": "String.revFindAux", "code": "def revFindAux (s : String) (p : Char → Bool) (pos : Pos) : Option Pos :=\n if h : pos = 0 then none\n else\n have := prev_lt_of_pos s pos h\n let pos := s.prev pos\n if p (s.get pos) then some pos\n else revFindAux s p pos\ntermination_by pos.1", "start": [ 392, 1 ], "end": [ 399, 21 ], "kind": "commanddeclaration" }, { "full_name": "String.revFind", "code": "def revFind (s : String) (p : Char → Bool) : Option Pos :=\n revFindAux s p s.endPos", "start": [ 401, 1 ], "end": [ 402, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.min", "code": "abbrev Pos.min (p₁ p₂ : Pos) : Pos :=\n { byteIdx := p₁.byteIdx.min p₂.byteIdx }", "start": [ 404, 1 ], "end": [ 405, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.firstDiffPos", "code": "def firstDiffPos (a b : String) : Pos :=\n let stopPos := a.endPos.min b.endPos\n let rec loop (i : Pos) : Pos :=\n if h : i < stopPos then\n if a.get i != b.get i then i\n else\n have := Nat.sub_lt_sub_left h (lt_next a i)\n loop (a.next i)\n else i\n termination_by stopPos.1 - i.1\n loop 0", "start": [ 407, 1 ], "end": [ 418, 9 ], "kind": "commanddeclaration" }, { "full_name": "String.extract", "code": "@[extern \"lean_string_utf8_extract\"]\ndef extract : (@& String) → (@& Pos) → (@& Pos) → String\n | ⟨s⟩, b, e => if b.byteIdx ≥ e.byteIdx then \"\" else ⟨go₁ s 0 b e⟩\nwhere\n go₁ : List Char → Pos → Pos → Pos → List Char\n | [], _, _, _ => []\n | s@(c::cs), i, b, e => if i = b then go₂ s i e else go₁ cs (i + c) b e\n\n go₂ : List Char → Pos → Pos → List Char\n | [], _, _ => []\n | c::cs, i, e => if i = e then [] else c :: go₂ cs (i + c) e", "start": [ 420, 1 ], "end": [ 430, 65 ], "kind": "commanddeclaration" }, { "full_name": "String.splitAux", "code": "@[specialize] def splitAux (s : String) (p : Char → Bool) (b : Pos) (i : Pos) (r : List String) : List String :=\n if h : s.atEnd i then\n let r := (s.extract b i)::r\n r.reverse\n else\n have := Nat.sub_lt_sub_left (Nat.gt_of_not_le (mt decide_eq_true h)) (lt_next s _)\n if p (s.get i) then\n let i' := s.next i\n splitAux s p i' i' (s.extract b i :: r)\n else\n splitAux s p b (s.next i) r\ntermination_by s.endPos.1 - i.1", "start": [ 433, 1 ], "end": [ 444, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.split", "code": "@[specialize] def split (s : String) (p : Char → Bool) : List String :=\n splitAux s p 0 0 []", "start": [ 446, 1 ], "end": [ 447, 22 ], "kind": "commanddeclaration" }, { "full_name": "String.splitOnAux", "code": "def splitOnAux (s sep : String) (b : Pos) (i : Pos) (j : Pos) (r : List String) : List String :=\n if s.atEnd i then\n let r := (s.extract b i)::r\n r.reverse\n else\n if s.get i == sep.get j then\n let i := s.next i\n let j := sep.next j\n if sep.atEnd j then\n splitOnAux s sep i i 0 (s.extract b (i - j)::r)\n else\n splitOnAux s sep b i j r\n else\n splitOnAux s sep b (s.next (i - j)) 0 r\ntermination_by (s.endPos.1 - (i - j).1, sep.endPos.1 - j.1)\ndecreasing_by\n all_goals simp_wf\n focus\n rename_i h _ _\n left; exact Nat.sub_lt_sub_left\n (Nat.lt_of_le_of_lt (Nat.sub_le ..) (Nat.gt_of_not_le (mt decide_eq_true h)))\n (Nat.lt_of_le_of_lt (Nat.sub_le ..) (lt_next s _))\n focus\n rename_i i₀ j₀ _ eq h'\n rw [show (s.next i₀ - sep.next j₀).1 = (i₀ - j₀).1 by\n show (_ + Char.utf8Size _) - (_ + Char.utf8Size _) = _\n rw [(beq_iff_eq ..).1 eq, Nat.add_sub_add_right]; rfl]\n right; exact Nat.sub_lt_sub_left\n (Nat.lt_of_le_of_lt (Nat.le_add_right ..) (Nat.gt_of_not_le (mt decide_eq_true h')))\n (lt_next sep _)\n focus\n rename_i h _\n left; exact Nat.sub_lt_sub_left\n (Nat.lt_of_le_of_lt (Nat.sub_le ..) (Nat.gt_of_not_le (mt decide_eq_true h)))\n (lt_next s _)", "start": [ 449, 1 ], "end": [ 493, 20 ], "kind": "commanddeclaration" }, { "full_name": "String.splitOn", "code": "def splitOn (s : String) (sep : String := \" \") : List String :=\n if sep == \"\" then [s] else splitOnAux s sep 0 0 0 []", "start": [ 495, 1 ], "end": [ 509, 55 ], "kind": "commanddeclaration" }, { "full_name": "String.str", "code": "@[deprecated push (since := \"2024-04-06\")]\ndef str : String → Char → String := push", "start": [ 515, 1 ], "end": [ 516, 41 ], "kind": "commanddeclaration" }, { "full_name": "String.pushn", "code": "def pushn (s : String) (c : Char) (n : Nat) : String :=\n n.repeat (fun s => s.push c) s", "start": [ 518, 1 ], "end": [ 519, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.isEmpty", "code": "def isEmpty (s : String) : Bool :=\n s.endPos == 0", "start": [ 521, 1 ], "end": [ 522, 16 ], "kind": "commanddeclaration" }, { "full_name": "String.join", "code": "def join (l : List String) : String :=\n l.foldl (fun r s => r ++ s) \"\"", "start": [ 524, 1 ], "end": [ 525, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.singleton", "code": "def singleton (c : Char) : String :=\n \"\".push c", "start": [ 527, 1 ], "end": [ 528, 12 ], "kind": "commanddeclaration" }, { "full_name": "String.intercalate", "code": "def intercalate (s : String) : List String → String\n | [] => \"\"\n | a :: as => go a s as\nwhere go (acc : String) (s : String) : List String → String\n | a :: as => go (acc ++ s ++ a) s as\n | [] => acc", "start": [ 530, 1 ], "end": [ 535, 19 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator", "code": "structure Iterator where\n \n s : String\n \n i : Pos\n deriving DecidableEq", "start": [ 537, 1 ], "end": [ 561, 23 ], "kind": "commanddeclaration" }, { "full_name": "String.mkIterator", "code": "def mkIterator (s : String) : Iterator :=\n ⟨s, 0⟩", "start": [ 563, 1 ], "end": [ 565, 9 ], "kind": "commanddeclaration" }, { "full_name": "String.iter", "code": "@[inherit_doc mkIterator]\nabbrev iter := mkIterator", "start": [ 567, 1 ], "end": [ 568, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.sizeOf_eq", "code": "theorem Iterator.sizeOf_eq (i : String.Iterator) : sizeOf i = i.1.utf8ByteSize - i.2.byteIdx", "start": [ 574, 1 ], "end": [ 575, 6 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.toString", "code": "@[inherit_doc Iterator.s]\ndef toString := Iterator.s", "start": [ 578, 1 ], "end": [ 579, 27 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.remainingBytes", "code": "def remainingBytes : Iterator → Nat\n | ⟨s, i⟩ => s.endPos.byteIdx - i.byteIdx", "start": [ 581, 1 ], "end": [ 583, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.pos", "code": "@[inherit_doc Iterator.i]\ndef pos := Iterator.i", "start": [ 585, 1 ], "end": [ 586, 22 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.curr", "code": "def curr : Iterator → Char\n | ⟨s, i⟩ => get s i", "start": [ 588, 1 ], "end": [ 592, 22 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.next", "code": "def next : Iterator → Iterator\n | ⟨s, i⟩ => ⟨s, s.next i⟩", "start": [ 594, 1 ], "end": [ 599, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.prev", "code": "def prev : Iterator → Iterator\n | ⟨s, i⟩ => ⟨s, s.prev i⟩", "start": [ 601, 1 ], "end": [ 605, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.atEnd", "code": "def atEnd : Iterator → Bool\n | ⟨s, i⟩ => i.byteIdx ≥ s.endPos.byteIdx", "start": [ 607, 1 ], "end": [ 609, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.hasNext", "code": "def hasNext : Iterator → Bool\n | ⟨s, i⟩ => i.byteIdx < s.endPos.byteIdx", "start": [ 611, 1 ], "end": [ 613, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.hasPrev", "code": "def hasPrev : Iterator → Bool\n | ⟨_, i⟩ => i.byteIdx > 0", "start": [ 615, 1 ], "end": [ 617, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.setCurr", "code": "def setCurr : Iterator → Char → Iterator\n | ⟨s, i⟩, c => ⟨s.set i c, i⟩", "start": [ 619, 1 ], "end": [ 625, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.toEnd", "code": "def toEnd : Iterator → Iterator\n | ⟨s, _⟩ => ⟨s, s.endPos⟩", "start": [ 627, 1 ], "end": [ 631, 28 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.extract", "code": "def extract : Iterator → Iterator → String\n | ⟨s₁, b⟩, ⟨s₂, e⟩ =>\n if s₁ ≠ s₂ || b > e then \"\"\n else s₁.extract b e", "start": [ 633, 1 ], "end": [ 640, 24 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.forward", "code": "def forward : Iterator → Nat → Iterator\n | it, 0 => it\n | it, n+1 => forward it.next n", "start": [ 642, 1 ], "end": [ 648, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.remainingToString", "code": "def remainingToString : Iterator → String\n | ⟨s, i⟩ => s.extract i s.endPos", "start": [ 650, 1 ], "end": [ 652, 35 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.nextn", "code": "@[inherit_doc forward]\ndef nextn : Iterator → Nat → Iterator\n | it, 0 => it\n | it, i+1 => nextn it.next i", "start": [ 654, 1 ], "end": [ 657, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.prevn", "code": "def prevn : Iterator → Nat → Iterator\n | it, 0 => it\n | it, i+1 => prevn it.prev i", "start": [ 659, 1 ], "end": [ 664, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.offsetOfPosAux", "code": "def offsetOfPosAux (s : String) (pos : Pos) (i : Pos) (offset : Nat) : Nat :=\n if i >= pos then offset\n else if h : s.atEnd i then\n offset\n else\n have := Nat.sub_lt_sub_left (Nat.gt_of_not_le (mt decide_eq_true h)) (lt_next s _)\n offsetOfPosAux s pos (s.next i) (offset+1)\ntermination_by s.endPos.1 - i.1", "start": [ 667, 1 ], "end": [ 674, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.offsetOfPos", "code": "def offsetOfPos (s : String) (pos : Pos) : Nat :=\n offsetOfPosAux s pos 0 0", "start": [ 676, 1 ], "end": [ 677, 27 ], "kind": "commanddeclaration" }, { "full_name": "String.foldlAux", "code": "@[specialize] def foldlAux {α : Type u} (f : α → Char → α) (s : String) (stopPos : Pos) (i : Pos) (a : α) : α :=\n if h : i < stopPos then\n have := Nat.sub_lt_sub_left h (lt_next s i)\n foldlAux f s stopPos (s.next i) (f a (s.get i))\n else a\ntermination_by stopPos.1 - i.1", "start": [ 679, 1 ], "end": [ 684, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.foldl", "code": "@[inline] def foldl {α : Type u} (f : α → Char → α) (init : α) (s : String) : α :=\n foldlAux f s s.endPos 0 init", "start": [ 686, 1 ], "end": [ 687, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.foldrAux", "code": "@[specialize] def foldrAux {α : Type u} (f : Char → α → α) (a : α) (s : String) (i begPos : Pos) : α :=\n if h : begPos < i then\n have := String.prev_lt_of_pos s i <| mt (congrArg String.Pos.byteIdx) <|\n Ne.symm <| Nat.ne_of_lt <| Nat.lt_of_le_of_lt (Nat.zero_le _) h\n let i := s.prev i\n let a := f (s.get i) a\n foldrAux f a s i begPos\n else a\ntermination_by i.1", "start": [ 689, 1 ], "end": [ 697, 19 ], "kind": "commanddeclaration" }, { "full_name": "String.foldr", "code": "@[inline] def foldr {α : Type u} (f : Char → α → α) (init : α) (s : String) : α :=\n foldrAux f init s s.endPos 0", "start": [ 699, 1 ], "end": [ 700, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.anyAux", "code": "@[specialize] def anyAux (s : String) (stopPos : Pos) (p : Char → Bool) (i : Pos) : Bool :=\n if h : i < stopPos then\n if p (s.get i) then true\n else\n have := Nat.sub_lt_sub_left h (lt_next s i)\n anyAux s stopPos p (s.next i)\n else false\ntermination_by stopPos.1 - i.1", "start": [ 702, 1 ], "end": [ 709, 31 ], "kind": "commanddeclaration" }, { "full_name": "String.any", "code": "@[inline] def any (s : String) (p : Char → Bool) : Bool :=\n anyAux s s.endPos p 0", "start": [ 711, 1 ], "end": [ 712, 24 ], "kind": "commanddeclaration" }, { "full_name": "String.all", "code": "@[inline] def all (s : String) (p : Char → Bool) : Bool :=\n !s.any (fun c => !p c)", "start": [ 714, 1 ], "end": [ 715, 25 ], "kind": "commanddeclaration" }, { "full_name": "String.contains", "code": "def contains (s : String) (c : Char) : Bool :=\ns.any (fun a => a == c)", "start": [ 717, 1 ], "end": [ 718, 24 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8SetAux_of_gt", "code": "theorem utf8SetAux_of_gt (c' : Char) : ∀ (cs : List Char) {i p : Pos}, i > p → utf8SetAux c' cs i p = cs", "start": [ 720, 1 ], "end": [ 724, 53 ], "kind": "commanddeclaration" }, { "full_name": "String.set_next_add", "code": "theorem set_next_add (s : String) (i : Pos) (c : Char) (b₁ b₂)\n (h : (s.next i).1 + b₁ = s.endPos.1 + b₂) :\n ((s.set i c).next i).1 + b₁ = (s.set i c).endPos.1 + b₂", "start": [ 726, 1 ], "end": [ 744, 24 ], "kind": "commanddeclaration" }, { "full_name": "String.mapAux_lemma", "code": "theorem mapAux_lemma (s : String) (i : Pos) (c : Char) (h : ¬s.atEnd i) :\n (s.set i c).endPos.1 - ((s.set i c).next i).1 < s.endPos.1 - i.1", "start": [ 746, 1 ], "end": [ 759, 64 ], "kind": "commanddeclaration" }, { "full_name": "String.mapAux", "code": "@[specialize] def mapAux (f : Char → Char) (i : Pos) (s : String) : String :=\n if h : s.atEnd i then s\n else\n let c := f (s.get i)\n have := mapAux_lemma s i c h\n let s := s.set i c\n mapAux f (s.next i) s\ntermination_by s.endPos.1 - i.1", "start": [ 761, 1 ], "end": [ 768, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.map", "code": "@[inline] def map (f : Char → Char) (s : String) : String :=\n mapAux f 0 s", "start": [ 770, 1 ], "end": [ 771, 15 ], "kind": "commanddeclaration" }, { "full_name": "String.isNat", "code": "def isNat (s : String) : Bool :=\n !s.isEmpty && s.all (·.isDigit)", "start": [ 773, 1 ], "end": [ 774, 34 ], "kind": "commanddeclaration" }, { "full_name": "String.toNat?", "code": "def toNat? (s : String) : Option Nat :=\n if s.isNat then\n some <| s.foldl (fun n c => n*10 + (c.toNat - '0'.toNat)) 0\n else\n none", "start": [ 776, 1 ], "end": [ 780, 9 ], "kind": "commanddeclaration" }, { "full_name": "String.substrEq", "code": "def substrEq (s1 : String) (off1 : String.Pos) (s2 : String) (off2 : String.Pos) (sz : Nat) : Bool :=\n off1.byteIdx + sz ≤ s1.endPos.byteIdx && off2.byteIdx + sz ≤ s2.endPos.byteIdx && loop off1 off2 { byteIdx := off1.byteIdx + sz }\nwhere\n loop (off1 off2 stop1 : Pos) :=\n if _h : off1.byteIdx < stop1.byteIdx then\n let c₁ := s1.get off1\n let c₂ := s2.get off2\n c₁ == c₂ && loop (off1 + c₁) (off2 + c₂) stop1\n else true\n termination_by stop1.1 - off1.1\n decreasing_by\n have := Nat.sub_lt_sub_left _h (Nat.add_lt_add_left c₁.utf8Size_pos off1.1)\n decreasing_tactic", "start": [ 782, 1 ], "end": [ 797, 22 ], "kind": "commanddeclaration" }, { "full_name": "String.isPrefixOf", "code": "def isPrefixOf (p : String) (s : String) : Bool :=\n substrEq p 0 s 0 p.endPos.byteIdx", "start": [ 799, 1 ], "end": [ 801, 36 ], "kind": "commanddeclaration" }, { "full_name": "String.replace", "code": "def replace (s pattern replacement : String) : String :=\n if h : pattern.endPos.1 = 0 then s\n else\n have hPatt := Nat.zero_lt_of_ne_zero h\n let rec loop (acc : String) (accStop pos : String.Pos) :=\n if h : pos.byteIdx + pattern.endPos.byteIdx > s.endPos.byteIdx then\n acc ++ s.extract accStop s.endPos\n else\n have := Nat.lt_of_lt_of_le (Nat.add_lt_add_left hPatt _) (Nat.ge_of_not_lt h)\n if s.substrEq pos pattern 0 pattern.endPos.byteIdx then\n have := Nat.sub_lt_sub_left this (Nat.add_lt_add_left hPatt _)\n loop (acc ++ s.extract accStop pos ++ replacement) (pos + pattern) (pos + pattern)\n else\n have := Nat.sub_lt_sub_left this (lt_next s pos)\n loop acc accStop (s.next pos)\n termination_by s.endPos.1 - pos.1\n loop \"\" 0 0", "start": [ 803, 1 ], "end": [ 820, 16 ], "kind": "commanddeclaration" }, { "full_name": "String.findLineStart", "code": "def findLineStart (s : String) (pos : String.Pos) : String.Pos :=\n match s.revFindAux (· = '\\n') pos with\n | none => 0\n | some n => ⟨n.byteIdx + 1⟩", "start": [ 822, 1 ], "end": [ 826, 30 ], "kind": "commanddeclaration" }, { "full_name": "Substring.isEmpty", "code": "@[inline] def isEmpty (ss : Substring) : Bool :=\n ss.bsize == 0", "start": [ 832, 1 ], "end": [ 833, 16 ], "kind": "commanddeclaration" }, { "full_name": "Substring.toString", "code": "@[inline] def toString : Substring → String\n | ⟨s, b, e⟩ => s.extract b e", "start": [ 835, 1 ], "end": [ 836, 31 ], "kind": "commanddeclaration" }, { "full_name": "Substring.toIterator", "code": "@[inline] def toIterator : Substring → String.Iterator\n | ⟨s, b, _⟩ => ⟨s, b⟩", "start": [ 838, 1 ], "end": [ 839, 24 ], "kind": "commanddeclaration" }, { "full_name": "Substring.get", "code": "@[inline] def get : Substring → String.Pos → Char\n | ⟨s, b, _⟩, p => s.get (b+p)", "start": [ 841, 1 ], "end": [ 843, 32 ], "kind": "commanddeclaration" }, { "full_name": "Substring.next", "code": "@[inline] def next : Substring → String.Pos → String.Pos\n | ⟨s, b, e⟩, p =>\n let absP := b+p\n if absP = e then p else { byteIdx := (s.next absP).byteIdx - b.byteIdx }", "start": [ 845, 1 ], "end": [ 850, 77 ], "kind": "commanddeclaration" }, { "full_name": "Substring.lt_next", "code": "theorem lt_next (s : Substring) (i : String.Pos) (h : i.1 < s.bsize) :\n i.1 < (s.next i).1", "start": [ 852, 1 ], "end": [ 859, 42 ], "kind": "commanddeclaration" }, { "full_name": "Substring.prev", "code": "@[inline] def prev : Substring → String.Pos → String.Pos\n | ⟨s, b, _⟩, p =>\n let absP := b+p\n if absP = b then p else { byteIdx := (s.prev absP).byteIdx - b.byteIdx }", "start": [ 861, 1 ], "end": [ 866, 77 ], "kind": "commanddeclaration" }, { "full_name": "Substring.nextn", "code": "def nextn : Substring → Nat → String.Pos → String.Pos\n | _, 0, p => p\n | ss, i+1, p => ss.nextn i (ss.next p)", "start": [ 868, 1 ], "end": [ 870, 41 ], "kind": "commanddeclaration" }, { "full_name": "Substring.prevn", "code": "def prevn : Substring → Nat → String.Pos → String.Pos\n | _, 0, p => p\n | ss, i+1, p => ss.prevn i (ss.prev p)", "start": [ 872, 1 ], "end": [ 874, 41 ], "kind": "commanddeclaration" }, { "full_name": "Substring.front", "code": "@[inline] def front (s : Substring) : Char :=\n s.get 0", "start": [ 876, 1 ], "end": [ 877, 10 ], "kind": "commanddeclaration" }, { "full_name": "Substring.posOf", "code": "@[inline] def posOf (s : Substring) (c : Char) : String.Pos :=\n match s with\n | ⟨s, b, e⟩ => { byteIdx := (String.posOfAux s c e b).byteIdx - b.byteIdx }", "start": [ 879, 1 ], "end": [ 883, 78 ], "kind": "commanddeclaration" }, { "full_name": "Substring.drop", "code": "@[inline] def drop : Substring → Nat → Substring\n | ss@⟨s, b, e⟩, n => ⟨s, b + ss.nextn n 0, e⟩", "start": [ 885, 1 ], "end": [ 886, 48 ], "kind": "commanddeclaration" }, { "full_name": "Substring.dropRight", "code": "@[inline] def dropRight : Substring → Nat → Substring\n | ss@⟨s, b, _⟩, n => ⟨s, b, b + ss.prevn n ⟨ss.bsize⟩⟩", "start": [ 888, 1 ], "end": [ 889, 57 ], "kind": "commanddeclaration" }, { "full_name": "Substring.take", "code": "@[inline] def take : Substring → Nat → Substring\n | ss@⟨s, b, _⟩, n => ⟨s, b, b + ss.nextn n 0⟩", "start": [ 891, 1 ], "end": [ 892, 48 ], "kind": "commanddeclaration" }, { "full_name": "Substring.takeRight", "code": "@[inline] def takeRight : Substring → Nat → Substring\n | ss@⟨s, b, e⟩, n => ⟨s, b + ss.prevn n ⟨ss.bsize⟩, e⟩", "start": [ 894, 1 ], "end": [ 895, 57 ], "kind": "commanddeclaration" }, { "full_name": "Substring.atEnd", "code": "@[inline] def atEnd : Substring → String.Pos → Bool\n | ⟨_, b, e⟩, p => b + p == e", "start": [ 897, 1 ], "end": [ 898, 31 ], "kind": "commanddeclaration" }, { "full_name": "Substring.extract", "code": "@[inline] def extract : Substring → String.Pos → String.Pos → Substring\n | ⟨s, b, e⟩, b', e' => if b' ≥ e' then ⟨\"\", 0, 0⟩ else ⟨s, e.min (b+b'), e.min (b+e')⟩", "start": [ 900, 1 ], "end": [ 901, 89 ], "kind": "commanddeclaration" }, { "full_name": "Substring.splitOn", "code": "def splitOn (s : Substring) (sep : String := \" \") : List Substring :=\n if sep == \"\" then\n [s]\n else\n let rec loop (b i j : String.Pos) (r : List Substring) : List Substring :=\n if h : i.byteIdx < s.bsize then\n have := Nat.sub_lt_sub_left h (lt_next s i h)\n if s.get i == sep.get j then\n let i := s.next i\n let j := sep.next j\n if sep.atEnd j then\n loop i i 0 (s.extract b (i-j) :: r)\n else\n loop b i j r\n else\n loop b (s.next i) 0 r\n else\n let r := if sep.atEnd j then\n \"\".toSubstring :: s.extract b (i-j) :: r\n else\n s.extract b i :: r\n r.reverse\n termination_by s.bsize - i.1\n loop 0 0 0 []", "start": [ 903, 1 ], "end": [ 926, 18 ], "kind": "commanddeclaration" }, { "full_name": "Substring.foldl", "code": "@[inline] def foldl {α : Type u} (f : α → Char → α) (init : α) (s : Substring) : α :=\n match s with\n | ⟨s, b, e⟩ => String.foldlAux f s e b init", "start": [ 928, 1 ], "end": [ 930, 46 ], "kind": "commanddeclaration" }, { "full_name": "Substring.foldr", "code": "@[inline] def foldr {α : Type u} (f : Char → α → α) (init : α) (s : Substring) : α :=\n match s with\n | ⟨s, b, e⟩ => String.foldrAux f init s e b", "start": [ 932, 1 ], "end": [ 934, 46 ], "kind": "commanddeclaration" }, { "full_name": "Substring.any", "code": "@[inline] def any (s : Substring) (p : Char → Bool) : Bool :=\n match s with\n | ⟨s, b, e⟩ => String.anyAux s e p b", "start": [ 936, 1 ], "end": [ 938, 39 ], "kind": "commanddeclaration" }, { "full_name": "Substring.all", "code": "@[inline] def all (s : Substring) (p : Char → Bool) : Bool :=\n !s.any (fun c => !p c)", "start": [ 940, 1 ], "end": [ 941, 25 ], "kind": "commanddeclaration" }, { "full_name": "Substring.contains", "code": "def contains (s : Substring) (c : Char) : Bool :=\n s.any (fun a => a == c)", "start": [ 943, 1 ], "end": [ 944, 26 ], "kind": "commanddeclaration" }, { "full_name": "Substring.takeWhileAux", "code": "@[specialize] def takeWhileAux (s : String) (stopPos : String.Pos) (p : Char → Bool) (i : String.Pos) : String.Pos :=\n if h : i < stopPos then\n if p (s.get i) then\n have := Nat.sub_lt_sub_left h (String.lt_next s i)\n takeWhileAux s stopPos p (s.next i)\n else i\n else i\ntermination_by stopPos.1 - i.1", "start": [ 946, 1 ], "end": [ 953, 31 ], "kind": "commanddeclaration" }, { "full_name": "Substring.takeWhile", "code": "@[inline] def takeWhile : Substring → (Char → Bool) → Substring\n | ⟨s, b, e⟩, p =>\n let e := takeWhileAux s e p b;\n ⟨s, b, e⟩", "start": [ 955, 1 ], "end": [ 958, 14 ], "kind": "commanddeclaration" }, { "full_name": "Substring.dropWhile", "code": "@[inline] def dropWhile : Substring → (Char → Bool) → Substring\n | ⟨s, b, e⟩, p =>\n let b := takeWhileAux s e p b;\n ⟨s, b, e⟩", "start": [ 960, 1 ], "end": [ 963, 14 ], "kind": "commanddeclaration" }, { "full_name": "Substring.takeRightWhileAux", "code": "@[specialize] def takeRightWhileAux (s : String) (begPos : String.Pos) (p : Char → Bool) (i : String.Pos) : String.Pos :=\n if h : begPos < i then\n have := String.prev_lt_of_pos s i <| mt (congrArg String.Pos.byteIdx) <|\n Ne.symm <| Nat.ne_of_lt <| Nat.lt_of_le_of_lt (Nat.zero_le _) h\n let i' := s.prev i\n let c := s.get i'\n if !p c then i\n else takeRightWhileAux s begPos p i'\n else i\ntermination_by i.1", "start": [ 965, 1 ], "end": [ 974, 19 ], "kind": "commanddeclaration" }, { "full_name": "Substring.takeRightWhile", "code": "@[inline] def takeRightWhile : Substring → (Char → Bool) → Substring\n | ⟨s, b, e⟩, p =>\n let b := takeRightWhileAux s b p e\n ⟨s, b, e⟩", "start": [ 976, 1 ], "end": [ 979, 14 ], "kind": "commanddeclaration" }, { "full_name": "Substring.dropRightWhile", "code": "@[inline] def dropRightWhile : Substring → (Char → Bool) → Substring\n | ⟨s, b, e⟩, p =>\n let e := takeRightWhileAux s b p e\n ⟨s, b, e⟩", "start": [ 981, 1 ], "end": [ 984, 14 ], "kind": "commanddeclaration" }, { "full_name": "Substring.trimLeft", "code": "@[inline] def trimLeft (s : Substring) : Substring :=\n s.dropWhile Char.isWhitespace", "start": [ 986, 1 ], "end": [ 987, 32 ], "kind": "commanddeclaration" }, { "full_name": "Substring.trimRight", "code": "@[inline] def trimRight (s : Substring) : Substring :=\n s.dropRightWhile Char.isWhitespace", "start": [ 989, 1 ], "end": [ 990, 37 ], "kind": "commanddeclaration" }, { "full_name": "Substring.trim", "code": "@[inline] def trim : Substring → Substring\n | ⟨s, b, e⟩ =>\n let b := takeWhileAux s e Char.isWhitespace b\n let e := takeRightWhileAux s b Char.isWhitespace e\n ⟨s, b, e⟩", "start": [ 992, 1 ], "end": [ 996, 14 ], "kind": "commanddeclaration" }, { "full_name": "Substring.isNat", "code": "def isNat (s : Substring) : Bool :=\n s.all fun c => c.isDigit", "start": [ 998, 1 ], "end": [ 999, 27 ], "kind": "commanddeclaration" }, { "full_name": "Substring.toNat?", "code": "def toNat? (s : Substring) : Option Nat :=\n if s.isNat then\n some <| s.foldl (fun n c => n*10 + (c.toNat - '0'.toNat)) 0\n else\n none", "start": [ 1001, 1 ], "end": [ 1005, 9 ], "kind": "commanddeclaration" }, { "full_name": "Substring.beq", "code": "def beq (ss1 ss2 : Substring) : Bool :=\n ss1.bsize == ss2.bsize && ss1.str.substrEq ss1.startPos ss2.str ss2.startPos ss1.bsize", "start": [ 1007, 1 ], "end": [ 1008, 89 ], "kind": "commanddeclaration" }, { "full_name": "Substring.hasBeq", "code": "instance hasBeq : BEq Substring := ⟨beq⟩", "start": [ 1010, 1 ], "end": [ 1010, 41 ], "kind": "commanddeclaration" }, { "full_name": "Substring.sameAs", "code": "def sameAs (ss1 ss2 : Substring) : Bool :=\n ss1.startPos == ss2.startPos && ss1 == ss2", "start": [ 1012, 1 ], "end": [ 1014, 45 ], "kind": "commanddeclaration" }, { "full_name": "String.drop", "code": "def drop (s : String) (n : Nat) : String :=\n (s.toSubstring.drop n).toString", "start": [ 1020, 1 ], "end": [ 1021, 34 ], "kind": "commanddeclaration" }, { "full_name": "String.dropRight", "code": "def dropRight (s : String) (n : Nat) : String :=\n (s.toSubstring.dropRight n).toString", "start": [ 1023, 1 ], "end": [ 1024, 39 ], "kind": "commanddeclaration" }, { "full_name": "String.take", "code": "def take (s : String) (n : Nat) : String :=\n (s.toSubstring.take n).toString", "start": [ 1026, 1 ], "end": [ 1027, 34 ], "kind": "commanddeclaration" }, { "full_name": "String.takeRight", "code": "def takeRight (s : String) (n : Nat) : String :=\n (s.toSubstring.takeRight n).toString", "start": [ 1029, 1 ], "end": [ 1030, 39 ], "kind": "commanddeclaration" }, { "full_name": "String.takeWhile", "code": "def takeWhile (s : String) (p : Char → Bool) : String :=\n (s.toSubstring.takeWhile p).toString", "start": [ 1032, 1 ], "end": [ 1033, 39 ], "kind": "commanddeclaration" }, { "full_name": "String.dropWhile", "code": "def dropWhile (s : String) (p : Char → Bool) : String :=\n (s.toSubstring.dropWhile p).toString", "start": [ 1035, 1 ], "end": [ 1036, 39 ], "kind": "commanddeclaration" }, { "full_name": "String.takeRightWhile", "code": "def takeRightWhile (s : String) (p : Char → Bool) : String :=\n (s.toSubstring.takeRightWhile p).toString", "start": [ 1038, 1 ], "end": [ 1039, 44 ], "kind": "commanddeclaration" }, { "full_name": "String.dropRightWhile", "code": "def dropRightWhile (s : String) (p : Char → Bool) : String :=\n (s.toSubstring.dropRightWhile p).toString", "start": [ 1041, 1 ], "end": [ 1042, 44 ], "kind": "commanddeclaration" }, { "full_name": "String.startsWith", "code": "def startsWith (s pre : String) : Bool :=\n s.toSubstring.take pre.length == pre.toSubstring", "start": [ 1044, 1 ], "end": [ 1045, 51 ], "kind": "commanddeclaration" }, { "full_name": "String.endsWith", "code": "def endsWith (s post : String) : Bool :=\n s.toSubstring.takeRight post.length == post.toSubstring", "start": [ 1047, 1 ], "end": [ 1048, 58 ], "kind": "commanddeclaration" }, { "full_name": "String.trimRight", "code": "def trimRight (s : String) : String :=\n s.toSubstring.trimRight.toString", "start": [ 1050, 1 ], "end": [ 1051, 35 ], "kind": "commanddeclaration" }, { "full_name": "String.trimLeft", "code": "def trimLeft (s : String) : String :=\n s.toSubstring.trimLeft.toString", "start": [ 1053, 1 ], "end": [ 1054, 34 ], "kind": "commanddeclaration" }, { "full_name": "String.trim", "code": "def trim (s : String) : String :=\n s.toSubstring.trim.toString", "start": [ 1056, 1 ], "end": [ 1057, 30 ], "kind": "commanddeclaration" }, { "full_name": "String.nextWhile", "code": "@[inline] def nextWhile (s : String) (p : Char → Bool) (i : String.Pos) : String.Pos :=\n Substring.takeWhileAux s s.endPos p i", "start": [ 1059, 1 ], "end": [ 1060, 40 ], "kind": "commanddeclaration" }, { "full_name": "String.nextUntil", "code": "@[inline] def nextUntil (s : String) (p : Char → Bool) (i : String.Pos) : String.Pos :=\n nextWhile s (fun c => !p c) i", "start": [ 1062, 1 ], "end": [ 1063, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.toUpper", "code": "def toUpper (s : String) : String :=\n s.map Char.toUpper", "start": [ 1065, 1 ], "end": [ 1066, 21 ], "kind": "commanddeclaration" }, { "full_name": "String.toLower", "code": "def toLower (s : String) : String :=\n s.map Char.toLower", "start": [ 1068, 1 ], "end": [ 1069, 21 ], "kind": "commanddeclaration" }, { "full_name": "String.capitalize", "code": "def capitalize (s : String) :=\n s.set 0 <| s.get 0 |>.toUpper", "start": [ 1071, 1 ], "end": [ 1072, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.decapitalize", "code": "def decapitalize (s : String) :=\n s.set 0 <| s.get 0 |>.toLower", "start": [ 1074, 1 ], "end": [ 1075, 32 ], "kind": "commanddeclaration" }, { "full_name": "Char.toString", "code": "protected def toString (c : Char) : String :=\n String.singleton c", "start": [ 1081, 1 ], "end": [ 1082, 21 ], "kind": "commanddeclaration" }, { "full_name": "Char.length_toString", "code": "@[simp] theorem length_toString (c : Char) : c.toString.length = 1", "start": [ 1084, 1 ], "end": [ 1084, 74 ], "kind": "commanddeclaration" }, { "full_name": "String.ext", "code": "theorem ext {s₁ s₂ : String} (h : s₁.data = s₂.data) : s₁ = s₂", "start": [ 1090, 1 ], "end": [ 1091, 53 ], "kind": "commanddeclaration" }, { "full_name": "String.ext_iff", "code": "theorem ext_iff {s₁ s₂ : String} : s₁ = s₂ ↔ s₁.data = s₂.data", "start": [ 1093, 1 ], "end": [ 1093, 90 ], "kind": "commanddeclaration" }, { "full_name": "String.default_eq", "code": "@[simp] theorem default_eq : default = \"\"", "start": [ 1095, 1 ], "end": [ 1095, 49 ], "kind": "commanddeclaration" }, { "full_name": "String.length_mk", "code": "@[simp] theorem length_mk (s : List Char) : (String.mk s).length = s.length", "start": [ 1097, 1 ], "end": [ 1097, 83 ], "kind": "commanddeclaration" }, { "full_name": "String.length_empty", "code": "@[simp] theorem length_empty : \"\".length = 0", "start": [ 1099, 1 ], "end": [ 1099, 52 ], "kind": "commanddeclaration" }, { "full_name": "String.length_singleton", "code": "@[simp] theorem length_singleton (c : Char) : (String.singleton c).length = 1", "start": [ 1101, 1 ], "end": [ 1101, 85 ], "kind": "commanddeclaration" }, { "full_name": "String.length_push", "code": "@[simp] theorem length_push (c : Char) : (String.push s c).length = s.length + 1", "start": [ 1103, 1 ], "end": [ 1105, 6 ], "kind": "commanddeclaration" }, { "full_name": "String.length_pushn", "code": "@[simp] theorem length_pushn (c : Char) (n : Nat) : (pushn s c n).length = s.length + n", "start": [ 1107, 1 ], "end": [ 1108, 68 ], "kind": "commanddeclaration" }, { "full_name": "String.length_append", "code": "@[simp] theorem length_append (s t : String) : (s ++ t).length = s.length + t.length", "start": [ 1110, 1 ], "end": [ 1111, 49 ], "kind": "commanddeclaration" }, { "full_name": "String.data_push", "code": "@[simp] theorem data_push (s : String) (c : Char) : (s.push c).data = s.data ++ [c]", "start": [ 1113, 1 ], "end": [ 1113, 91 ], "kind": "commanddeclaration" }, { "full_name": "String.data_append", "code": "@[simp] theorem data_append (s t : String) : (s ++ t).data = s.data ++ t.data", "start": [ 1115, 1 ], "end": [ 1115, 85 ], "kind": "commanddeclaration" }, { "full_name": "String.lt_iff", "code": "theorem lt_iff (s t : String) : s < t ↔ s.data < t.data", "start": [ 1119, 1 ], "end": [ 1119, 64 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.byteIdx_zero", "code": "@[simp] theorem byteIdx_zero : (0 : Pos).byteIdx = 0", "start": [ 1123, 1 ], "end": [ 1123, 60 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.byteIdx_mk", "code": "theorem byteIdx_mk (n : Nat) : byteIdx ⟨n⟩ = n", "start": [ 1125, 1 ], "end": [ 1125, 54 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.mk_zero", "code": "@[simp] theorem mk_zero : ⟨0⟩ = (0 : Pos)", "start": [ 1127, 1 ], "end": [ 1127, 49 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.mk_byteIdx", "code": "@[simp] theorem mk_byteIdx (p : Pos) : ⟨p.byteIdx⟩ = p", "start": [ 1129, 1 ], "end": [ 1129, 62 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.ext", "code": "theorem ext {i₁ i₂ : Pos} (h : i₁.byteIdx = i₂.byteIdx) : i₁ = i₂", "start": [ 1131, 1 ], "end": [ 1132, 56 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.ext_iff", "code": "theorem ext_iff {i₁ i₂ : Pos} : i₁ = i₂ ↔ i₁.byteIdx = i₂.byteIdx", "start": [ 1134, 1 ], "end": [ 1134, 93 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.add_byteIdx", "code": "@[simp] theorem add_byteIdx (p₁ p₂ : Pos) : (p₁ + p₂).byteIdx = p₁.byteIdx + p₂.byteIdx", "start": [ 1136, 1 ], "end": [ 1136, 95 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.add_eq", "code": "theorem add_eq (p₁ p₂ : Pos) : p₁ + p₂ = ⟨p₁.byteIdx + p₂.byteIdx⟩", "start": [ 1138, 1 ], "end": [ 1138, 74 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.sub_byteIdx", "code": "@[simp] theorem sub_byteIdx (p₁ p₂ : Pos) : (p₁ - p₂).byteIdx = p₁.byteIdx - p₂.byteIdx", "start": [ 1140, 1 ], "end": [ 1140, 95 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.sub_eq", "code": "theorem sub_eq (p₁ p₂ : Pos) : p₁ - p₂ = ⟨p₁.byteIdx - p₂.byteIdx⟩", "start": [ 1142, 1 ], "end": [ 1142, 74 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.addChar_byteIdx", "code": "@[simp] theorem addChar_byteIdx (p : Pos) (c : Char) : (p + c).byteIdx = p.byteIdx + c.utf8Size", "start": [ 1144, 1 ], "end": [ 1144, 103 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.addChar_eq", "code": "theorem addChar_eq (p : Pos) (c : Char) : p + c = ⟨p.byteIdx + c.utf8Size⟩", "start": [ 1146, 1 ], "end": [ 1146, 82 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.zero_addChar_byteIdx", "code": "theorem zero_addChar_byteIdx (c : Char) : ((0 : Pos) + c).byteIdx = c.utf8Size", "start": [ 1148, 1 ], "end": [ 1149, 58 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.zero_addChar_eq", "code": "theorem zero_addChar_eq (c : Char) : (0 : Pos) + c = ⟨c.utf8Size⟩", "start": [ 1151, 1 ], "end": [ 1151, 100 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.addChar_right_comm", "code": "theorem addChar_right_comm (p : Pos) (c₁ c₂ : Char) : p + c₁ + c₂ = p + c₂ + c₁", "start": [ 1153, 1 ], "end": [ 1156, 27 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.ne_of_lt", "code": "theorem ne_of_lt {i₁ i₂ : Pos} (h : i₁ < i₂) : i₁ ≠ i₂", "start": [ 1158, 1 ], "end": [ 1158, 88 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.ne_of_gt", "code": "theorem ne_of_gt {i₁ i₂ : Pos} (h : i₁ < i₂) : i₂ ≠ i₁", "start": [ 1160, 1 ], "end": [ 1160, 76 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.addString_byteIdx", "code": "@[simp] theorem addString_byteIdx (p : Pos) (s : String) :\n (p + s).byteIdx = p.byteIdx + s.utf8ByteSize", "start": [ 1162, 1 ], "end": [ 1163, 56 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.addString_eq", "code": "theorem addString_eq (p : Pos) (s : String) : p + s = ⟨p.byteIdx + s.utf8ByteSize⟩", "start": [ 1165, 1 ], "end": [ 1165, 90 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.zero_addString_byteIdx", "code": "theorem zero_addString_byteIdx (s : String) : ((0 : Pos) + s).byteIdx = s.utf8ByteSize", "start": [ 1167, 1 ], "end": [ 1168, 60 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.zero_addString_eq", "code": "theorem zero_addString_eq (s : String) : (0 : Pos) + s = ⟨s.utf8ByteSize⟩", "start": [ 1170, 1 ], "end": [ 1171, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.le_iff", "code": "theorem le_iff {i₁ i₂ : Pos} : i₁ ≤ i₂ ↔ i₁.byteIdx ≤ i₂.byteIdx", "start": [ 1173, 1 ], "end": [ 1173, 73 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.mk_le_mk", "code": "@[simp] theorem mk_le_mk {i₁ i₂ : Nat} : Pos.mk i₁ ≤ Pos.mk i₂ ↔ i₁ ≤ i₂", "start": [ 1175, 1 ], "end": [ 1175, 81 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.lt_iff", "code": "theorem lt_iff {i₁ i₂ : Pos} : i₁ < i₂ ↔ i₁.byteIdx < i₂.byteIdx", "start": [ 1177, 1 ], "end": [ 1177, 73 ], "kind": "commanddeclaration" }, { "full_name": "String.Pos.mk_lt_mk", "code": "@[simp] theorem mk_lt_mk {i₁ i₂ : Nat} : Pos.mk i₁ < Pos.mk i₂ ↔ i₁ < i₂", "start": [ 1179, 1 ], "end": [ 1179, 81 ], "kind": "commanddeclaration" }, { "full_name": "String.get!_eq_get", "code": "@[simp] theorem get!_eq_get (s : String) (p : Pos) : get! s p = get s p", "start": [ 1183, 1 ], "end": [ 1183, 79 ], "kind": "commanddeclaration" }, { "full_name": "String.lt_next'", "code": "theorem lt_next' (s : String) (p : Pos) : p < next s p", "start": [ 1185, 1 ], "end": [ 1185, 69 ], "kind": "commanddeclaration" }, { "full_name": "String.prev_zero", "code": "@[simp] theorem prev_zero (s : String) : prev s 0 = 0", "start": [ 1187, 1 ], "end": [ 1187, 61 ], "kind": "commanddeclaration" }, { "full_name": "String.get'_eq", "code": "@[simp] theorem get'_eq (s : String) (p : Pos) (h) : get' s p h = get s p", "start": [ 1189, 1 ], "end": [ 1189, 81 ], "kind": "commanddeclaration" }, { "full_name": "String.next'_eq", "code": "@[simp] theorem next'_eq (s : String) (p : Pos) (h) : next' s p h = next s p", "start": [ 1191, 1 ], "end": [ 1191, 84 ], "kind": "commanddeclaration" }, { "full_name": "String.singleton_eq", "code": "theorem singleton_eq (c : Char) : singleton c = ⟨[c]⟩", "start": [ 1197, 1 ], "end": [ 1197, 61 ], "kind": "commanddeclaration" }, { "full_name": "String.data_singleton", "code": "@[simp] theorem data_singleton (c : Char) : (singleton c).data = [c]", "start": [ 1199, 1 ], "end": [ 1199, 76 ], "kind": "commanddeclaration" }, { "full_name": "String.append_empty", "code": "@[simp] theorem append_empty (s : String) : s ++ \"\" = s", "start": [ 1201, 1 ], "end": [ 1201, 83 ], "kind": "commanddeclaration" }, { "full_name": "String.empty_append", "code": "@[simp] theorem empty_append (s : String) : \"\" ++ s = s", "start": [ 1203, 1 ], "end": [ 1203, 63 ], "kind": "commanddeclaration" }, { "full_name": "String.append_assoc", "code": "theorem append_assoc (s₁ s₂ s₃ : String) : (s₁ ++ s₂) ++ s₃ = s₁ ++ (s₂ ++ s₃)", "start": [ 1205, 1 ], "end": [ 1206, 29 ], "kind": "commanddeclaration" }, { "full_name": "Substring.prev_zero", "code": "@[simp] theorem prev_zero (s : Substring) : s.prev 0 = 0", "start": [ 1214, 1 ], "end": [ 1214, 105 ], "kind": "commanddeclaration" }, { "full_name": "Substring.prevn_zero", "code": "@[simp] theorem prevn_zero (s : Substring) : ∀ n, s.prevn n 0 = 0", "start": [ 1216, 1 ], "end": [ 1218, 43 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/State.lean
[ ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Except.lean" ]
[ { "full_name": "StateT", "code": "def StateT (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=\n σ → m (α × σ)", "start": [ 14, 1 ], "end": [ 15, 16 ], "kind": "commanddeclaration" }, { "full_name": "StateT.run", "code": "@[always_inline, inline]\ndef StateT.run {σ : Type u} {m : Type u → Type v} {α : Type u} (x : StateT σ m α) (s : σ) : m (α × σ) :=\n x s", "start": [ 17, 1 ], "end": [ 19, 6 ], "kind": "commanddeclaration" }, { "full_name": "StateT.run'", "code": "@[always_inline, inline]\ndef StateT.run' {σ : Type u} {m : Type u → Type v} [Functor m] {α : Type u} (x : StateT σ m α) (s : σ) : m α :=\n (·.1) <$> x s", "start": [ 21, 1 ], "end": [ 23, 16 ], "kind": "commanddeclaration" }, { "full_name": "StateM", "code": "@[reducible]\ndef StateM (σ α : Type u) : Type u := StateT σ Id α", "start": [ 25, 1 ], "end": [ 26, 52 ], "kind": "commanddeclaration" }, { "full_name": "StateT.pure", "code": "@[always_inline, inline]\nprotected def pure (a : α) : StateT σ m α :=\n fun s => pure (a, s)", "start": [ 41, 1 ], "end": [ 43, 23 ], "kind": "commanddeclaration" }, { "full_name": "StateT.bind", "code": "@[always_inline, inline]\nprotected def bind (x : StateT σ m α) (f : α → StateT σ m β) : StateT σ m β :=\n fun s => do let (a, s) ← x s; f a s", "start": [ 45, 1 ], "end": [ 47, 38 ], "kind": "commanddeclaration" }, { "full_name": "StateT.map", "code": "@[always_inline, inline]\nprotected def map (f : α → β) (x : StateT σ m α) : StateT σ m β :=\n fun s => do let (a, s) ← x s; pure (f a, s)", "start": [ 49, 1 ], "end": [ 51, 46 ], "kind": "commanddeclaration" }, { "full_name": "StateT.orElse", "code": "@[always_inline, inline]\nprotected def orElse [Alternative m] {α : Type u} (x₁ : StateT σ m α) (x₂ : Unit → StateT σ m α) : StateT σ m α :=\n fun s => x₁ s <|> x₂ () s", "start": [ 59, 1 ], "end": [ 61, 28 ], "kind": "commanddeclaration" }, { "full_name": "StateT.failure", "code": "@[always_inline, inline]\nprotected def failure [Alternative m] {α : Type u} : StateT σ m α :=\n fun _ => failure", "start": [ 63, 1 ], "end": [ 65, 19 ], "kind": "commanddeclaration" }, { "full_name": "StateT.get", "code": "@[always_inline, inline]\nprotected def get : StateT σ m σ :=\n fun s => pure (s, s)", "start": [ 71, 1 ], "end": [ 73, 23 ], "kind": "commanddeclaration" }, { "full_name": "StateT.set", "code": "@[always_inline, inline]\nprotected def set : σ → StateT σ m PUnit :=\n fun s' _ => pure (⟨⟩, s')", "start": [ 75, 1 ], "end": [ 77, 28 ], "kind": "commanddeclaration" }, { "full_name": "StateT.modifyGet", "code": "@[always_inline, inline]\nprotected def modifyGet (f : σ → α × σ) : StateT σ m α :=\n fun s => pure (f s)", "start": [ 79, 1 ], "end": [ 81, 22 ], "kind": "commanddeclaration" }, { "full_name": "StateT.lift", "code": "@[always_inline, inline]\nprotected def lift {α : Type u} (t : m α) : StateT σ m α :=\n fun s => do let a ← t; pure (a, s)", "start": [ 83, 1 ], "end": [ 85, 37 ], "kind": "commanddeclaration" }, { "full_name": "ForM.forIn", "code": "@[always_inline, inline]\ndef ForM.forIn [Monad m] [ForM (StateT β (ExceptT β m)) ρ α]\n (x : ρ) (b : β) (f : α → β → m (ForInStep β)) : m β := do\n let g a b := .mk do\n match ← f a b with\n | .yield b' => pure (.ok (⟨⟩, b'))\n | .done b' => pure (.error b')\n match ← forM (m := StateT β (ExceptT β m)) (α := α) x g |>.run b |>.run with\n | .ok a => pure a.2\n | .error a => pure a", "start": [ 101, 1 ], "end": [ 111, 23 ], "kind": "commanddeclaration" }, { "full_name": "StateT.monadControl", "code": "@[always_inline]\ninstance StateT.monadControl (σ : Type u) (m : Type u → Type v) [Monad m] : MonadControl m (StateT σ m) where\n stM := fun α => α × σ\n liftWith := fun f => do let s ← get; liftM (f (fun x => x.run s))\n restoreM := fun x => do let (a, s) ← liftM x; set s; pure a", "start": [ 123, 1 ], "end": [ 127, 62 ], "kind": "commanddeclaration" }, { "full_name": "StateT.tryFinally", "code": "@[always_inline]\ninstance StateT.tryFinally {m : Type u → Type v} {σ : Type u} [MonadFinally m] [Monad m] : MonadFinally (StateT σ m) where\n tryFinally' := fun x h s => do\n let ((a, _), (b, s'')) ← tryFinally' (x s) fun\n | some (a, s') => h (some a) s'\n | none => h none s\n pure ((a, b), s'')", "start": [ 129, 1 ], "end": [ 135, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Format/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Control/State.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean" ]
[ { "full_name": "Std.Format.FlattenBehavior", "code": "inductive Format.FlattenBehavior where\n | allOrNone\n | fill\n deriving Inhabited, BEq", "start": [ 13, 1 ], "end": [ 31, 26 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format", "code": "inductive Format where\n \n | nil : Format\n \n | line : Format\n \n | align (force : Bool) : Format\n \n | text : String → Format\n \n | nest (indent : Int) : Format → Format\n \n | append : Format → Format → Format\n \n | group : Format → (behavior : FlattenBehavior := FlattenBehavior.allOrNone) → Format\n \n | tag : Nat → Format → Format\n deriving Inhabited", "start": [ 34, 1 ], "end": [ 78, 21 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.isEmpty", "code": "def isEmpty : Format → Bool\n | nil => true\n | line => false\n | align _ => true\n | text msg => msg == \"\"\n | nest _ f => f.isEmpty\n | append f₁ f₂ => f₁.isEmpty && f₂.isEmpty\n | group f _ => f.isEmpty\n | tag _ f => f.isEmpty", "start": [ 82, 1 ], "end": [ 91, 30 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.fill", "code": "def fill (f : Format) : Format :=\n group f (behavior := FlattenBehavior.fill)", "start": [ 93, 1 ], "end": [ 95, 45 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.join", "code": "def join (xs : List Format) : Format :=\n xs.foldl (·++·) \"\"", "start": [ 100, 1 ], "end": [ 101, 21 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.isNil", "code": "def isNil : Format → Bool\n | nil => true\n | _ => false", "start": [ 103, 1 ], "end": [ 105, 17 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.SpaceResult", "code": "private structure SpaceResult where\n foundLine : Bool := false\n foundFlattenedHardLine : Bool := false\n space : Nat := 0\n deriving Inhabited", "start": [ 107, 1 ], "end": [ 111, 21 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.merge", "code": "@[inline] private def merge (w : Nat) (r₁ : SpaceResult) (r₂ : Nat → SpaceResult) : SpaceResult :=\n if r₁.space > w || r₁.foundLine then\n r₁\n else\n let r₂ := r₂ (w - r₁.space);\n { r₂ with space := r₁.space + r₂.space }", "start": [ 113, 1 ], "end": [ 118, 45 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.spaceUptoLine", "code": "private def spaceUptoLine : Format → Bool → Int → Nat → SpaceResult\n | nil, _, _, _ => {}\n | line, flatten, _, _ => if flatten then { space := 1 } else { foundLine := true }\n | align force, flatten, m, w =>\n if flatten && !force then {}\n else if w < m then\n { space := (m - w).toNat }\n else\n { foundLine := true }\n | text s, flatten, _, _ =>\n let p := s.posOf '\\n'\n let off := s.offsetOfPos p\n { foundLine := p != s.endPos, foundFlattenedHardLine := flatten && p != s.endPos, space := off }\n | append f₁ f₂, flatten, m, w => merge w (spaceUptoLine f₁ flatten m w) (spaceUptoLine f₂ flatten m)\n | nest n f, flatten, m, w => spaceUptoLine f flatten (m - n) w\n | group f _, _, m, w => spaceUptoLine f true m w\n | tag _ f, flatten, m, w => spaceUptoLine f flatten m w", "start": [ 120, 1 ], "end": [ 136, 63 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.WorkItem", "code": "private structure WorkItem where\n f : Format\n indent : Int\n activeTags : Nat", "start": [ 138, 1 ], "end": [ 141, 19 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.WorkGroup", "code": "private structure WorkGroup where\n flatten : Bool\n flb : FlattenBehavior\n items : List WorkItem", "start": [ 143, 1 ], "end": [ 146, 26 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.spaceUptoLine'", "code": "private partial def spaceUptoLine' : List WorkGroup → Nat → Nat → SpaceResult\n | [], _, _ => {}\n | { items := [], .. }::gs, col, w => spaceUptoLine' gs col w\n | g@{ items := i::is, .. }::gs, col, w =>\n merge w\n (spaceUptoLine i.f g.flatten (w + col - i.indent) w)\n (spaceUptoLine' ({ g with items := is }::gs) col)", "start": [ 148, 1 ], "end": [ 154, 56 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.MonadPrettyFormat", "code": "class MonadPrettyFormat (m : Type → Type) where\n pushOutput (s : String) : m Unit\n pushNewline (indent : Nat) : m Unit\n currColumn : m Nat\n \n startTag : Nat → m Unit\n \n endTags : Nat → m Unit", "start": [ 156, 1 ], "end": [ 164, 44 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.pushGroup", "code": "private def pushGroup (flb : FlattenBehavior) (items : List WorkItem) (gs : List WorkGroup) (w : Nat) [Monad m] [MonadPrettyFormat m] : m (List WorkGroup) := do\n let k ← currColumn\n let g := { flatten := flb == FlattenBehavior.allOrNone, flb := flb, items := items : WorkGroup }\n let r := spaceUptoLine' [g] k (w-k)\n let r' := merge (w-k) r (spaceUptoLine' gs k)\n return { g with flatten := !r.foundFlattenedHardLine && r'.space <= w-k }::gs", "start": [ 167, 1 ], "end": [ 174, 80 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.be", "code": "private partial def be (w : Nat) [Monad m] [MonadPrettyFormat m] : List WorkGroup → m Unit\n | [] => pure ()\n | { items := [], .. }::gs => be w gs\n | g@{ items := i::is, .. }::gs => do\n let gs' (is' : List WorkItem) := { g with items := is' }::gs;\n match i.f with\n | nil =>\n endTags i.activeTags\n be w (gs' is)\n | tag t f =>\n startTag t\n be w (gs' ({ i with f, activeTags := i.activeTags + 1 }::is))\n | append f₁ f₂ => be w (gs' ({ i with f := f₁, activeTags := 0 }::{ i with f := f₂ }::is))\n | nest n f => be w (gs' ({ i with f, indent := i.indent + n }::is))\n | text s =>\n let p := s.posOf '\\n'\n if p == s.endPos then\n pushOutput s\n endTags i.activeTags\n be w (gs' is)\n else\n pushOutput (s.extract {} p)\n pushNewline i.indent.toNat\n let is := { i with f := text (s.extract (s.next p) s.endPos) }::is\n pushGroup g.flb is gs w >>= be w\n | line =>\n match g.flb with\n | FlattenBehavior.allOrNone =>\n if g.flatten then\n pushOutput \" \"\n endTags i.activeTags\n be w (gs' is)\n else\n pushNewline i.indent.toNat\n endTags i.activeTags\n be w (gs' is)\n | FlattenBehavior.fill =>\n let breakHere := do\n pushNewline i.indent.toNat\n endTags i.activeTags\n pushGroup FlattenBehavior.fill is gs w >>= be w\n if g.flatten then\n let gs'@(g'::_) ← pushGroup FlattenBehavior.fill is gs (w - \" \".length)\n | panic \"unreachable\"\n if g'.flatten then\n pushOutput \" \"\n endTags i.activeTags\n be w gs' else\n breakHere\n else\n breakHere\n | align force =>\n if g.flatten && !force then\n endTags i.activeTags\n be w (gs' is)\n else\n let k ← currColumn\n if k < i.indent then\n pushOutput (\"\".pushn ' ' (i.indent - k).toNat)\n endTags i.activeTags\n be w (gs' is)\n else\n pushNewline i.indent.toNat\n endTags i.activeTags\n be w (gs' is)\n | group f flb =>\n if g.flatten then\n be w (gs' ({ i with f }::is))\n else\n pushGroup flb [{ i with f }] (gs' is) w >>= be w", "start": [ 176, 1 ], "end": [ 252, 57 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.prettyM", "code": "def prettyM (f : Format) (w : Nat) (indent : Nat := 0) [Monad m] [MonadPrettyFormat m] : m Unit :=\n be w [{ flb := FlattenBehavior.allOrNone, flatten := false, items := [{ f := f, indent, activeTags := 0 }]}]", "start": [ 254, 1 ], "end": [ 257, 111 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.bracket", "code": "@[inline] def bracket (l : String) (f : Format) (r : String) : Format :=\n group (nest l.length $ l ++ f ++ r)", "start": [ 259, 1 ], "end": [ 262, 38 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.paren", "code": "@[inline] def paren (f : Format) : Format :=\n bracket \"(\" f \")\"", "start": [ 264, 1 ], "end": [ 266, 20 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.sbracket", "code": "@[inline] def sbracket (f : Format) : Format :=\n bracket \"[\" f \"]\"", "start": [ 268, 1 ], "end": [ 270, 20 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.bracketFill", "code": "@[inline] def bracketFill (l : String) (f : Format) (r : String) : Format :=\n fill (nest l.length $ l ++ f ++ r)", "start": [ 272, 1 ], "end": [ 274, 37 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.defIndent", "code": "def defIndent := 2", "start": [ 276, 1 ], "end": [ 277, 20 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.defUnicode", "code": "def defUnicode := true", "start": [ 278, 1 ], "end": [ 278, 23 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.defWidth", "code": "def defWidth := 120", "start": [ 279, 1 ], "end": [ 280, 22 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.nestD", "code": "def nestD (f : Format) : Format :=\n nest defIndent f", "start": [ 282, 1 ], "end": [ 284, 19 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.indentD", "code": "def indentD (f : Format) : Format :=\n nestD (Format.line ++ f)", "start": [ 286, 1 ], "end": [ 288, 27 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.State", "code": "private structure State where\n out : String := \"\"\n column : Nat := 0", "start": [ 290, 1 ], "end": [ 293, 23 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.pretty", "code": "@[export lean_format_pretty]\ndef pretty (f : Format) (width : Nat := defWidth) (indent : Nat := 0) (column := 0) : String :=\n let act : StateM State Unit := prettyM f width indent\n State.out <| act (State.mk \"\" column) |>.snd", "start": [ 303, 1 ], "end": [ 314, 47 ], "kind": "commanddeclaration" }, { "full_name": "Std.ToFormat", "code": "class ToFormat (α : Type u) where\n format : α → Format", "start": [ 318, 1 ], "end": [ 321, 22 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.joinSep", "code": "def Format.joinSep {α : Type u} [ToFormat α] : List α → Format → Format\n | [], _ => nil\n | [a], _ => format a\n | a::as, sep => as.foldl (· ++ sep ++ format ·) (format a)", "start": [ 332, 1 ], "end": [ 336, 61 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.prefixJoin", "code": "def Format.prefixJoin {α : Type u} [ToFormat α] (pre : Format) : List α → Format\n | [] => nil\n | a::as => as.foldl (· ++ pre ++ format ·) (pre ++ format a)", "start": [ 338, 1 ], "end": [ 341, 63 ], "kind": "commanddeclaration" }, { "full_name": "Std.Format.joinSuffix", "code": "def Format.joinSuffix {α : Type u} [ToFormat α] : List α → Format → Format\n | [], _ => nil\n | a::as, suffix => as.foldl (· ++ format · ++ suffix) (format a ++ suffix)", "start": [ 343, 1 ], "end": [ 346, 77 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Repr.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Format/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean" ]
[ { "full_name": "Repr", "code": "class Repr (α : Type u) where\n \n reprPrec : α → Nat → Format", "start": [ 16, 1 ], "end": [ 27, 30 ], "kind": "commanddeclaration" }, { "full_name": "repr", "code": "abbrev repr [Repr α] (a : α) : Format :=\n reprPrec a 0", "start": [ 31, 1 ], "end": [ 35, 15 ], "kind": "commanddeclaration" }, { "full_name": "reprStr", "code": "abbrev reprStr [Repr α] (a : α) : String :=\n reprPrec a 0 |>.pretty", "start": [ 37, 1 ], "end": [ 38, 25 ], "kind": "commanddeclaration" }, { "full_name": "reprArg", "code": "abbrev reprArg [Repr α] (a : α) : Format :=\n reprPrec a max_prec", "start": [ 40, 1 ], "end": [ 41, 22 ], "kind": "commanddeclaration" }, { "full_name": "ReprAtom", "code": "class ReprAtom (α : Type u)", "start": [ 43, 1 ], "end": [ 45, 28 ], "kind": "commanddeclaration" }, { "full_name": "Repr.addAppParen", "code": "def Repr.addAppParen (f : Format) (prec : Nat) : Format :=\n if prec >= max_prec then\n Format.paren f\n else\n f", "start": [ 59, 1 ], "end": [ 63, 6 ], "kind": "commanddeclaration" }, { "full_name": "Option.repr", "code": "protected def Option.repr [Repr α] : Option α → Nat → Format\n | none, _ => \"none\"\n | some a, prec => Repr.addAppParen (\"some \" ++ reprArg a) prec", "start": [ 80, 1 ], "end": [ 82, 65 ], "kind": "commanddeclaration" }, { "full_name": "Sum.repr", "code": "protected def Sum.repr [Repr α] [Repr β] : Sum α β → Nat → Format\n | Sum.inl a, prec => Repr.addAppParen (\"Sum.inl \" ++ reprArg a) prec\n | Sum.inr b, prec => Repr.addAppParen (\"Sum.inr \" ++ reprArg b) prec", "start": [ 87, 1 ], "end": [ 89, 71 ], "kind": "commanddeclaration" }, { "full_name": "ReprTuple", "code": "class ReprTuple (α : Type u) where\n reprTuple : α → List Format → List Format", "start": [ 94, 1 ], "end": [ 95, 44 ], "kind": "commanddeclaration" }, { "full_name": "Prod.repr", "code": "protected def Prod.repr [Repr α] [ReprTuple β] : α × β → Nat → Format\n | (a, b), _ => Format.bracket \"(\" (Format.joinSep (reprTuple b [repr a]).reverse (\",\" ++ Format.line)) \")\"", "start": [ 105, 1 ], "end": [ 106, 109 ], "kind": "commanddeclaration" }, { "full_name": "Nat.digitChar", "code": "def digitChar (n : Nat) : Char :=\n if n = 0 then '0' else\n if n = 1 then '1' else\n if n = 2 then '2' else\n if n = 3 then '3' else\n if n = 4 then '4' else\n if n = 5 then '5' else\n if n = 6 then '6' else\n if n = 7 then '7' else\n if n = 8 then '8' else\n if n = 9 then '9' else\n if n = 0xa then 'a' else\n if n = 0xb then 'b' else\n if n = 0xc then 'c' else\n if n = 0xd then 'd' else\n if n = 0xe then 'e' else\n if n = 0xf then 'f' else\n '*'", "start": [ 124, 1 ], "end": [ 141, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toDigitsCore", "code": "def toDigitsCore (base : Nat) : Nat → Nat → List Char → List Char\n | 0, _, ds => ds\n | fuel+1, n, ds =>\n let d := digitChar <| n % base;\n let n' := n / base;\n if n' = 0 then d::ds\n else toDigitsCore base fuel n' (d::ds)", "start": [ 143, 1 ], "end": [ 149, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toDigits", "code": "def toDigits (base : Nat) (n : Nat) : List Char :=\n toDigitsCore base (n+1) n []", "start": [ 151, 1 ], "end": [ 152, 31 ], "kind": "commanddeclaration" }, { "full_name": "USize.repr", "code": "@[extern \"lean_string_of_usize\"]\nprotected def _root_.USize.repr (n : @& USize) : String :=\n (toDigits 10 n.toNat).asString", "start": [ 154, 1 ], "end": [ 156, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.reprArray", "code": "private def reprArray : Array String := Id.run do\n List.range 128 |>.map (·.toUSize.repr) |> Array.mk", "start": [ 158, 1 ], "end": [ 160, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.reprFast", "code": "private def reprFast (n : Nat) : String :=\n if h : n < 128 then Nat.reprArray.get ⟨n, h⟩ else\n if h : n < USize.size then (USize.ofNatCore n h).repr\n else (toDigits 10 n).asString", "start": [ 162, 1 ], "end": [ 165, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.repr", "code": "@[implemented_by reprFast]\nprotected def repr (n : Nat) : String :=\n (toDigits 10 n).asString", "start": [ 167, 1 ], "end": [ 169, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.superDigitChar", "code": "def superDigitChar (n : Nat) : Char :=\n if n = 0 then '⁰' else\n if n = 1 then '¹' else\n if n = 2 then '²' else\n if n = 3 then '³' else\n if n = 4 then '⁴' else\n if n = 5 then '⁵' else\n if n = 6 then '⁶' else\n if n = 7 then '⁷' else\n if n = 8 then '⁸' else\n if n = 9 then '⁹' else\n '*'", "start": [ 171, 1 ], "end": [ 182, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSuperDigitsAux", "code": "partial def toSuperDigitsAux : Nat → List Char → List Char\n | n, ds =>\n let d := superDigitChar <| n % 10;\n let n' := n / 10;\n if n' = 0 then d::ds\n else toSuperDigitsAux n' (d::ds)", "start": [ 184, 1 ], "end": [ 189, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSuperDigits", "code": "def toSuperDigits (n : Nat) : List Char :=\n toSuperDigitsAux n []", "start": [ 191, 1 ], "end": [ 192, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSuperscriptString", "code": "def toSuperscriptString (n : Nat) : String :=\n (toSuperDigits n).asString", "start": [ 194, 1 ], "end": [ 195, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.subDigitChar", "code": "def subDigitChar (n : Nat) : Char :=\n if n = 0 then '₀' else\n if n = 1 then '₁' else\n if n = 2 then '₂' else\n if n = 3 then '₃' else\n if n = 4 then '₄' else\n if n = 5 then '₅' else\n if n = 6 then '₆' else\n if n = 7 then '₇' else\n if n = 8 then '₈' else\n if n = 9 then '₉' else\n '*'", "start": [ 197, 1 ], "end": [ 208, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSubDigitsAux", "code": "partial def toSubDigitsAux : Nat → List Char → List Char\n | n, ds =>\n let d := subDigitChar <| n % 10;\n let n' := n / 10;\n if n' = 0 then d::ds\n else toSubDigitsAux n' (d::ds)", "start": [ 210, 1 ], "end": [ 215, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSubDigits", "code": "def toSubDigits (n : Nat) : List Char :=\n toSubDigitsAux n []", "start": [ 217, 1 ], "end": [ 218, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.toSubscriptString", "code": "def toSubscriptString (n : Nat) : String :=\n (toSubDigits n).asString", "start": [ 220, 1 ], "end": [ 221, 27 ], "kind": "commanddeclaration" }, { "full_name": "Int.repr", "code": "protected def Int.repr : Int → String\n | ofNat m => Nat.repr m\n | negSucc m => \"-\" ++ Nat.repr (succ m)", "start": [ 228, 1 ], "end": [ 230, 44 ], "kind": "commanddeclaration" }, { "full_name": "hexDigitRepr", "code": "def hexDigitRepr (n : Nat) : String :=\n String.singleton <| Nat.digitChar n", "start": [ 235, 1 ], "end": [ 236, 38 ], "kind": "commanddeclaration" }, { "full_name": "Char.quoteCore", "code": "def Char.quoteCore (c : Char) : String :=\n if c = '\\n' then \"\\\\n\"\n else if c = '\\t' then \"\\\\t\"\n else if c = '\\\\' then \"\\\\\\\\\"\n else if c = '\\\"' then \"\\\\\\\"\"\n else if c.toNat <= 31 ∨ c = '\\x7f' then \"\\\\x\" ++ smallCharToHex c\n else String.singleton c\nwhere\n smallCharToHex (c : Char) : String :=\n let n := Char.toNat c;\n let d2 := n / 16;\n let d1 := n % 16;\n hexDigitRepr d2 ++ hexDigitRepr d1", "start": [ 238, 1 ], "end": [ 250, 39 ], "kind": "commanddeclaration" }, { "full_name": "Char.quote", "code": "def Char.quote (c : Char) : String :=\n \"'\" ++ Char.quoteCore c ++ \"'\"", "start": [ 252, 1 ], "end": [ 253, 33 ], "kind": "commanddeclaration" }, { "full_name": "Char.repr", "code": "protected def Char.repr (c : Char) : String :=\n c.quote", "start": [ 258, 1 ], "end": [ 259, 10 ], "kind": "commanddeclaration" }, { "full_name": "String.quote", "code": "def String.quote (s : String) : String :=\n if s.isEmpty then \"\\\"\\\"\"\n else s.foldl (fun s c => s ++ c.quoteCore) \"\\\"\" ++ \"\\\"\"", "start": [ 261, 1 ], "end": [ 263, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.repr", "code": "protected def List.repr [Repr α] (a : List α) (n : Nat) : Format :=\n let _ : ToFormat α := ⟨repr⟩\n match a, n with\n | [], _ => \"[]\"\n | as, _ => Format.bracket \"[\" (Format.joinSep as (\",\" ++ Format.line)) \"]\"", "start": [ 295, 1 ], "end": [ 299, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.repr'", "code": "protected def List.repr' [Repr α] [ReprAtom α] (a : List α) (n : Nat) : Format :=\n let _ : ToFormat α := ⟨repr⟩\n match a, n with\n | [], _ => \"[]\"\n | as, _ => Format.bracketFill \"[\" (Format.joinSep as (\",\" ++ Format.line)) \"]\"", "start": [ 304, 1 ], "end": [ 308, 81 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/Option.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Except.lean" ]
[ { "full_name": "OptionT", "code": "def OptionT (m : Type u → Type v) (α : Type u) : Type v :=\n m (Option α)", "start": [ 15, 1 ], "end": [ 16, 15 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.run", "code": "@[always_inline, inline]\ndef OptionT.run {m : Type u → Type v} {α : Type u} (x : OptionT m α) : m (Option α) :=\n x", "start": [ 18, 1 ], "end": [ 20, 4 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.mk", "code": "protected def mk (x : m (Option α)) : OptionT m α :=\n x", "start": [ 25, 1 ], "end": [ 26, 4 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.bind", "code": "@[always_inline, inline]\nprotected def bind (x : OptionT m α) (f : α → OptionT m β) : OptionT m β := OptionT.mk do\n match (← x) with\n | some a => f a\n | none => pure none", "start": [ 28, 1 ], "end": [ 32, 24 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.pure", "code": "@[always_inline, inline]\nprotected def pure (a : α) : OptionT m α := OptionT.mk do\n pure (some a)", "start": [ 34, 1 ], "end": [ 36, 16 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.orElse", "code": "@[always_inline, inline] protected def orElse (x : OptionT m α) (y : Unit → OptionT m α) : OptionT m α := OptionT.mk do\n match (← x) with\n | some a => pure (some a)\n | _ => y ()", "start": [ 43, 1 ], "end": [ 46, 19 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.fail", "code": "@[always_inline, inline] protected def fail : OptionT m α := OptionT.mk do\n pure none", "start": [ 48, 1 ], "end": [ 49, 12 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.lift", "code": "@[always_inline, inline] protected def lift (x : m α) : OptionT m α := OptionT.mk do\n return some (← x)", "start": [ 55, 1 ], "end": [ 56, 20 ], "kind": "commanddeclaration" }, { "full_name": "OptionT.tryCatch", "code": "@[always_inline, inline] protected def tryCatch (x : OptionT m α) (handle : Unit → OptionT m α) : OptionT m α := OptionT.mk do\n let some a ← x | handle ()\n pure a", "start": [ 62, 1 ], "end": [ 64, 9 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Format/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Option.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean", ".lake/packages/lean4/src/lean/Init/Data/Repr.lean" ]
[ { "full_name": "ToString", "code": "class ToString (α : Type u) where\n toString : α → String", "start": [ 19, 1 ], "end": [ 20, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.toString", "code": "protected def List.toString [ToString α] : List α → String\n | [] => \"[]\"\n | [x] => \"[\" ++ toString x ++ \"]\"\n | x::xs => xs.foldl (· ++ \", \" ++ toString ·) (\"[\" ++ toString x) |>.push ']'", "start": [ 48, 1 ], "end": [ 51, 80 ], "kind": "commanddeclaration" }, { "full_name": "addParenHeuristic", "code": "def addParenHeuristic (s : String) : String :=\n if \"(\".isPrefixOf s || \"[\".isPrefixOf s || \"{\".isPrefixOf s || \"#[\".isPrefixOf s then s\n else if !s.any Char.isWhitespace then s\n else \"(\" ++ s ++ \")\"", "start": [ 100, 1 ], "end": [ 103, 23 ], "kind": "commanddeclaration" }, { "full_name": "String.toInt?", "code": "def String.toInt? (s : String) : Option Int := do\n if s.get 0 = '-' then do\n let v ← (s.toSubstring.drop 1).toNat?;\n pure <| - Int.ofNat v\n else\n Int.ofNat <$> s.toNat?", "start": [ 122, 1 ], "end": [ 127, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.isInt", "code": "def String.isInt (s : String) : Bool :=\n if s.get 0 = '-' then\n (s.toSubstring.drop 1).isNat\n else\n s.isNat", "start": [ 129, 1 ], "end": [ 133, 12 ], "kind": "commanddeclaration" }, { "full_name": "String.toInt!", "code": "def String.toInt! (s : String) : Int :=\n match s.toInt? with\n | some v => v\n | none => panic \"Int expected\"", "start": [ 135, 1 ], "end": [ 138, 35 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Util.lean
[ ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean" ]
[ { "full_name": "dbgTrace", "code": "@[never_extract, extern \"lean_dbg_trace\"]\ndef dbgTrace {α : Type u} (s : String) (f : Unit → α) : α := f ()", "start": [ 15, 1 ], "end": [ 16, 66 ], "kind": "commanddeclaration" }, { "full_name": "dbgTraceVal", "code": "def dbgTraceVal {α : Type u} [ToString α] (a : α) : α :=\n dbgTrace (toString a) (fun _ => a)", "start": [ 18, 1 ], "end": [ 19, 37 ], "kind": "commanddeclaration" }, { "full_name": "dbgTraceIfShared", "code": "@[never_extract, extern \"lean_dbg_trace_if_shared\"]\ndef dbgTraceIfShared {α : Type u} (s : String) (a : α) : α := a", "start": [ 22, 1 ], "end": [ 24, 64 ], "kind": "commanddeclaration" }, { "full_name": "dbgStackTrace", "code": "@[never_extract, extern \"lean_dbg_stack_trace\"]\ndef dbgStackTrace {α : Type u} (f : Unit → α) : α := f ()", "start": [ 26, 1 ], "end": [ 28, 58 ], "kind": "commanddeclaration" }, { "full_name": "dbgSleep", "code": "@[extern \"lean_dbg_sleep\"]\ndef dbgSleep {α : Type u} (ms : UInt32) (f : Unit → α) : α := f ()", "start": [ 30, 1 ], "end": [ 31, 67 ], "kind": "commanddeclaration" }, { "full_name": "mkPanicMessage", "code": "@[noinline] private def mkPanicMessage (modName : String) (line col : Nat) (msg : String) : String :=\n \"PANIC at \" ++ modName ++ \":\" ++ toString line ++ \":\" ++ toString col ++ \": \" ++ msg", "start": [ 33, 1 ], "end": [ 34, 87 ], "kind": "commanddeclaration" }, { "full_name": "panicWithPos", "code": "@[never_extract, inline] def panicWithPos {α : Type u} [Inhabited α] (modName : String) (line col : Nat) (msg : String) : α :=\n panic (mkPanicMessage modName line col msg)", "start": [ 36, 1 ], "end": [ 37, 46 ], "kind": "commanddeclaration" }, { "full_name": "mkPanicMessageWithDecl", "code": "@[noinline] private def mkPanicMessageWithDecl (modName : String) (declName : String) (line col : Nat) (msg : String) : String :=\n \"PANIC at \" ++ declName ++ \" \" ++ modName ++ \":\" ++ toString line ++ \":\" ++ toString col ++ \": \" ++ msg", "start": [ 39, 1 ], "end": [ 40, 106 ], "kind": "commanddeclaration" }, { "full_name": "panicWithPosWithDecl", "code": "@[never_extract, inline] def panicWithPosWithDecl {α : Type u} [Inhabited α] (modName : String) (declName : String) (line col : Nat) (msg : String) : α :=\n panic (mkPanicMessageWithDecl modName declName line col msg)", "start": [ 42, 1 ], "end": [ 43, 63 ], "kind": "commanddeclaration" }, { "full_name": "ptrAddrUnsafe", "code": "@[extern \"lean_ptr_addr\"]\nunsafe opaque ptrAddrUnsafe {α : Type u} (a : @& α) : USize", "start": [ 45, 1 ], "end": [ 46, 60 ], "kind": "commanddeclaration" }, { "full_name": "withPtrAddrUnsafe", "code": "@[inline] unsafe def withPtrAddrUnsafe {α : Type u} {β : Type v} (a : α) (k : USize → β) (h : ∀ u₁ u₂, k u₁ = k u₂) : β :=\n k (ptrAddrUnsafe a)", "start": [ 49, 1 ], "end": [ 50, 22 ], "kind": "commanddeclaration" }, { "full_name": "ptrEq", "code": "@[inline] unsafe def ptrEq (a b : α) : Bool := ptrAddrUnsafe a == ptrAddrUnsafe b", "start": [ 52, 1 ], "end": [ 52, 82 ], "kind": "commanddeclaration" }, { "full_name": "ptrEqList", "code": "unsafe def ptrEqList : (as bs : List α) → Bool\n | [], [] => true\n | a::as, b::bs => if ptrEq a b then ptrEqList as bs else false\n | _, _ => false", "start": [ 54, 1 ], "end": [ 57, 18 ], "kind": "commanddeclaration" }, { "full_name": "withPtrEqUnsafe", "code": "@[inline] unsafe def withPtrEqUnsafe {α : Type u} (a b : α) (k : Unit → Bool) (h : a = b → k () = true) : Bool :=\n if ptrEq a b then true else k ()", "start": [ 60, 1 ], "end": [ 61, 35 ], "kind": "commanddeclaration" }, { "full_name": "withPtrEq", "code": "@[implemented_by withPtrEqUnsafe]\ndef withPtrEq {α : Type u} (a b : α) (k : Unit → Bool) (h : a = b → k () = true) : Bool := k ()", "start": [ 63, 1 ], "end": [ 64, 96 ], "kind": "commanddeclaration" }, { "full_name": "withPtrEqDecEq", "code": "@[inline] def withPtrEqDecEq {α : Type u} (a b : α) (k : Unit → Decidable (a = b)) : Decidable (a = b) :=\n let b := withPtrEq a b (fun _ => toBoolUsing (k ())) (toBoolUsing_eq_true (k ()));\n match h:b with\n | true => isTrue (ofBoolUsing_eq_true h)\n | false => isFalse (ofBoolUsing_eq_false h)", "start": [ 66, 1 ], "end": [ 71, 46 ], "kind": "commanddeclaration" }, { "full_name": "withPtrAddr", "code": "@[implemented_by withPtrAddrUnsafe]\ndef withPtrAddr {α : Type u} {β : Type v} (a : α) (k : USize → β) (h : ∀ u₁ u₂, k u₁ = k u₂) : β := k 0", "start": [ 73, 1 ], "end": [ 74, 104 ], "kind": "commanddeclaration" }, { "full_name": "Runtime.markMultiThreaded", "code": "@[extern \"lean_runtime_mark_multi_threaded\"]\ndef Runtime.markMultiThreaded (a : α) : α := a", "start": [ 76, 1 ], "end": [ 83, 47 ], "kind": "commanddeclaration" }, { "full_name": "Runtime.markPersistent", "code": "@[extern \"lean_runtime_mark_persistent\"]\ndef Runtime.markPersistent (a : α) : α := a", "start": [ 85, 1 ], "end": [ 92, 44 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/GetElem.lean
[ ".lake/packages/lean4/src/lean/Init/Util.lean" ]
[ { "full_name": "outOfBounds", "code": "@[never_extract]\ndef outOfBounds [Inhabited α] : α :=\n panic! \"index out of bounds\"", "start": [ 9, 1 ], "end": [ 11, 31 ], "kind": "commanddeclaration" }, { "full_name": "outOfBounds_eq_default", "code": "theorem outOfBounds_eq_default [Inhabited α] : (outOfBounds : α) = default", "start": [ 13, 1 ], "end": [ 13, 82 ], "kind": "commanddeclaration" }, { "full_name": "GetElem", "code": "class GetElem (coll : Type u) (idx : Type v) (elem : outParam (Type w))\n (valid : outParam (coll → idx → Prop)) where\n \n getElem (xs : coll) (i : idx) (h : valid xs i) : elem", "start": [ 15, 1 ], "end": [ 69, 56 ], "kind": "commanddeclaration" }, { "full_name": "decidableGetElem?", "code": "abbrev decidableGetElem? [GetElem coll idx elem valid] (xs : coll) (i : idx) [Decidable (valid xs i)] :\n Option elem :=\n if h : valid xs i then some xs[i] else none", "start": [ 81, 1 ], "end": [ 84, 46 ], "kind": "commanddeclaration" }, { "full_name": "GetElem?", "code": "@[inherit_doc GetElem]\nclass GetElem? (coll : Type u) (idx : Type v) (elem : outParam (Type w))\n (valid : outParam (coll → idx → Prop)) extends GetElem coll idx elem valid where\n \n getElem? : coll → idx → Option elem\n\n \n getElem! [Inhabited elem] (xs : coll) (i : idx) : elem :=\n match getElem? xs i with | some e => e | none => outOfBounds", "start": [ 86, 1 ], "end": [ 101, 65 ], "kind": "commanddeclaration" }, { "full_name": "LawfulGetElem", "code": "class LawfulGetElem (cont : Type u) (idx : Type v) (elem : outParam (Type w))\n (dom : outParam (cont → idx → Prop)) [ge : GetElem? cont idx elem dom] : Prop where\n\n getElem?_def (c : cont) (i : idx) [Decidable (dom c i)] :\n c[i]? = if h : dom c i then some (c[i]'h) else none := by\n intros\n try simp only [getElem?] <;> congr\n getElem!_def [Inhabited elem] (c : cont) (i : idx) :\n c[i]! = match c[i]? with | some e => e | none => default := by\n intros\n simp only [getElem!, getElem?, outOfBounds_eq_default]", "start": [ 121, 1 ], "end": [ 131, 59 ], "kind": "commanddeclaration" }, { "full_name": "getElem?_pos", "code": "theorem getElem?_pos [GetElem? cont idx elem dom] [LawfulGetElem cont idx elem dom]\n (c : cont) (i : idx) (h : dom c i) [Decidable (dom c i)] : c[i]? = some (c[i]'h)", "start": [ 138, 1 ], "end": [ 141, 18 ], "kind": "commanddeclaration" }, { "full_name": "getElem?_neg", "code": "theorem getElem?_neg [GetElem? cont idx elem dom] [LawfulGetElem cont idx elem dom]\n (c : cont) (i : idx) (h : ¬dom c i) [Decidable (dom c i)] : c[i]? = none", "start": [ 143, 1 ], "end": [ 146, 18 ], "kind": "commanddeclaration" }, { "full_name": "getElem!_pos", "code": "theorem getElem!_pos [GetElem? cont idx elem dom] [LawfulGetElem cont idx elem dom]\n [Inhabited elem] (c : cont) (i : idx) (h : dom c i) [Decidable (dom c i)] :\n c[i]! = c[i]'h", "start": [ 148, 1 ], "end": [ 151, 44 ], "kind": "commanddeclaration" }, { "full_name": "getElem!_neg", "code": "theorem getElem!_neg [GetElem? cont idx elem dom] [LawfulGetElem cont idx elem dom]\n [Inhabited elem] (c : cont) (i : idx) (h : ¬dom c i) [Decidable (dom c i)] : c[i]! = default", "start": [ 153, 1 ], "end": [ 155, 44 ], "kind": "commanddeclaration" }, { "full_name": "Fin.instGetElemFinVal", "code": "instance instGetElemFinVal [GetElem cont Nat elem dom] : GetElem cont (Fin n) elem fun xs i => dom xs i where\n getElem xs i h := getElem xs i.1 h", "start": [ 159, 1 ], "end": [ 160, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.instGetElem?FinVal", "code": "instance instGetElem?FinVal [GetElem? cont Nat elem dom] : GetElem? cont (Fin n) elem fun xs i => dom xs i where\n getElem? xs i := getElem? xs i.val\n getElem! xs i := getElem! xs i.val", "start": [ 162, 1 ], "end": [ 164, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.getElem_fin", "code": "@[simp] theorem getElem_fin [GetElem? Cont Nat Elem Dom] (a : Cont) (i : Fin n) (h : Dom a i) :\n a[i] = a[i.1]", "start": [ 171, 1 ], "end": [ 172, 25 ], "kind": "commanddeclaration" }, { "full_name": "Fin.getElem?_fin", "code": "@[simp] theorem getElem?_fin [h : GetElem? Cont Nat Elem Dom] (a : Cont) (i : Fin n)\n [Decidable (Dom a i)] : a[i]? = a[i.1]?", "start": [ 174, 1 ], "end": [ 175, 54 ], "kind": "commanddeclaration" }, { "full_name": "Fin.getElem!_fin", "code": "@[simp] theorem getElem!_fin [GetElem? Cont Nat Elem Dom] (a : Cont) (i : Fin n)\n [Decidable (Dom a i)] [Inhabited Elem] : a[i]! = a[i.1]!", "start": [ 177, 1 ], "end": [ 178, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_cons_zero", "code": "@[simp] theorem getElem_cons_zero (a : α) (as : List α) (h : 0 < (a :: as).length) : getElem (a :: as) 0 h = a", "start": [ 190, 1 ], "end": [ 191, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_getElem_zero", "code": "@[deprecated (since := \"2024-6-12\")] abbrev cons_getElem_zero := @getElem_cons_zero", "start": [ 193, 1 ], "end": [ 193, 84 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_cons_succ", "code": "@[simp] theorem getElem_cons_succ (a : α) (as : List α) (i : Nat) (h : i + 1 < (a :: as).length) : getElem (a :: as) (i+1) h = getElem as i (Nat.lt_of_succ_lt_succ h)", "start": [ 195, 1 ], "end": [ 196, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_getElem_succ", "code": "@[deprecated (since := \"2024-6-12\")] abbrev cons_getElem_succ := @getElem_cons_succ", "start": [ 198, 1 ], "end": [ 198, 84 ], "kind": "commanddeclaration" }, { "full_name": "List.get_drop_eq_drop", "code": "theorem get_drop_eq_drop (as : List α) (i : Nat) (h : i < as.length) : as[i] :: as.drop (i+1) = as.drop i", "start": [ 200, 1 ], "end": [ 203, 40 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Fin/Basic.lean", ".lake/packages/lean4/src/lean/Init/GetElem.lean", ".lake/packages/lean4/src/lean/Init/WFTactics.lean", ".lake/packages/lean4/src/lean/Init/Data/Repr.lean" ]
[ { "full_name": "Array.mkArray", "code": "@[extern \"lean_mk_array\"]\ndef mkArray {α : Type u} (n : Nat) (v : α) : Array α := {\n data := List.replicate n v\n}", "start": [ 19, 1 ], "end": [ 22, 2 ], "kind": "commanddeclaration" }, { "full_name": "Array.ofFn", "code": "def ofFn {n} (f : Fin n → α) : Array α := go 0 (mkEmpty n) where\n \n go (i : Nat) (acc : Array α) : Array α :=\n if h : i < n then go (i+1) (acc.push (f ⟨i, h⟩)) else acc\ntermination_by n - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 24, 1 ], "end": [ 34, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.range", "code": "def range (n : Nat) : Array Nat :=\n n.fold (flip Array.push) (mkEmpty n)", "start": [ 36, 1 ], "end": [ 38, 39 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_mkArray", "code": "@[simp] theorem size_mkArray (n : Nat) (v : α) : (mkArray n v).size = n", "start": [ 40, 1 ], "end": [ 41, 27 ], "kind": "commanddeclaration" }, { "full_name": "Array.isEmpty", "code": "@[simp] def isEmpty (a : Array α) : Bool :=\n a.size = 0", "start": [ 47, 1 ], "end": [ 48, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.singleton", "code": "def singleton (v : α) : Array α :=\n mkArray 1 v", "start": [ 50, 1 ], "end": [ 51, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.uget", "code": "@[extern \"lean_array_uget\", simp]\ndef uget (a : @& Array α) (i : USize) (h : i.toNat < a.size) : α :=\n a[i.toNat]", "start": [ 53, 1 ], "end": [ 58, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.back", "code": "def back [Inhabited α] (a : Array α) : α :=\n a.get! (a.size - 1)", "start": [ 63, 1 ], "end": [ 64, 22 ], "kind": "commanddeclaration" }, { "full_name": "Array.get?", "code": "def get? (a : Array α) (i : Nat) : Option α :=\n if h : i < a.size then some a[i] else none", "start": [ 66, 1 ], "end": [ 67, 45 ], "kind": "commanddeclaration" }, { "full_name": "Array.back?", "code": "def back? (a : Array α) : Option α :=\n a.get? (a.size - 1)", "start": [ 69, 1 ], "end": [ 70, 22 ], "kind": "commanddeclaration" }, { "full_name": "Array.getLit", "code": "abbrev getLit {α : Type u} {n : Nat} (a : Array α) (i : Nat) (h₁ : a.size = n) (h₂ : i < n) : α :=\n have := h₁.symm ▸ h₂\n a[i]", "start": [ 73, 1 ], "end": [ 75, 7 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_set", "code": "@[simp] theorem size_set (a : Array α) (i : Fin a.size) (v : α) : (set a i v).size = a.size", "start": [ 77, 1 ], "end": [ 78, 21 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_push", "code": "@[simp] theorem size_push (a : Array α) (v : α) : (push a v).size = a.size + 1", "start": [ 80, 1 ], "end": [ 81, 24 ], "kind": "commanddeclaration" }, { "full_name": "Array.uset", "code": "@[extern \"lean_array_uset\"]\ndef uset (a : Array α) (i : USize) (v : α) (h : i.toNat < a.size) : Array α :=\n a.set ⟨i.toNat, h⟩ v", "start": [ 83, 1 ], "end": [ 88, 23 ], "kind": "commanddeclaration" }, { "full_name": "Array.swap", "code": "@[extern \"lean_array_fswap\"]\ndef swap (a : Array α) (i j : @& Fin a.size) : Array α :=\n let v₁ := a.get i\n let v₂ := a.get j\n let a' := a.set i v₂\n a'.set (size_set a i v₂ ▸ j) v₁", "start": [ 90, 1 ], "end": [ 101, 34 ], "kind": "commanddeclaration" }, { "full_name": "Array.swap!", "code": "@[extern \"lean_array_swap\"]\ndef swap! (a : Array α) (i j : @& Nat) : Array α :=\n if h₁ : i < a.size then\n if h₂ : j < a.size then swap a ⟨i, h₁⟩ ⟨j, h₂⟩\n else a\n else a", "start": [ 103, 1 ], "end": [ 114, 9 ], "kind": "commanddeclaration" }, { "full_name": "Array.swapAt", "code": "@[inline] def swapAt (a : Array α) (i : Fin a.size) (v : α) : α × Array α :=\n let e := a.get i\n let a := a.set i v\n (e, a)", "start": [ 116, 1 ], "end": [ 119, 9 ], "kind": "commanddeclaration" }, { "full_name": "Array.swapAt!", "code": "@[inline]\ndef swapAt! (a : Array α) (i : Nat) (v : α) : α × Array α :=\n if h : i < a.size then\n swapAt a ⟨i, h⟩ v\n else\n have : Inhabited α := ⟨v⟩\n panic! (\"index \" ++ toString i ++ \" out of bounds\")", "start": [ 121, 1 ], "end": [ 127, 56 ], "kind": "commanddeclaration" }, { "full_name": "Array.pop", "code": "@[extern \"lean_array_pop\"]\ndef pop (a : Array α) : Array α := {\n data := a.data.dropLast\n}", "start": [ 129, 1 ], "end": [ 132, 2 ], "kind": "commanddeclaration" }, { "full_name": "Array.shrink", "code": "def shrink (a : Array α) (n : Nat) : Array α :=\n let rec loop\n | 0, a => a\n | n+1, a => loop n a.pop\n loop (a.size - n) a", "start": [ 134, 1 ], "end": [ 138, 22 ], "kind": "commanddeclaration" }, { "full_name": "Array.modifyMUnsafe", "code": "@[inline]\nunsafe def modifyMUnsafe [Monad m] (a : Array α) (i : Nat) (f : α → m α) : m (Array α) := do\n if h : i < a.size then\n let idx : Fin a.size := ⟨i, h⟩\n let v := a.get idx\n let a' := a.set idx (unsafeCast ())\n let v ← f v\n pure <| a'.set (size_set a .. ▸ idx) v\n else\n pure a", "start": [ 140, 1 ], "end": [ 152, 11 ], "kind": "commanddeclaration" }, { "full_name": "Array.modifyM", "code": "@[implemented_by modifyMUnsafe]\ndef modifyM [Monad m] (a : Array α) (i : Nat) (f : α → m α) : m (Array α) := do\n if h : i < a.size then\n let idx := ⟨i, h⟩\n let v := a.get idx\n let v ← f v\n pure <| a.set idx v\n else\n pure a", "start": [ 154, 1 ], "end": [ 162, 11 ], "kind": "commanddeclaration" }, { "full_name": "Array.modify", "code": "@[inline]\ndef modify (a : Array α) (i : Nat) (f : α → α) : Array α :=\n Id.run <| modifyM a i f", "start": [ 164, 1 ], "end": [ 166, 26 ], "kind": "commanddeclaration" }, { "full_name": "Array.modifyOp", "code": "@[inline]\ndef modifyOp (self : Array α) (idx : Nat) (f : α → α) : Array α :=\n self.modify idx f", "start": [ 168, 1 ], "end": [ 170, 20 ], "kind": "commanddeclaration" }, { "full_name": "Array.forInUnsafe", "code": "@[inline] unsafe def forInUnsafe {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (b : β) (f : α → β → m (ForInStep β)) : m β :=\n let sz := USize.ofNat as.size\n let rec @[specialize] loop (i : USize) (b : β) : m β := do\n if i < sz then\n let a := as.uget i lcProof\n match (← f a b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop (i+1) b\n else\n pure b\n loop 0 b", "start": [ 172, 1 ], "end": [ 186, 11 ], "kind": "commanddeclaration" }, { "full_name": "Array.forIn", "code": "@[implemented_by Array.forInUnsafe]\nprotected def forIn {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (b : β) (f : α → β → m (ForInStep β)) : m β :=\n let rec loop (i : Nat) (h : i ≤ as.size) (b : β) : m β := do\n match i, h with\n | 0, _ => pure b\n | i+1, h =>\n have h' : i < as.size := Nat.lt_of_lt_of_le (Nat.lt_succ_self i) h\n have : as.size - 1 < as.size := Nat.sub_lt (Nat.zero_lt_of_lt h') (by decide)\n have : as.size - 1 - i < as.size := Nat.lt_of_le_of_lt (Nat.sub_le (as.size - 1) i) this\n match (← f as[as.size - 1 - i] b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop i (Nat.le_of_lt h') b\n loop as.size (Nat.le_refl _) b", "start": [ 188, 1 ], "end": [ 201, 33 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldlMUnsafe", "code": "@[inline]\nunsafe def foldlMUnsafe {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : β → α → m β) (init : β) (as : Array α) (start := 0) (stop := as.size) : m β :=\n let rec @[specialize] fold (i : USize) (stop : USize) (b : β) : m β := do\n if i == stop then\n pure b\n else\n fold (i+1) stop (← f b (as.uget i lcProof))\n if start < stop then\n if stop ≤ as.size then\n fold (USize.ofNat start) (USize.ofNat stop) init\n else\n pure init\n else\n pure init", "start": [ 206, 1 ], "end": [ 220, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldlM", "code": "@[implemented_by foldlMUnsafe]\ndef foldlM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : β → α → m β) (init : β) (as : Array α) (start := 0) (stop := as.size) : m β :=\n let fold (stop : Nat) (h : stop ≤ as.size) :=\n let rec loop (i : Nat) (j : Nat) (b : β) : m β := do\n if hlt : j < stop then\n match i with\n | 0 => pure b\n | i'+1 =>\n have : j < as.size := Nat.lt_of_lt_of_le hlt h\n loop i' (j+1) (← f b as[j])\n else\n pure b\n loop (stop - start) start init\n if h : stop ≤ as.size then\n fold stop h\n else\n fold as.size (Nat.le_refl _)", "start": [ 222, 1 ], "end": [ 239, 33 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldrMUnsafe", "code": "@[inline]\nunsafe def foldrMUnsafe {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : α → β → m β) (init : β) (as : Array α) (start := as.size) (stop := 0) : m β :=\n let rec @[specialize] fold (i : USize) (stop : USize) (b : β) : m β := do\n if i == stop then\n pure b\n else\n fold (i-1) stop (← f (as.uget (i-1) lcProof) b)\n if start ≤ as.size then\n if stop < start then\n fold (USize.ofNat start) (USize.ofNat stop) init\n else\n pure init\n else if stop < as.size then\n fold (USize.ofNat as.size) (USize.ofNat stop) init\n else\n pure init", "start": [ 241, 1 ], "end": [ 257, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldrM", "code": "@[implemented_by foldrMUnsafe]\ndef foldrM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : α → β → m β) (init : β) (as : Array α) (start := as.size) (stop := 0) : m β :=\n let rec fold (i : Nat) (h : i ≤ as.size) (b : β) : m β := do\n if i == stop then\n pure b\n else match i, h with\n | 0, _ => pure b\n | i+1, h =>\n have : i < as.size := Nat.lt_of_lt_of_le (Nat.lt_succ_self _) h\n fold i (Nat.le_of_lt this) (← f as[i] b)\n if h : start ≤ as.size then\n if stop < start then\n fold start h init\n else\n pure init\n else if stop < as.size then\n fold as.size (Nat.le_refl _) init\n else\n pure init", "start": [ 259, 1 ], "end": [ 278, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapMUnsafe", "code": "@[inline]\nunsafe def mapMUnsafe {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : α → m β) (as : Array α) : m (Array β) :=\n let sz := USize.ofNat as.size\n let rec @[specialize] map (i : USize) (r : Array NonScalar) : m (Array PNonScalar.{v}) := do\n if i < sz then\n let v := r.uget i lcProof\n let r := r.uset i default lcProof\n let vNew ← f (unsafeCast v)\n map (i+1) (r.uset i (unsafeCast vNew) lcProof)\n else\n pure (unsafeCast r)\n unsafeCast <| map 0 (unsafeCast as)", "start": [ 280, 1 ], "end": [ 295, 38 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapM", "code": "@[implemented_by mapMUnsafe]\ndef mapM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : α → m β) (as : Array α) : m (Array β) :=\n let rec map (i : Nat) (r : Array β) : m (Array β) := do\n if hlt : i < as.size then\n map (i+1) (r.push (← f as[i]))\n else\n pure r\n termination_by as.size - i\n decreasing_by simp_wf; decreasing_trivial_pre_omega\n map 0 (mkEmpty as.size)", "start": [ 297, 1 ], "end": [ 309, 26 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapIdxM", "code": "@[inline]\ndef mapIdxM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (f : Fin as.size → α → m β) : m (Array β) :=\n let rec @[specialize] map (i : Nat) (j : Nat) (inv : i + j = as.size) (bs : Array β) : m (Array β) := do\n match i, inv with\n | 0, _ => pure bs\n | i+1, inv =>\n have : j < as.size := by\n rw [← inv, Nat.add_assoc, Nat.add_comm 1 j, Nat.add_comm]\n apply Nat.le_add_right\n let idx : Fin as.size := ⟨j, this⟩\n have : i + (j + 1) = as.size := by rw [← inv, Nat.add_comm j 1, Nat.add_assoc]\n map i (j+1) this (bs.push (← f idx (as.get idx)))\n map as.size 0 rfl (mkEmpty as.size)", "start": [ 311, 1 ], "end": [ 323, 38 ], "kind": "commanddeclaration" }, { "full_name": "Array.findSomeM?", "code": "@[inline]\ndef findSomeM? {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (f : α → m (Option β)) : m (Option β) := do\n for a in as do\n match (← f a) with\n | some b => return b\n | _ => pure ⟨⟩\n return none", "start": [ 325, 1 ], "end": [ 331, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.findM?", "code": "@[inline]\ndef findM? {α : Type} {m : Type → Type} [Monad m] (as : Array α) (p : α → m Bool) : m (Option α) := do\n for a in as do\n if (← p a) then\n return a\n return none", "start": [ 333, 1 ], "end": [ 338, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.findIdxM?", "code": "@[inline]\ndef findIdxM? [Monad m] (as : Array α) (p : α → m Bool) : m (Option Nat) := do\n let mut i := 0\n for a in as do\n if (← p a) then\n return some i\n i := i + 1\n return none", "start": [ 340, 1 ], "end": [ 347, 14 ], "kind": "commanddeclaration" }, { "full_name": "Array.anyMUnsafe", "code": "@[inline]\nunsafe def anyMUnsafe {α : Type u} {m : Type → Type w} [Monad m] (p : α → m Bool) (as : Array α) (start := 0) (stop := as.size) : m Bool :=\n let rec @[specialize] any (i : USize) (stop : USize) : m Bool := do\n if i == stop then\n pure false\n else\n if (← p (as.uget i lcProof)) then\n pure true\n else\n any (i+1) stop\n if start < stop then\n let stop' := min stop as.size\n if start < stop' then\n any (USize.ofNat start) (USize.ofNat stop')\n else\n pure false\n else\n pure false", "start": [ 349, 1 ], "end": [ 366, 15 ], "kind": "commanddeclaration" }, { "full_name": "Array.anyM", "code": "@[implemented_by anyMUnsafe]\ndef anyM {α : Type u} {m : Type → Type w} [Monad m] (p : α → m Bool) (as : Array α) (start := 0) (stop := as.size) : m Bool :=\n let any (stop : Nat) (h : stop ≤ as.size) :=\n let rec loop (j : Nat) : m Bool := do\n if hlt : j < stop then\n have : j < as.size := Nat.lt_of_lt_of_le hlt h\n if (← p as[j]) then\n pure true\n else\n loop (j+1)\n else\n pure false\n termination_by stop - j\n decreasing_by simp_wf; decreasing_trivial_pre_omega\n loop start\n if h : stop ≤ as.size then\n any stop h\n else\n any as.size (Nat.le_refl _)", "start": [ 368, 1 ], "end": [ 386, 32 ], "kind": "commanddeclaration" }, { "full_name": "Array.allM", "code": "@[inline]\ndef allM {α : Type u} {m : Type → Type w} [Monad m] (p : α → m Bool) (as : Array α) (start := 0) (stop := as.size) : m Bool :=\n return !(← as.anyM (start := start) (stop := stop) fun v => return !(← p v))", "start": [ 388, 1 ], "end": [ 390, 79 ], "kind": "commanddeclaration" }, { "full_name": "Array.findSomeRevM?", "code": "@[inline]\ndef findSomeRevM? {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (f : α → m (Option β)) : m (Option β) :=\n let rec @[specialize] find : (i : Nat) → i ≤ as.size → m (Option β)\n | 0, _ => pure none\n | i+1, h => do\n have : i < as.size := Nat.lt_of_lt_of_le (Nat.lt_succ_self _) h\n let r ← f as[i]\n match r with\n | some _ => pure r\n | none =>\n have : i ≤ as.size := Nat.le_of_lt this\n find i this\n find as.size (Nat.le_refl _)", "start": [ 392, 1 ], "end": [ 404, 31 ], "kind": "commanddeclaration" }, { "full_name": "Array.findRevM?", "code": "@[inline]\ndef findRevM? {α : Type} {m : Type → Type w} [Monad m] (as : Array α) (p : α → m Bool) : m (Option α) :=\n as.findSomeRevM? fun a => return if (← p a) then some a else none", "start": [ 406, 1 ], "end": [ 408, 68 ], "kind": "commanddeclaration" }, { "full_name": "Array.forM", "code": "@[inline]\ndef forM {α : Type u} {m : Type v → Type w} [Monad m] (f : α → m PUnit) (as : Array α) (start := 0) (stop := as.size) : m PUnit :=\n as.foldlM (fun _ => f) ⟨⟩ start stop", "start": [ 410, 1 ], "end": [ 412, 39 ], "kind": "commanddeclaration" }, { "full_name": "Array.forRevM", "code": "@[inline]\ndef forRevM {α : Type u} {m : Type v → Type w} [Monad m] (f : α → m PUnit) (as : Array α) (start := as.size) (stop := 0) : m PUnit :=\n as.foldrM (fun a _ => f a) ⟨⟩ start stop", "start": [ 414, 1 ], "end": [ 416, 43 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldl", "code": "@[inline]\ndef foldl {α : Type u} {β : Type v} (f : β → α → β) (init : β) (as : Array α) (start := 0) (stop := as.size) : β :=\n Id.run <| as.foldlM f init start stop", "start": [ 418, 1 ], "end": [ 420, 40 ], "kind": "commanddeclaration" }, { "full_name": "Array.foldr", "code": "@[inline]\ndef foldr {α : Type u} {β : Type v} (f : α → β → β) (init : β) (as : Array α) (start := as.size) (stop := 0) : β :=\n Id.run <| as.foldrM f init start stop", "start": [ 422, 1 ], "end": [ 424, 40 ], "kind": "commanddeclaration" }, { "full_name": "Array.map", "code": "@[inline]\ndef map {α : Type u} {β : Type v} (f : α → β) (as : Array α) : Array β :=\n Id.run <| as.mapM f", "start": [ 426, 1 ], "end": [ 428, 22 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapIdx", "code": "@[inline]\ndef mapIdx {α : Type u} {β : Type v} (as : Array α) (f : Fin as.size → α → β) : Array β :=\n Id.run <| as.mapIdxM f", "start": [ 430, 1 ], "end": [ 432, 25 ], "kind": "commanddeclaration" }, { "full_name": "Array.zipWithIndex", "code": "def zipWithIndex (arr : Array α) : Array (α × Nat) :=\n arr.mapIdx fun i a => (a, i)", "start": [ 434, 1 ], "end": [ 436, 31 ], "kind": "commanddeclaration" }, { "full_name": "Array.find?", "code": "@[inline]\ndef find? {α : Type} (as : Array α) (p : α → Bool) : Option α :=\n Id.run <| as.findM? p", "start": [ 438, 1 ], "end": [ 440, 24 ], "kind": "commanddeclaration" }, { "full_name": "Array.findSome?", "code": "@[inline]\ndef findSome? {α : Type u} {β : Type v} (as : Array α) (f : α → Option β) : Option β :=\n Id.run <| as.findSomeM? f", "start": [ 442, 1 ], "end": [ 444, 28 ], "kind": "commanddeclaration" }, { "full_name": "Array.findSome!", "code": "@[inline]\ndef findSome! {α : Type u} {β : Type v} [Inhabited β] (a : Array α) (f : α → Option β) : β :=\n match findSome? a f with\n | some b => b\n | none => panic! \"failed to find element\"", "start": [ 446, 1 ], "end": [ 450, 46 ], "kind": "commanddeclaration" }, { "full_name": "Array.findSomeRev?", "code": "@[inline]\ndef findSomeRev? {α : Type u} {β : Type v} (as : Array α) (f : α → Option β) : Option β :=\n Id.run <| as.findSomeRevM? f", "start": [ 452, 1 ], "end": [ 454, 31 ], "kind": "commanddeclaration" }, { "full_name": "Array.findRev?", "code": "@[inline]\ndef findRev? {α : Type} (as : Array α) (p : α → Bool) : Option α :=\n Id.run <| as.findRevM? p", "start": [ 456, 1 ], "end": [ 458, 27 ], "kind": "commanddeclaration" }, { "full_name": "Array.findIdx?", "code": "@[inline]\ndef findIdx? {α : Type u} (as : Array α) (p : α → Bool) : Option Nat :=\n let rec loop (j : Nat) :=\n if h : j < as.size then\n if p as[j] then some j else loop (j + 1)\n else none\n termination_by as.size - j\n decreasing_by simp_wf; decreasing_trivial_pre_omega\n loop 0", "start": [ 460, 1 ], "end": [ 468, 9 ], "kind": "commanddeclaration" }, { "full_name": "Array.getIdx?", "code": "def getIdx? [BEq α] (a : Array α) (v : α) : Option Nat :=\na.findIdx? fun a => a == v", "start": [ 470, 1 ], "end": [ 471, 27 ], "kind": "commanddeclaration" }, { "full_name": "Array.any", "code": "@[inline]\ndef any (as : Array α) (p : α → Bool) (start := 0) (stop := as.size) : Bool :=\n Id.run <| as.anyM p start stop", "start": [ 473, 1 ], "end": [ 475, 33 ], "kind": "commanddeclaration" }, { "full_name": "Array.all", "code": "@[inline]\ndef all (as : Array α) (p : α → Bool) (start := 0) (stop := as.size) : Bool :=\n Id.run <| as.allM p start stop", "start": [ 477, 1 ], "end": [ 479, 33 ], "kind": "commanddeclaration" }, { "full_name": "Array.contains", "code": "def contains [BEq α] (as : Array α) (a : α) : Bool :=\n as.any (· == a)", "start": [ 481, 1 ], "end": [ 482, 18 ], "kind": "commanddeclaration" }, { "full_name": "Array.elem", "code": "def elem [BEq α] (a : α) (as : Array α) : Bool :=\n as.contains a", "start": [ 484, 1 ], "end": [ 485, 16 ], "kind": "commanddeclaration" }, { "full_name": "Array.getEvenElems", "code": "@[inline] def getEvenElems (as : Array α) : Array α :=\n (·.2) <| as.foldl (init := (true, Array.empty)) fun (even, r) a =>\n if even then\n (false, r.push a)\n else\n (true, r)", "start": [ 487, 1 ], "end": [ 492, 16 ], "kind": "commanddeclaration" }, { "full_name": "Array.toList", "code": "@[export lean_array_to_list]\ndef toList (as : Array α) : List α :=\n as.foldr List.cons []", "start": [ 494, 1 ], "end": [ 499, 24 ], "kind": "commanddeclaration" }, { "full_name": "Array.toListAppend", "code": "@[inline]\ndef toListAppend (as : Array α) (l : List α) : List α :=\n as.foldr List.cons l", "start": [ 501, 1 ], "end": [ 504, 23 ], "kind": "commanddeclaration" }, { "full_name": "Array.append", "code": "protected def append (as : Array α) (bs : Array α) : Array α :=\n bs.foldl (init := as) fun r v => r.push v", "start": [ 517, 1 ], "end": [ 518, 44 ], "kind": "commanddeclaration" }, { "full_name": "Array.appendList", "code": "protected def appendList (as : Array α) (bs : List α) : Array α :=\n bs.foldl (init := as) fun r v => r.push v", "start": [ 522, 1 ], "end": [ 523, 44 ], "kind": "commanddeclaration" }, { "full_name": "Array.concatMapM", "code": "@[inline]\ndef concatMapM [Monad m] (f : α → m (Array β)) (as : Array α) : m (Array β) :=\n as.foldlM (init := empty) fun bs a => do return bs ++ (← f a)", "start": [ 527, 1 ], "end": [ 529, 64 ], "kind": "commanddeclaration" }, { "full_name": "Array.concatMap", "code": "@[inline]\ndef concatMap (f : α → Array β) (as : Array α) : Array β :=\n as.foldl (init := empty) fun bs a => bs ++ f a", "start": [ 531, 1 ], "end": [ 533, 49 ], "kind": "commanddeclaration" }, { "full_name": "Array.flatten", "code": "def flatten (as : Array (Array α)) : Array α :=\n as.foldl (init := empty) fun r a => r ++ a", "start": [ 535, 1 ], "end": [ 540, 45 ], "kind": "commanddeclaration" }, { "full_name": "Array.isEqvAux", "code": "@[specialize]\ndef isEqvAux (a b : Array α) (hsz : a.size = b.size) (p : α → α → Bool) (i : Nat) : Bool :=\n if h : i < a.size then\n have : i < b.size := hsz ▸ h\n p a[i] b[i] && isEqvAux a b hsz p (i+1)\n else\n true\ntermination_by a.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 554, 1 ], "end": [ 562, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.isEqv", "code": "@[inline] def isEqv (a b : Array α) (p : α → α → Bool) : Bool :=\n if h : a.size = b.size then\n isEqvAux a b h p 0\n else\n false", "start": [ 564, 1 ], "end": [ 568, 10 ], "kind": "commanddeclaration" }, { "full_name": "Array.filter", "code": "@[inline]\ndef filter (p : α → Bool) (as : Array α) (start := 0) (stop := as.size) : Array α :=\n as.foldl (init := #[]) (start := start) (stop := stop) fun r a =>\n if p a then r.push a else r", "start": [ 573, 1 ], "end": [ 576, 32 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterM", "code": "@[inline]\ndef filterM [Monad m] (p : α → m Bool) (as : Array α) (start := 0) (stop := as.size) : m (Array α) :=\n as.foldlM (init := #[]) (start := start) (stop := stop) fun r a => do\n if (← p a) then return r.push a else return r", "start": [ 578, 1 ], "end": [ 581, 50 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterMapM", "code": "@[specialize]\ndef filterMapM [Monad m] (f : α → m (Option β)) (as : Array α) (start := 0) (stop := as.size) : m (Array β) :=\n as.foldlM (init := #[]) (start := start) (stop := stop) fun bs a => do\n match (← f a) with\n | some b => pure (bs.push b)\n | none => pure bs", "start": [ 583, 1 ], "end": [ 588, 24 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterMap", "code": "@[inline]\ndef filterMap (f : α → Option β) (as : Array α) (start := 0) (stop := as.size) : Array β :=\n Id.run <| as.filterMapM f (start := start) (stop := stop)", "start": [ 590, 1 ], "end": [ 592, 60 ], "kind": "commanddeclaration" }, { "full_name": "Array.getMax?", "code": "@[specialize]\ndef getMax? (as : Array α) (lt : α → α → Bool) : Option α :=\n if h : 0 < as.size then\n let a0 := as[0]\n some <| as.foldl (init := a0) (start := 1) fun best a =>\n if lt best a then a else best\n else\n none", "start": [ 594, 1 ], "end": [ 601, 9 ], "kind": "commanddeclaration" }, { "full_name": "Array.partition", "code": "@[inline]\ndef partition (p : α → Bool) (as : Array α) : Array α × Array α := Id.run do\n let mut bs := #[]\n let mut cs := #[]\n for a in as do\n if p a then\n bs := bs.push a\n else\n cs := cs.push a\n return (bs, cs)", "start": [ 603, 1 ], "end": [ 612, 18 ], "kind": "commanddeclaration" }, { "full_name": "Array.ext", "code": "theorem ext (a b : Array α)\n (h₁ : a.size = b.size)\n (h₂ : (i : Nat) → (hi₁ : i < a.size) → (hi₂ : i < b.size) → a[i] = b[i])\n : a = b", "start": [ 614, 1 ], "end": [ 647, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.extLit", "code": "theorem extLit {n : Nat}\n (a b : Array α)\n (hsz₁ : a.size = n) (hsz₂ : b.size = n)\n (h : (i : Nat) → (hi : i < n) → a.getLit i hsz₁ hi = b.getLit i hsz₂ hi) : a = b", "start": [ 649, 1 ], "end": [ 653, 71 ], "kind": "commanddeclaration" }, { "full_name": "Array.indexOfAux", "code": "def indexOfAux [BEq α] (a : Array α) (v : α) (i : Nat) : Option (Fin a.size) :=\n if h : i < a.size then\n let idx : Fin a.size := ⟨i, h⟩;\n if a.get idx == v then some idx\n else indexOfAux a v (i+1)\n else none\ntermination_by a.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 660, 1 ], "end": [ 667, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.indexOf?", "code": "def indexOf? [BEq α] (a : Array α) (v : α) : Option (Fin a.size) :=\n indexOfAux a v 0", "start": [ 669, 1 ], "end": [ 670, 19 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_swap", "code": "@[simp] theorem size_swap (a : Array α) (i j : Fin a.size) : (a.swap i j).size = a.size", "start": [ 672, 1 ], "end": [ 674, 26 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_pop", "code": "@[simp] theorem size_pop (a : Array α) : a.pop.size = a.size - 1", "start": [ 676, 1 ], "end": [ 679, 58 ], "kind": "commanddeclaration" }, { "full_name": "Array.reverse.termination", "code": "theorem reverse.termination {i j : Nat} (h : i < j) : j - 1 - (i + 1) < j - i", "start": [ 681, 1 ], "end": [ 683, 72 ], "kind": "commanddeclaration" }, { "full_name": "Array.reverse", "code": "def reverse (as : Array α) : Array α :=\n if h : as.size ≤ 1 then\n as\n else\n loop as 0 ⟨as.size - 1, Nat.pred_lt (mt (fun h : as.size = 0 => h ▸ by decide) h)⟩\nwhere\n loop (as : Array α) (i : Nat) (j : Fin as.size) :=\n if h : i < j then\n have := reverse.termination h\n let as := as.swap ⟨i, Nat.lt_trans h j.2⟩ j\n have : j-1 < as.size := by rw [size_swap]; exact Nat.lt_of_le_of_lt (Nat.pred_le _) j.2\n loop as (i+1) ⟨j-1, this⟩\n else\n as\ntermination_by j - i", "start": [ 685, 1 ], "end": [ 699, 21 ], "kind": "commanddeclaration" }, { "full_name": "Array.popWhile", "code": "def popWhile (p : α → Bool) (as : Array α) : Array α :=\n if h : as.size > 0 then\n if p (as.get ⟨as.size - 1, Nat.sub_lt h (by decide)⟩) then\n popWhile p as.pop\n else\n as\n else\n as\ntermination_by as.size\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 701, 1 ], "end": [ 710, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.takeWhile", "code": "def takeWhile (p : α → Bool) (as : Array α) : Array α :=\n let rec go (i : Nat) (r : Array α) : Array α :=\n if h : i < as.size then\n let a := as.get ⟨i, h⟩\n if p a then\n go (i+1) (r.push a)\n else\n r\n else\n r\n termination_by as.size - i\n decreasing_by simp_wf; decreasing_trivial_pre_omega\n go 0 #[]", "start": [ 712, 1 ], "end": [ 724, 11 ], "kind": "commanddeclaration" }, { "full_name": "Array.feraseIdx", "code": "def feraseIdx (a : Array α) (i : Fin a.size) : Array α :=\n if h : i.val + 1 < a.size then\n let a' := a.swap ⟨i.val + 1, h⟩ i\n let i' : Fin a'.size := ⟨i.val + 1, by simp [a', h]⟩\n a'.feraseIdx i'\n else\n a.pop\ntermination_by a.size - i.val\ndecreasing_by simp_wf; exact Nat.sub_succ_lt_self _ _ i.isLt", "start": [ 726, 1 ], "end": [ 738, 61 ], "kind": "commanddeclaration" }, { "full_name": "Array.size_feraseIdx", "code": "theorem size_feraseIdx (a : Array α) (i : Fin a.size) : (a.feraseIdx i).size = a.size - 1", "start": [ 740, 1 ], "end": [ 747, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.eraseIdx", "code": "def eraseIdx (a : Array α) (i : Nat) : Array α :=\n if h : i < a.size then a.feraseIdx ⟨i, h⟩ else a", "start": [ 749, 1 ], "end": [ 754, 51 ], "kind": "commanddeclaration" }, { "full_name": "Array.erase", "code": "def erase [BEq α] (as : Array α) (a : α) : Array α :=\n match as.indexOf? a with\n | none => as\n | some i => as.feraseIdx i", "start": [ 756, 1 ], "end": [ 759, 29 ], "kind": "commanddeclaration" }, { "full_name": "Array.insertAt", "code": "@[inline] def insertAt (as : Array α) (i : Fin (as.size + 1)) (a : α) : Array α :=\n let rec loop (as : Array α) (j : Fin as.size) :=\n if i.1 < j then\n let j' := ⟨j-1, Nat.lt_of_le_of_lt (Nat.pred_le _) j.2⟩\n let as := as.swap j' j\n loop as ⟨j', by rw [size_swap]; exact j'.2⟩\n else\n as\n termination_by j.1\n decreasing_by simp_wf; decreasing_trivial_pre_omega\n let j := as.size\n let as := as.push a\n loop as ⟨j, size_push .. ▸ j.lt_succ_self⟩", "start": [ 761, 1 ], "end": [ 774, 45 ], "kind": "commanddeclaration" }, { "full_name": "Array.insertAt!", "code": "def insertAt! (as : Array α) (i : Nat) (a : α) : Array α :=\n if h : i ≤ as.size then\n insertAt as ⟨i, Nat.lt_succ_of_le h⟩ a\n else panic! \"invalid index\"", "start": [ 776, 1 ], "end": [ 780, 30 ], "kind": "commanddeclaration" }, { "full_name": "Array.toListLitAux", "code": "def toListLitAux (a : Array α) (n : Nat) (hsz : a.size = n) : ∀ (i : Nat), i ≤ a.size → List α → List α\n | 0, _, acc => acc\n | (i+1), hi, acc => toListLitAux a n hsz i (Nat.le_of_succ_le hi) (a.getLit i hsz (Nat.lt_of_lt_of_eq (Nat.lt_of_lt_of_le (Nat.lt_succ_self i) hi) hsz) :: acc)", "start": [ 782, 1 ], "end": [ 784, 162 ], "kind": "commanddeclaration" }, { "full_name": "Array.toArrayLit", "code": "def toArrayLit (a : Array α) (n : Nat) (hsz : a.size = n) : Array α :=\n List.toArray <| toListLitAux a n hsz n (hsz ▸ Nat.le_refl _) []", "start": [ 786, 1 ], "end": [ 787, 66 ], "kind": "commanddeclaration" }, { "full_name": "Array.ext'", "code": "theorem ext' {as bs : Array α} (h : as.data = bs.data) : as = bs", "start": [ 789, 1 ], "end": [ 790, 40 ], "kind": "commanddeclaration" }, { "full_name": "Array.toArrayAux_eq", "code": "@[simp] theorem toArrayAux_eq (as : List α) (acc : Array α) : (as.toArrayAux acc).data = acc.data ++ as", "start": [ 792, 1 ], "end": [ 793, 116 ], "kind": "commanddeclaration" }, { "full_name": "Array.data_toArray", "code": "theorem data_toArray (as : List α) : as.toArray.data = as", "start": [ 795, 1 ], "end": [ 796, 37 ], "kind": "commanddeclaration" }, { "full_name": "Array.toArrayLit_eq", "code": "theorem toArrayLit_eq (as : Array α) (n : Nat) (hsz : as.size = n) : as = toArrayLit as n hsz", "start": [ 798, 1 ], "end": [ 811, 88 ], "kind": "commanddeclaration" }, { "full_name": "Array.isPrefixOfAux", "code": "def isPrefixOfAux [BEq α] (as bs : Array α) (hle : as.size ≤ bs.size) (i : Nat) : Bool :=\n if h : i < as.size then\n let a := as[i]\n have : i < bs.size := Nat.lt_of_lt_of_le h hle\n let b := bs[i]\n if a == b then\n isPrefixOfAux as bs hle (i+1)\n else\n false\n else\n true\ntermination_by as.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 813, 1 ], "end": [ 825, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.isPrefixOf", "code": "def isPrefixOf [BEq α] (as bs : Array α) : Bool :=\n if h : as.size ≤ bs.size then\n isPrefixOfAux as bs h 0\n else\n false", "start": [ 827, 1 ], "end": [ 833, 10 ], "kind": "commanddeclaration" }, { "full_name": "Array.allDiffAuxAux", "code": "private def allDiffAuxAux [BEq α] (as : Array α) (a : α) : forall (i : Nat), i < as.size → Bool\n | 0, _ => true\n | i+1, h =>\n have : i < as.size := Nat.lt_trans (Nat.lt_succ_self _) h;\n a != as[i] && allDiffAuxAux as a i this", "start": [ 835, 1 ], "end": [ 839, 44 ], "kind": "commanddeclaration" }, { "full_name": "Array.allDiffAux", "code": "private def allDiffAux [BEq α] (as : Array α) (i : Nat) : Bool :=\n if h : i < as.size then\n allDiffAuxAux as as[i] i h && allDiffAux as (i+1)\n else\n true\ntermination_by as.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 841, 1 ], "end": [ 847, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.allDiff", "code": "def allDiff [BEq α] (as : Array α) : Bool :=\n allDiffAux as 0", "start": [ 849, 1 ], "end": [ 850, 18 ], "kind": "commanddeclaration" }, { "full_name": "Array.zipWithAux", "code": "@[specialize] def zipWithAux (f : α → β → γ) (as : Array α) (bs : Array β) (i : Nat) (cs : Array γ) : Array γ :=\n if h : i < as.size then\n let a := as[i]\n if h : i < bs.size then\n let b := bs[i]\n zipWithAux f as bs (i+1) <| cs.push <| f a b\n else\n cs\n else\n cs\ntermination_by as.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 852, 1 ], "end": [ 863, 52 ], "kind": "commanddeclaration" }, { "full_name": "Array.zipWith", "code": "@[inline] def zipWith (as : Array α) (bs : Array β) (f : α → β → γ) : Array γ :=\n zipWithAux f as bs 0 #[]", "start": [ 865, 1 ], "end": [ 866, 27 ], "kind": "commanddeclaration" }, { "full_name": "Array.zip", "code": "def zip (as : Array α) (bs : Array β) : Array (α × β) :=\n zipWith as bs Prod.mk", "start": [ 868, 1 ], "end": [ 869, 24 ], "kind": "commanddeclaration" }, { "full_name": "Array.unzip", "code": "def unzip (as : Array (α × β)) : Array α × Array β :=\n as.foldl (init := (#[], #[])) fun (as, bs) (a, b) => (as.push a, bs.push b)", "start": [ 871, 1 ], "end": [ 872, 78 ], "kind": "commanddeclaration" }, { "full_name": "Array.split", "code": "def split (as : Array α) (p : α → Bool) : Array α × Array α :=\n as.foldl (init := (#[], #[])) fun (as, bs) a =>\n if p a then (as.push a, bs) else (as, bs.push a)", "start": [ 874, 1 ], "end": [ 876, 53 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Option/BasicAux.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean", ".lake/packages/lean4/src/lean/Init/Util.lean" ]
[ { "full_name": "Option.get!", "code": "@[inline] def get! {α : Type u} [Inhabited α] : Option α → α\n | some x => x\n | none => panic! \"value is none\"", "start": [ 14, 1 ], "end": [ 16, 37 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Conv.lean
[ ".lake/packages/lean4/src/lean/Init/Tactics.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Array/Subarray.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean" ]
[ { "full_name": "Subarray", "code": "structure Subarray (α : Type u) where\n array : Array α\n start : Nat\n stop : Nat\n start_le_stop : start ≤ stop\n stop_le_array_size : stop ≤ array.size", "start": [ 11, 1 ], "end": [ 16, 41 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.as", "code": "@[deprecated Subarray.array (since := \"2024-04-13\")]\nabbrev Subarray.as (s : Subarray α) : Array α := s.array", "start": [ 18, 1 ], "end": [ 19, 57 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.h₁", "code": "@[deprecated Subarray.start_le_stop (since := \"2024-04-13\")]\ntheorem Subarray.h₁ (s : Subarray α) : s.start ≤ s.stop", "start": [ 21, 1 ], "end": [ 22, 75 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.h₂", "code": "@[deprecated Subarray.stop_le_array_size (since := \"2024-04-13\")]\ntheorem Subarray.h₂ (s : Subarray α) : s.stop ≤ s.array.size", "start": [ 24, 1 ], "end": [ 25, 85 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.size", "code": "def size (s : Subarray α) : Nat :=\n s.stop - s.start", "start": [ 29, 1 ], "end": [ 30, 19 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.size_le_array_size", "code": "theorem size_le_array_size {s : Subarray α} : s.size ≤ s.array.size", "start": [ 32, 1 ], "end": [ 36, 13 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.get", "code": "def get (s : Subarray α) (i : Fin s.size) : α :=\n have : s.start + i.val < s.array.size := by\n apply Nat.lt_of_lt_of_le _ s.stop_le_array_size\n have := i.isLt\n simp [size] at this\n rw [Nat.add_comm]\n exact Nat.add_lt_of_lt_sub this\n s.array[s.start + i.val]", "start": [ 38, 1 ], "end": [ 45, 27 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.getD", "code": "@[inline] def getD (s : Subarray α) (i : Nat) (v₀ : α) : α :=\n if h : i < s.size then s.get ⟨i, h⟩ else v₀", "start": [ 50, 1 ], "end": [ 51, 46 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.get!", "code": "abbrev get! [Inhabited α] (s : Subarray α) (i : Nat) : α :=\n getD s i default", "start": [ 53, 1 ], "end": [ 54, 19 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.popFront", "code": "def popFront (s : Subarray α) : Subarray α :=\n if h : s.start < s.stop then\n { s with start := s.start + 1, start_le_stop := Nat.le_of_lt_succ (Nat.add_lt_add_right h 1) }\n else\n s", "start": [ 56, 1 ], "end": [ 60, 6 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.forInUnsafe", "code": "@[inline] unsafe def forInUnsafe {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (s : Subarray α) (b : β) (f : α → β → m (ForInStep β)) : m β :=\n let sz := USize.ofNat s.stop\n let rec @[specialize] loop (i : USize) (b : β) : m β := do\n if i < sz then\n let a := s.array.uget i lcProof\n match (← f a b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop (i+1) b\n else\n pure b\n loop (USize.ofNat s.start) b", "start": [ 62, 1 ], "end": [ 72, 31 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.forIn", "code": "@[implemented_by Subarray.forInUnsafe]\nprotected opaque forIn {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (s : Subarray α) (b : β) (f : α → β → m (ForInStep β)) : m β :=\n pure b", "start": [ 75, 1 ], "end": [ 77, 9 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.foldlM", "code": "@[inline]\ndef foldlM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : β → α → m β) (init : β) (as : Subarray α) : m β :=\n as.array.foldlM f (init := init) (start := as.start) (stop := as.stop)", "start": [ 82, 1 ], "end": [ 84, 73 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.foldrM", "code": "@[inline]\ndef foldrM {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (f : α → β → m β) (init : β) (as : Subarray α) : m β :=\n as.array.foldrM f (init := init) (start := as.stop) (stop := as.start)", "start": [ 86, 1 ], "end": [ 88, 73 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.anyM", "code": "@[inline]\ndef anyM {α : Type u} {m : Type → Type w} [Monad m] (p : α → m Bool) (as : Subarray α) : m Bool :=\n as.array.anyM p (start := as.start) (stop := as.stop)", "start": [ 90, 1 ], "end": [ 92, 56 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.allM", "code": "@[inline]\ndef allM {α : Type u} {m : Type → Type w} [Monad m] (p : α → m Bool) (as : Subarray α) : m Bool :=\n as.array.allM p (start := as.start) (stop := as.stop)", "start": [ 94, 1 ], "end": [ 96, 56 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.forM", "code": "@[inline]\ndef forM {α : Type u} {m : Type v → Type w} [Monad m] (f : α → m PUnit) (as : Subarray α) : m PUnit :=\n as.array.forM f (start := as.start) (stop := as.stop)", "start": [ 98, 1 ], "end": [ 100, 56 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.forRevM", "code": "@[inline]\ndef forRevM {α : Type u} {m : Type v → Type w} [Monad m] (f : α → m PUnit) (as : Subarray α) : m PUnit :=\n as.array.forRevM f (start := as.stop) (stop := as.start)", "start": [ 102, 1 ], "end": [ 104, 59 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.foldl", "code": "@[inline]\ndef foldl {α : Type u} {β : Type v} (f : β → α → β) (init : β) (as : Subarray α) : β :=\n Id.run <| as.foldlM f (init := init)", "start": [ 106, 1 ], "end": [ 108, 39 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.foldr", "code": "@[inline]\ndef foldr {α : Type u} {β : Type v} (f : α → β → β) (init : β) (as : Subarray α) : β :=\n Id.run <| as.foldrM f (init := init)", "start": [ 110, 1 ], "end": [ 112, 39 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.any", "code": "@[inline]\ndef any {α : Type u} (p : α → Bool) (as : Subarray α) : Bool :=\n Id.run <| as.anyM p", "start": [ 114, 1 ], "end": [ 116, 22 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.all", "code": "@[inline]\ndef all {α : Type u} (p : α → Bool) (as : Subarray α) : Bool :=\n Id.run <| as.allM p", "start": [ 118, 1 ], "end": [ 120, 22 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.findSomeRevM?", "code": "@[inline]\ndef findSomeRevM? {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Subarray α) (f : α → m (Option β)) : m (Option β) :=\n let rec @[specialize] find : (i : Nat) → i ≤ as.size → m (Option β)\n | 0, _ => pure none\n | i+1, h => do\n have : i < as.size := Nat.lt_of_lt_of_le (Nat.lt_succ_self _) h\n let r ← f as[i]\n match r with\n | some _ => pure r\n | none =>\n have : i ≤ as.size := Nat.le_of_lt this\n find i this\n find as.size (Nat.le_refl _)", "start": [ 122, 1 ], "end": [ 134, 31 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.findRevM?", "code": "@[inline]\ndef findRevM? {α : Type} {m : Type → Type w} [Monad m] (as : Subarray α) (p : α → m Bool) : m (Option α) :=\n as.findSomeRevM? fun a => return if (← p a) then some a else none", "start": [ 136, 1 ], "end": [ 138, 68 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.findRev?", "code": "@[inline]\ndef findRev? {α : Type} (as : Subarray α) (p : α → Bool) : Option α :=\n Id.run <| as.findRevM? p", "start": [ 140, 1 ], "end": [ 142, 27 ], "kind": "commanddeclaration" }, { "full_name": "Array.toSubarray", "code": "def toSubarray (as : Array α) (start : Nat := 0) (stop : Nat := as.size) : Subarray α :=\n if h₂ : stop ≤ as.size then\n if h₁ : start ≤ stop then\n { array := as, start := start, stop := stop,\n start_le_stop := h₁, stop_le_array_size := h₂ }\n else\n { array := as, start := stop, stop := stop,\n start_le_stop := Nat.le_refl _, stop_le_array_size := h₂ }\n else\n if h₁ : start ≤ as.size then\n { array := as,\n start := start,\n stop := as.size,\n start_le_stop := h₁,\n stop_le_array_size := Nat.le_refl _ }\n else\n { array := as,\n start := as.size,\n stop := as.size,\n start_le_stop := Nat.le_refl _,\n stop_le_array_size := Nat.le_refl _ }", "start": [ 149, 1 ], "end": [ 169, 46 ], "kind": "commanddeclaration" }, { "full_name": "Array.ofSubarray", "code": "@[coe]\ndef ofSubarray (s : Subarray α) : Array α := Id.run do\n let mut as := mkEmpty (s.stop - s.start)\n for a in s do\n as := as.push a\n return as", "start": [ 171, 1 ], "end": [ 176, 12 ], "kind": "commanddeclaration" }, { "full_name": "Subarray.toArray", "code": "def Subarray.toArray (s : Subarray α) : Array α :=\n Array.ofSubarray s", "start": [ 191, 1 ], "end": [ 192, 21 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Meta.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean", ".lake/packages/lean4/src/lean/Init/MetaTypes.lean", ".lake/packages/lean4/src/lean/Init/Data/Option/BasicAux.lean" ]
[ { "full_name": "Lean.version.getMajor", "code": "@[extern \"lean_version_get_major\"]\nprivate opaque version.getMajor (u : Unit) : Nat", "start": [ 15, 1 ], "end": [ 16, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.major", "code": "def version.major : Nat := version.getMajor ()", "start": [ 17, 1 ], "end": [ 17, 47 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.getMinor", "code": "@[extern \"lean_version_get_minor\"]\nprivate opaque version.getMinor (u : Unit) : Nat", "start": [ 19, 1 ], "end": [ 20, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.minor", "code": "def version.minor : Nat := version.getMinor ()", "start": [ 21, 1 ], "end": [ 21, 47 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.getPatch", "code": "@[extern \"lean_version_get_patch\"]\nprivate opaque version.getPatch (u : Unit) : Nat", "start": [ 23, 1 ], "end": [ 24, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.patch", "code": "def version.patch : Nat := version.getPatch ()", "start": [ 25, 1 ], "end": [ 25, 47 ], "kind": "commanddeclaration" }, { "full_name": "Lean.getGithash", "code": "@[extern \"lean_get_githash\"]\nopaque getGithash (u : Unit) : String", "start": [ 27, 1 ], "end": [ 28, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.githash", "code": "def githash : String := getGithash ()", "start": [ 29, 1 ], "end": [ 29, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.getIsRelease", "code": "@[extern \"lean_version_get_is_release\"]\nopaque version.getIsRelease (u : Unit) : Bool", "start": [ 31, 1 ], "end": [ 32, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.isRelease", "code": "def version.isRelease : Bool := version.getIsRelease ()", "start": [ 33, 1 ], "end": [ 33, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.getSpecialDesc", "code": "@[extern \"lean_version_get_special_desc\"]\nopaque version.getSpecialDesc (u : Unit) : String", "start": [ 35, 1 ], "end": [ 37, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.version.specialDesc", "code": "def version.specialDesc : String := version.getSpecialDesc ()", "start": [ 38, 1 ], "end": [ 38, 62 ], "kind": "commanddeclaration" }, { "full_name": "Lean.versionStringCore", "code": "def versionStringCore :=\n toString version.major ++ \".\" ++ toString version.minor ++ \".\" ++ toString version.patch", "start": [ 40, 1 ], "end": [ 41, 91 ], "kind": "commanddeclaration" }, { "full_name": "Lean.versionString", "code": "def versionString :=\n if version.specialDesc ≠ \"\" then\n versionStringCore ++ \"-\" ++ version.specialDesc\n else if version.isRelease then\n versionStringCore\n else\n versionStringCore ++ \", commit \" ++ githash", "start": [ 43, 1 ], "end": [ 49, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.origin", "code": "def origin :=\n \"leanprover/lean4\"", "start": [ 51, 1 ], "end": [ 52, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.toolchain", "code": "def toolchain :=\n if version.specialDesc ≠ \"\" then\n if version.isRelease then\n origin ++ \":\" ++ versionStringCore ++ \"-\" ++ version.specialDesc\n else\n origin ++ \":\" ++ version.specialDesc\n else if version.isRelease then\n origin ++ \":\" ++ versionStringCore\n else\n \"\"", "start": [ 54, 1 ], "end": [ 63, 7 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Internal.isStage0", "code": "@[extern \"lean_internal_is_stage0\"]\nopaque Internal.isStage0 (u : Unit) : Bool", "start": [ 65, 1 ], "end": [ 66, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Internal.hasLLVMBackend", "code": "@[extern \"lean_internal_has_llvm_backend\"]\nopaque Internal.hasLLVMBackend (u : Unit) : Bool", "start": [ 68, 1 ], "end": [ 75, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isGreek", "code": "def isGreek (c : Char) : Bool :=\n 0x391 ≤ c.val && c.val ≤ 0x3dd", "start": [ 77, 1 ], "end": [ 79, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isLetterLike", "code": "def isLetterLike (c : Char) : Bool :=\n (0x3b1 ≤ c.val && c.val ≤ 0x3c9 && c.val ≠ 0x3bb) || (0x391 ≤ c.val && c.val ≤ 0x3A9 && c.val ≠ 0x3A0 && c.val ≠ 0x3A3) || (0x3ca ≤ c.val && c.val ≤ 0x3fb) || (0x1f00 ≤ c.val && c.val ≤ 0x1ffe) || (0x2100 ≤ c.val && c.val ≤ 0x214f) || (0x1d49c ≤ c.val && c.val ≤ 0x1d59f)", "start": [ 81, 1 ], "end": [ 87, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isNumericSubscript", "code": "def isNumericSubscript (c : Char) : Bool :=\n 0x2080 ≤ c.val && c.val ≤ 0x2089", "start": [ 89, 1 ], "end": [ 90, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isSubScriptAlnum", "code": "def isSubScriptAlnum (c : Char) : Bool :=\n isNumericSubscript c ||\n (0x2090 ≤ c.val && c.val ≤ 0x209c) ||\n (0x1d62 ≤ c.val && c.val ≤ 0x1d6a)", "start": [ 92, 1 ], "end": [ 95, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isIdFirst", "code": "def isIdFirst (c : Char) : Bool :=\n c.isAlpha || c = '_' || isLetterLike c", "start": [ 97, 1 ], "end": [ 98, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isIdRest", "code": "def isIdRest (c : Char) : Bool :=\n c.isAlphanum || c = '_' || c = '\\'' || c == '!' || c == '?' || isLetterLike c || isSubScriptAlnum c", "start": [ 100, 1 ], "end": [ 101, 102 ], "kind": "commanddeclaration" }, { "full_name": "Lean.idBeginEscape", "code": "def idBeginEscape := '«'", "start": [ 103, 1 ], "end": [ 103, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.idEndEscape", "code": "def idEndEscape := '»'", "start": [ 104, 1 ], "end": [ 104, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isIdBeginEscape", "code": "def isIdBeginEscape (c : Char) : Bool := c = idBeginEscape", "start": [ 105, 1 ], "end": [ 105, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.isIdEndEscape", "code": "def isIdEndEscape (c : Char) : Bool := c = idEndEscape", "start": [ 106, 1 ], "end": [ 106, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.getRoot", "code": "def getRoot : Name → Name\n | anonymous => anonymous\n | n@(str anonymous _) => n\n | n@(num anonymous _) => n\n | str n _ => getRoot n\n | num n _ => getRoot n", "start": [ 109, 1 ], "end": [ 114, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isInaccessibleUserName", "code": "@[export lean_is_inaccessible_user_name]\ndef isInaccessibleUserName : Name → Bool\n | Name.str _ s => s.contains '✝' || s == \"_inaccessible\"\n | Name.num p _ => isInaccessibleUserName p\n | _ => false", "start": [ 116, 1 ], "end": [ 120, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.escapePart", "code": "def escapePart (s : String) : Option String :=\n if s.length > 0 && isIdFirst (s.get 0) && (s.toSubstring.drop 1).all isIdRest then s\n else if s.any isIdEndEscape then none\n else some <| idBeginEscape.toString ++ s ++ idEndEscape.toString", "start": [ 122, 1 ], "end": [ 125, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.toStringWithSep", "code": "def toStringWithSep : Name → String\n | anonymous => \"[anonymous]\"\n | str anonymous s => maybeEscape s\n | num anonymous v => toString v\n | str n s => toStringWithSep n ++ sep ++ maybeEscape s\n | num n v => toStringWithSep n ++ sep ++ Nat.repr v\nwhere\n maybeEscape s := if escape then escapePart s |>.getD s else s", "start": [ 129, 1 ], "end": [ 136, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.toString", "code": "protected def toString (n : Name) (escape := true) : String :=\n toStringWithSep \".\" (escape && !n.isInaccessibleUserName && !n.hasMacroScopes && !maybePseudoSyntax) n\nwhere\n maybePseudoSyntax :=\n if let .str _ s := n.getRoot then\n \"#\".isPrefixOf s || \"?\".isPrefixOf s\n else\n false", "start": [ 138, 1 ], "end": [ 147, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.hasNum", "code": "private def hasNum : Name → Bool\n | anonymous => false\n | num .. => true\n | str p .. => hasNum p", "start": [ 152, 1 ], "end": [ 155, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.reprPrec", "code": "protected def reprPrec (n : Name) (prec : Nat) : Std.Format :=\n match n with\n | anonymous => Std.Format.text \"Lean.Name.anonymous\"\n | num p i => Repr.addAppParen (\"Lean.Name.mkNum \" ++ Name.reprPrec p max_prec ++ \" \" ++ repr i) prec\n | str p s =>\n if p.hasNum then\n Repr.addAppParen (\"Lean.Name.mkStr \" ++ Name.reprPrec p max_prec ++ \" \" ++ repr s) prec\n else\n Std.Format.text \"`\" ++ n.toString", "start": [ 157, 1 ], "end": [ 165, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.capitalize", "code": "def capitalize : Name → Name\n | .str p s => .str p s.capitalize\n | n => n", "start": [ 170, 1 ], "end": [ 172, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.replacePrefix", "code": "def replacePrefix : Name → Name → Name → Name\n | anonymous, anonymous, newP => newP\n | anonymous, _, _ => anonymous\n | n@(str p s), queryP, newP => if n == queryP then newP else Name.mkStr (p.replacePrefix queryP newP) s\n | n@(num p s), queryP, newP => if n == queryP then newP else Name.mkNum (p.replacePrefix queryP newP) s", "start": [ 174, 1 ], "end": [ 178, 109 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.eraseSuffix?", "code": "def eraseSuffix? : Name → Name → Option Name\n | n, anonymous => some n\n | str p s, str p' s' => if s == s' then eraseSuffix? p p' else none\n | num p s, num p' s' => if s == s' then eraseSuffix? p p' else none\n | _, _ => none", "start": [ 180, 1 ], "end": [ 187, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.modifyBase", "code": "@[inline] def modifyBase (n : Name) (f : Name → Name) : Name :=\n if n.hasMacroScopes then\n let view := extractMacroScopes n\n { view with name := f view.name }.review\n else\n f n", "start": [ 189, 1 ], "end": [ 195, 8 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.appendAfter", "code": "@[export lean_name_append_after]\ndef appendAfter (n : Name) (suffix : String) : Name :=\n n.modifyBase fun\n | str p s => Name.mkStr p (s ++ suffix)\n | n => Name.mkStr n suffix", "start": [ 197, 1 ], "end": [ 201, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.appendIndexAfter", "code": "@[export lean_name_append_index_after]\ndef appendIndexAfter (n : Name) (idx : Nat) : Name :=\n n.modifyBase fun\n | str p s => Name.mkStr p (s ++ \"_\" ++ toString idx)\n | n => Name.mkStr n (\"_\" ++ toString idx)", "start": [ 203, 1 ], "end": [ 207, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.appendBefore", "code": "@[export lean_name_append_before]\ndef appendBefore (n : Name) (pre : String) : Name :=\n n.modifyBase fun\n | anonymous => Name.mkStr anonymous pre\n | str p s => Name.mkStr p (pre ++ s)\n | num p n => Name.mkNum (Name.mkStr p pre) n", "start": [ 209, 1 ], "end": [ 214, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.beq_iff_eq", "code": "protected theorem beq_iff_eq {m n : Name} : m == n ↔ m = n", "start": [ 216, 1 ], "end": [ 218, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.NameGenerator.curr", "code": "@[inline] def curr (g : NameGenerator) : Name :=\n Name.mkNum g.namePrefix g.idx", "start": [ 231, 1 ], "end": [ 232, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.NameGenerator.next", "code": "@[inline] def next (g : NameGenerator) : NameGenerator :=\n { g with idx := g.idx + 1 }", "start": [ 234, 1 ], "end": [ 235, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.NameGenerator.mkChild", "code": "@[inline] def mkChild (g : NameGenerator) : NameGenerator × NameGenerator :=\n ({ namePrefix := Name.mkNum g.namePrefix g.idx, idx := 1 },\n { g with idx := g.idx + 1 })", "start": [ 237, 1 ], "end": [ 239, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.MonadNameGenerator", "code": "class MonadNameGenerator (m : Type → Type) where\n getNGen : m NameGenerator\n setNGen : NameGenerator → m Unit", "start": [ 243, 1 ], "end": [ 245, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkFreshId", "code": "def mkFreshId {m : Type → Type} [Monad m] [MonadNameGenerator m] : m Name := do\n let ngen ← getNGen\n let r := ngen.curr\n setNGen ngen.next\n pure r", "start": [ 249, 1 ], "end": [ 253, 9 ], "kind": "commanddeclaration" }, { "full_name": "Lean.monadNameGeneratorLift", "code": "instance monadNameGeneratorLift (m n : Type → Type) [MonadLift m n] [MonadNameGenerator m] : MonadNameGenerator n := {\n getNGen := liftM (getNGen : m _),\n setNGen := fun ngen => liftM (setNGen ngen : m _)\n}", "start": [ 255, 1 ], "end": [ 258, 2 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Term", "code": "abbrev Term := TSyntax `term", "start": [ 266, 1 ], "end": [ 266, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Command", "code": "abbrev Command := TSyntax `command", "start": [ 267, 1 ], "end": [ 267, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Level", "code": "protected abbrev Level := TSyntax `level", "start": [ 268, 1 ], "end": [ 268, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Tactic", "code": "protected abbrev Tactic := TSyntax `tactic", "start": [ 269, 1 ], "end": [ 269, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Prec", "code": "abbrev Prec := TSyntax `prec", "start": [ 270, 1 ], "end": [ 270, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Prio", "code": "abbrev Prio := TSyntax `prio", "start": [ 271, 1 ], "end": [ 271, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.Ident", "code": "abbrev Ident := TSyntax identKind", "start": [ 272, 1 ], "end": [ 272, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.StrLit", "code": "abbrev StrLit := TSyntax strLitKind", "start": [ 273, 1 ], "end": [ 273, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.CharLit", "code": "abbrev CharLit := TSyntax charLitKind", "start": [ 274, 1 ], "end": [ 274, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.NameLit", "code": "abbrev NameLit := TSyntax nameLitKind", "start": [ 275, 1 ], "end": [ 275, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.ScientificLit", "code": "abbrev ScientificLit := TSyntax scientificLitKind", "start": [ 276, 1 ], "end": [ 276, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.NumLit", "code": "abbrev NumLit := TSyntax numLitKind", "start": [ 277, 1 ], "end": [ 277, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.HygieneInfo", "code": "abbrev HygieneInfo := TSyntax hygieneInfoKind", "start": [ 278, 1 ], "end": [ 278, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.structEq", "code": "partial def structEq : Syntax → Syntax → Bool\n | Syntax.missing, Syntax.missing => true\n | Syntax.node _ k args, Syntax.node _ k' args' => k == k' && args.isEqv args' structEq\n | Syntax.atom _ val, Syntax.atom _ val' => val == val'\n | Syntax.ident _ rawVal val preresolved, Syntax.ident _ rawVal' val' preresolved' => rawVal == rawVal' && val == val' && preresolved == preresolved'\n | _, _ => false", "start": [ 338, 1 ], "end": [ 344, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getTailInfo?", "code": "partial def getTailInfo? : Syntax → Option SourceInfo\n | atom info _ => info\n | ident info .. => info\n | node SourceInfo.none _ args =>\n args.findSomeRev? getTailInfo?\n | node info _ _ => info\n | _ => none", "start": [ 349, 1 ], "end": [ 355, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getTailInfo", "code": "def getTailInfo (stx : Syntax) : SourceInfo :=\n stx.getTailInfo?.getD SourceInfo.none", "start": [ 357, 1 ], "end": [ 358, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getTrailingSize", "code": "def getTrailingSize (stx : Syntax) : Nat :=\n match stx.getTailInfo? with\n | some (SourceInfo.original (trailing := trailing) ..) => trailing.bsize\n | _ => 0", "start": [ 360, 1 ], "end": [ 363, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getSubstring?", "code": "def getSubstring? (stx : Syntax) (withLeading := true) (withTrailing := true) : Option Substring :=\n match stx.getHeadInfo, stx.getTailInfo with\n | SourceInfo.original lead startPos _ _, SourceInfo.original _ _ trail stopPos =>\n some {\n str := lead.str\n startPos := if withLeading then lead.startPos else startPos\n stopPos := if withTrailing then trail.stopPos else stopPos\n }\n | _, _ => none", "start": [ 365, 1 ], "end": [ 376, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.updateLast", "code": "@[specialize] private partial def updateLast {α} [Inhabited α] (a : Array α) (f : α → Option α) (i : Nat) : Option (Array α) :=\n if i == 0 then\n none\n else\n let i := i - 1\n let v := a[i]!\n match f v with\n | some v => some <| a.set! i v\n | none => updateLast a f i", "start": [ 378, 1 ], "end": [ 386, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setTailInfoAux", "code": "partial def setTailInfoAux (info : SourceInfo) : Syntax → Option Syntax\n | atom _ val => some <| atom info val\n | ident _ rawVal val pre => some <| ident info rawVal val pre\n | node info k args =>\n match updateLast args (setTailInfoAux info) args.size with\n | some args => some <| node info k args\n | none => none\n | _ => none", "start": [ 388, 1 ], "end": [ 395, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setTailInfo", "code": "def setTailInfo (stx : Syntax) (info : SourceInfo) : Syntax :=\n match setTailInfoAux info stx with\n | some stx => stx\n | none => stx", "start": [ 397, 1 ], "end": [ 400, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.unsetTrailing", "code": "def unsetTrailing (stx : Syntax) : Syntax :=\n match stx.getTailInfo with\n | SourceInfo.original lead pos _ endPos => stx.setTailInfo (SourceInfo.original lead pos \"\".toSubstring endPos)\n | _ => stx", "start": [ 402, 1 ], "end": [ 405, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.updateFirst", "code": "@[specialize] private partial def updateFirst {α} [Inhabited α] (a : Array α) (f : α → Option α) (i : Nat) : Option (Array α) :=\n if h : i < a.size then\n let v := a[i]\n match f v with\n | some v => some <| a.set ⟨i, h⟩ v\n | none => updateFirst a f (i+1)\n else\n none", "start": [ 407, 1 ], "end": [ 414, 9 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setHeadInfoAux", "code": "partial def setHeadInfoAux (info : SourceInfo) : Syntax → Option Syntax\n | atom _ val => some <| atom info val\n | ident _ rawVal val pre => some <| ident info rawVal val pre\n | node i k args =>\n match updateFirst args (setHeadInfoAux info) 0 with\n | some args => some <| node i k args\n | _ => none\n | _ => none", "start": [ 416, 1 ], "end": [ 423, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setHeadInfo", "code": "def setHeadInfo (stx : Syntax) (info : SourceInfo) : Syntax :=\n match setHeadInfoAux info stx with\n | some stx => stx\n | none => stx", "start": [ 425, 1 ], "end": [ 428, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.setInfo", "code": "def setInfo (info : SourceInfo) : Syntax → Syntax\n | atom _ val => atom info val\n | ident _ rawVal val pre => ident info rawVal val pre\n | node _ kind args => node info kind args\n | missing => missing", "start": [ 430, 1 ], "end": [ 434, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getHead?", "code": "partial def getHead? : Syntax → Option Syntax\n | stx@(atom info ..) => info.getPos?.map fun _ => stx\n | stx@(ident info ..) => info.getPos?.map fun _ => stx\n | node SourceInfo.none _ args => args.findSome? getHead?\n | stx@(node ..) => stx\n | _ => none", "start": [ 436, 1 ], "end": [ 442, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.copyHeadTailInfoFrom", "code": "def copyHeadTailInfoFrom (target source : Syntax) : Syntax :=\n target.setHeadInfo source.getHeadInfo |>.setTailInfo source.getTailInfo", "start": [ 444, 1 ], "end": [ 445, 74 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkSynthetic", "code": "def mkSynthetic (stx : Syntax) : Syntax :=\n stx.setHeadInfo (SourceInfo.fromRef stx)", "start": [ 447, 1 ], "end": [ 449, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.withHeadRefOnly", "code": "@[inline] def withHeadRefOnly {m : Type → Type} [Monad m] [MonadRef m] {α} (x : m α) : m α := do\n match (← getRef).getHead? with\n | none => x\n | some ref => withRef ref x", "start": [ 453, 1 ], "end": [ 457, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.expandMacros", "code": "partial def expandMacros (stx : Syntax) (p : SyntaxNodeKind → Bool := fun k => k != `Lean.Parser.Term.byTactic) : MacroM Syntax :=\n withRef stx do\n match stx with\n | .node info k args => do\n if p k then\n match (← expandMacro? stx) with\n | some stxNew => expandMacros stxNew\n | none => do\n let args ← Macro.withIncRecDepth stx <| args.mapM expandMacros\n return .node info k args\n else\n return stx\n | stx => return stx", "start": [ 459, 1 ], "end": [ 496, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkIdentFrom", "code": "def mkIdentFrom (src : Syntax) (val : Name) (canonical := false) : Ident :=\n ⟨Syntax.ident (SourceInfo.fromRef src canonical) (toString val).toSubstring val []⟩", "start": [ 500, 1 ], "end": [ 504, 86 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkIdentFromRef", "code": "def mkIdentFromRef [Monad m] [MonadRef m] (val : Name) (canonical := false) : m Ident := do\n return mkIdentFrom (← getRef) val canonical", "start": [ 506, 1 ], "end": [ 507, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkCIdentFrom", "code": "def mkCIdentFrom (src : Syntax) (c : Name) (canonical := false) : Ident :=\n let id := addMacroScope `_internal c reservedMacroScope\n ⟨Syntax.ident (SourceInfo.fromRef src canonical) (toString id).toSubstring id [.decl c []]⟩", "start": [ 509, 1 ], "end": [ 516, 94 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkCIdentFromRef", "code": "def mkCIdentFromRef [Monad m] [MonadRef m] (c : Name) (canonical := false) : m Syntax := do\n return mkCIdentFrom (← getRef) c canonical", "start": [ 518, 1 ], "end": [ 519, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkCIdent", "code": "def mkCIdent (c : Name) : Ident :=\n mkCIdentFrom Syntax.missing c", "start": [ 521, 1 ], "end": [ 522, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkIdent", "code": "@[export lean_mk_syntax_ident]\ndef mkIdent (val : Name) : Ident :=\n ⟨Syntax.ident SourceInfo.none (toString val).toSubstring val []⟩", "start": [ 524, 1 ], "end": [ 526, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkGroupNode", "code": "@[inline] def mkGroupNode (args : Array Syntax := #[]) : Syntax :=\n mkNode groupKind args", "start": [ 528, 1 ], "end": [ 529, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkSepArray", "code": "def mkSepArray (as : Array Syntax) (sep : Syntax) : Array Syntax := Id.run do\n let mut i := 0\n let mut r := #[]\n for a in as do\n if i > 0 then\n r := r.push sep |>.push a\n else\n r := r.push a\n i := i + 1\n return r", "start": [ 531, 1 ], "end": [ 540, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkOptionalNode", "code": "def mkOptionalNode (arg : Option Syntax) : Syntax :=\n match arg with\n | some arg => mkNullNode #[arg]\n | none => mkNullNode #[]", "start": [ 542, 1 ], "end": [ 545, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkHole", "code": "def mkHole (ref : Syntax) (canonical := false) : Syntax :=\n mkNode `Lean.Parser.Term.hole #[mkAtomFrom ref \"_\" canonical]", "start": [ 547, 1 ], "end": [ 548, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkSep", "code": "def mkSep (a : Array Syntax) (sep : Syntax) : Syntax :=\n mkNullNode <| mkSepArray a sep", "start": [ 552, 1 ], "end": [ 553, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.SepArray.ofElems", "code": "def SepArray.ofElems {sep} (elems : Array Syntax) : SepArray sep :=\n⟨mkSepArray elems (if sep.isEmpty then mkNullNode else mkAtom sep)⟩", "start": [ 555, 1 ], "end": [ 556, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.SepArray.ofElemsUsingRef", "code": "def SepArray.ofElemsUsingRef [Monad m] [MonadRef m] {sep} (elems : Array Syntax) : m (SepArray sep) := do\n let ref ← getRef;\n return ⟨mkSepArray elems (if sep.isEmpty then mkNullNode else mkAtomFrom ref sep)⟩", "start": [ 558, 1 ], "end": [ 560, 85 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.TSepArray.ofElems", "code": "def TSepArray.ofElems {sep} (elems : Array (TSyntax k)) : TSepArray k sep :=\n .mk (SepArray.ofElems (sep := sep) (TSyntaxArray.raw elems)).1", "start": [ 565, 1 ], "end": [ 572, 65 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkApp", "code": "def mkApp (fn : Term) : (args : TSyntaxArray `term) → Term\n | #[] => fn\n | args => ⟨mkNode `Lean.Parser.Term.app #[fn, mkNullNode args.raw]⟩", "start": [ 577, 1 ], "end": [ 580, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkCApp", "code": "def mkCApp (fn : Name) (args : TSyntaxArray `term) : Term :=\n mkApp (mkCIdent fn) args", "start": [ 582, 1 ], "end": [ 583, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkLit", "code": "def mkLit (kind : SyntaxNodeKind) (val : String) (info := SourceInfo.none) : TSyntax kind :=\n let atom : Syntax := Syntax.atom info val\n mkNode kind #[atom]", "start": [ 585, 1 ], "end": [ 587, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkCharLit", "code": "def mkCharLit (val : Char) (info := SourceInfo.none) : CharLit :=\n mkLit charLitKind (Char.quote val) info", "start": [ 589, 1 ], "end": [ 590, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkStrLit", "code": "def mkStrLit (val : String) (info := SourceInfo.none) : StrLit :=\n mkLit strLitKind (String.quote val) info", "start": [ 592, 1 ], "end": [ 593, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkNumLit", "code": "def mkNumLit (val : String) (info := SourceInfo.none) : NumLit :=\n mkLit numLitKind val info", "start": [ 595, 1 ], "end": [ 596, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkScientificLit", "code": "def mkScientificLit (val : String) (info := SourceInfo.none) : TSyntax scientificLitKind :=\n mkLit scientificLitKind val info", "start": [ 598, 1 ], "end": [ 599, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.mkNameLit", "code": "def mkNameLit (val : String) (info := SourceInfo.none) : NameLit :=\n mkLit nameLitKind val info", "start": [ 601, 1 ], "end": [ 602, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeBinLitAux", "code": "private partial def decodeBinLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=\n if s.atEnd i then some val\n else\n let c := s.get i\n if c == '0' then decodeBinLitAux s (s.next i) (2*val)\n else if c == '1' then decodeBinLitAux s (s.next i) (2*val + 1)\n else none", "start": [ 611, 1 ], "end": [ 617, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeOctalLitAux", "code": "private partial def decodeOctalLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=\n if s.atEnd i then some val\n else\n let c := s.get i\n if '0' ≤ c && c ≤ '7' then decodeOctalLitAux s (s.next i) (8*val + c.toNat - '0'.toNat)\n else none", "start": [ 619, 1 ], "end": [ 624, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeHexDigit", "code": "private def decodeHexDigit (s : String) (i : String.Pos) : Option (Nat × String.Pos) :=\n let c := s.get i\n let i := s.next i\n if '0' ≤ c && c ≤ '9' then some (c.toNat - '0'.toNat, i)\n else if 'a' ≤ c && c ≤ 'f' then some (10 + c.toNat - 'a'.toNat, i)\n else if 'A' ≤ c && c ≤ 'F' then some (10 + c.toNat - 'A'.toNat, i)\n else none", "start": [ 626, 1 ], "end": [ 632, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeHexLitAux", "code": "private partial def decodeHexLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=\n if s.atEnd i then some val\n else match decodeHexDigit s i with\n | some (d, i) => decodeHexLitAux s i (16*val + d)\n | none => none", "start": [ 634, 1 ], "end": [ 638, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeDecimalLitAux", "code": "private partial def decodeDecimalLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=\n if s.atEnd i then some val\n else\n let c := s.get i\n if '0' ≤ c && c ≤ '9' then decodeDecimalLitAux s (s.next i) (10*val + c.toNat - '0'.toNat)\n else none", "start": [ 640, 1 ], "end": [ 645, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeNatLitVal?", "code": "def decodeNatLitVal? (s : String) : Option Nat :=\n let len := s.length\n if len == 0 then none\n else\n let c := s.get 0\n if c == '0' then\n if len == 1 then some 0\n else\n let c := s.get ⟨1⟩\n if c == 'x' || c == 'X' then decodeHexLitAux s ⟨2⟩ 0\n else if c == 'b' || c == 'B' then decodeBinLitAux s ⟨2⟩ 0\n else if c == 'o' || c == 'O' then decodeOctalLitAux s ⟨2⟩ 0\n else if c.isDigit then decodeDecimalLitAux s 0 0\n else none\n else if c.isDigit then decodeDecimalLitAux s 0 0\n else none", "start": [ 647, 1 ], "end": [ 662, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isLit?", "code": "def isLit? (litKind : SyntaxNodeKind) (stx : Syntax) : Option String :=\n match stx with\n | Syntax.node _ k args =>\n if k == litKind && args.size == 1 then\n match args.get! 0 with\n | (Syntax.atom _ val) => some val\n | _ => none\n else\n none\n | _ => none", "start": [ 664, 1 ], "end": [ 673, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isNatLitAux", "code": "private def isNatLitAux (litKind : SyntaxNodeKind) (stx : Syntax) : Option Nat :=\n match isLit? litKind stx with\n | some val => decodeNatLitVal? val\n | _ => none", "start": [ 675, 1 ], "end": [ 678, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isNatLit?", "code": "def isNatLit? (s : Syntax) : Option Nat :=\n isNatLitAux numLitKind s", "start": [ 680, 1 ], "end": [ 681, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isFieldIdx?", "code": "def isFieldIdx? (s : Syntax) : Option Nat :=\n isNatLitAux fieldIdxKind s", "start": [ 683, 1 ], "end": [ 684, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeScientificLitVal?", "code": "partial def decodeScientificLitVal? (s : String) : Option (Nat × Bool × Nat) :=\n let len := s.length\n if len == 0 then none\n else\n let c := s.get 0\n if c.isDigit then\n decode 0 0\n else none\nwhere\n decodeAfterExp (i : String.Pos) (val : Nat) (e : Nat) (sign : Bool) (exp : Nat) : Option (Nat × Bool × Nat) :=\n if s.atEnd i then\n if sign then\n some (val, sign, exp + e)\n else if exp >= e then\n some (val, sign, exp - e)\n else\n some (val, true, e - exp)\n else\n let c := s.get i\n if '0' ≤ c && c ≤ '9' then\n decodeAfterExp (s.next i) val e sign (10*exp + c.toNat - '0'.toNat)\n else\n none\n\n decodeExp (i : String.Pos) (val : Nat) (e : Nat) : Option (Nat × Bool × Nat) :=\n if s.atEnd i then none else\n let c := s.get i\n if c == '-' then\n decodeAfterExp (s.next i) val e true 0\n else if c == '+' then\n decodeAfterExp (s.next i) val e false 0\n else\n decodeAfterExp i val e false 0\n\n decodeAfterDot (i : String.Pos) (val : Nat) (e : Nat) : Option (Nat × Bool × Nat) :=\n if s.atEnd i then\n some (val, true, e)\n else\n let c := s.get i\n if '0' ≤ c && c ≤ '9' then\n decodeAfterDot (s.next i) (10*val + c.toNat - '0'.toNat) (e+1)\n else if c == 'e' || c == 'E' then\n decodeExp (s.next i) val e\n else\n none\n\n decode (i : String.Pos) (val : Nat) : Option (Nat × Bool × Nat) :=\n if s.atEnd i then\n none\n else\n let c := s.get i\n if '0' ≤ c && c ≤ '9' then\n decode (s.next i) (10*val + c.toNat - '0'.toNat)\n else if c == '.' then\n decodeAfterDot (s.next i) val 0\n else if c == 'e' || c == 'E' then\n decodeExp (s.next i) val 0\n else\n none", "start": [ 686, 1 ], "end": [ 748, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isScientificLit?", "code": "def isScientificLit? (stx : Syntax) : Option (Nat × Bool × Nat) :=\n match isLit? scientificLitKind stx with\n | some val => decodeScientificLitVal? val\n | _ => none", "start": [ 750, 1 ], "end": [ 753, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isIdOrAtom?", "code": "def isIdOrAtom? : Syntax → Option String\n | Syntax.atom _ val => some val\n | Syntax.ident _ rawVal _ _ => some rawVal.toString\n | _ => none", "start": [ 755, 1 ], "end": [ 758, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.toNat", "code": "def toNat (stx : Syntax) : Nat :=\n match stx.isNatLit? with\n | some val => val\n | none => 0", "start": [ 760, 1 ], "end": [ 763, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeQuotedChar", "code": "def decodeQuotedChar (s : String) (i : String.Pos) : Option (Char × String.Pos) := do\n let c := s.get i\n let i := s.next i\n if c == '\\\\' then pure ('\\\\', i)\n else if c = '\\\"' then pure ('\\\"', i)\n else if c = '\\'' then pure ('\\'', i)\n else if c = 'r' then pure ('\\r', i)\n else if c = 'n' then pure ('\\n', i)\n else if c = 't' then pure ('\\t', i)\n else if c = 'x' then\n let (d₁, i) ← decodeHexDigit s i\n let (d₂, i) ← decodeHexDigit s i\n pure (Char.ofNat (16*d₁ + d₂), i)\n else if c = 'u' then do\n let (d₁, i) ← decodeHexDigit s i\n let (d₂, i) ← decodeHexDigit s i\n let (d₃, i) ← decodeHexDigit s i\n let (d₄, i) ← decodeHexDigit s i\n pure (Char.ofNat (16*(16*(16*d₁ + d₂) + d₃) + d₄), i)\n else\n none", "start": [ 765, 1 ], "end": [ 785, 9 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeStringGap", "code": "def decodeStringGap (s : String) (i : String.Pos) : Option String.Pos := do\n guard <| (s.get i).isWhitespace\n s.nextWhile Char.isWhitespace (s.next i)", "start": [ 787, 1 ], "end": [ 795, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeStrLitAux", "code": "partial def decodeStrLitAux (s : String) (i : String.Pos) (acc : String) : Option String := do\n let c := s.get i\n let i := s.next i\n if c == '\\\"' then\n pure acc\n else if s.atEnd i then\n none\n else if c == '\\\\' then do\n if let some (c, i) := decodeQuotedChar s i then\n decodeStrLitAux s i (acc.push c)\n else if let some i := decodeStringGap s i then\n decodeStrLitAux s i acc\n else\n none\n else\n decodeStrLitAux s i (acc.push c)", "start": [ 797, 1 ], "end": [ 812, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeRawStrLitAux", "code": "partial def decodeRawStrLitAux (s : String) (i : String.Pos) (num : Nat) : String :=\n let c := s.get i\n let i := s.next i\n if c == '#' then\n decodeRawStrLitAux s i (num + 1)\n else\n s.extract i ⟨s.utf8ByteSize - (num + 1)⟩", "start": [ 814, 1 ], "end": [ 826, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeStrLit", "code": "def decodeStrLit (s : String) : Option String :=\n if s.get 0 == 'r' then\n decodeRawStrLitAux s ⟨1⟩ 0\n else\n decodeStrLitAux s ⟨1⟩ \"\"", "start": [ 828, 1 ], "end": [ 840, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isStrLit?", "code": "def isStrLit? (stx : Syntax) : Option String :=\n match isLit? strLitKind stx with\n | some val => decodeStrLit val\n | _ => none", "start": [ 842, 1 ], "end": [ 851, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeCharLit", "code": "def decodeCharLit (s : String) : Option Char := do\n let c := s.get ⟨1⟩\n if c == '\\\\' then do\n let (c, _) ← decodeQuotedChar s ⟨2⟩\n pure c\n else\n pure c", "start": [ 853, 1 ], "end": [ 859, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isCharLit?", "code": "def isCharLit? (stx : Syntax) : Option Char :=\n match isLit? charLitKind stx with\n | some val => decodeCharLit val\n | _ => none", "start": [ 861, 1 ], "end": [ 864, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.splitNameLitAux", "code": "private partial def splitNameLitAux (ss : Substring) (acc : List Substring) : List Substring :=\n let splitRest (ss : Substring) (acc : List Substring) : List Substring :=\n if ss.front == '.' then\n splitNameLitAux (ss.drop 1) acc\n else if ss.isEmpty then\n acc\n else\n []\n if ss.isEmpty then []\n else\n let curr := ss.front\n if isIdBeginEscape curr then\n let escapedPart := ss.takeWhile (!isIdEndEscape ·)\n let escapedPart := { escapedPart with stopPos := ss.stopPos.min (escapedPart.str.next escapedPart.stopPos) }\n if !isIdEndEscape (escapedPart.get <| escapedPart.prev ⟨escapedPart.bsize⟩) then []\n else splitRest (ss.extract ⟨escapedPart.bsize⟩ ⟨ss.bsize⟩) (escapedPart :: acc)\n else if isIdFirst curr then\n let idPart := ss.takeWhile isIdRest\n splitRest (ss.extract ⟨idPart.bsize⟩ ⟨ss.bsize⟩) (idPart :: acc)\n else if curr.isDigit then\n let idPart := ss.takeWhile Char.isDigit\n splitRest (ss.extract ⟨idPart.bsize⟩ ⟨ss.bsize⟩) (idPart :: acc)\n else\n []", "start": [ 866, 1 ], "end": [ 889, 9 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.splitNameLit", "code": "def splitNameLit (ss : Substring) : List Substring :=\n splitNameLitAux ss [] |>.reverse", "start": [ 891, 1 ], "end": [ 894, 35 ], "kind": "commanddeclaration" }, { "full_name": "Substring.toName", "code": "def _root_.Substring.toName (s : Substring) : Name :=\n match splitNameLitAux s [] with\n | [] => .anonymous\n | comps => comps.foldr (init := Name.anonymous)\n fun comp n =>\n let comp := comp.toString\n if isIdBeginEscape comp.front then\n Name.mkStr n (comp.drop 1 |>.dropRight 1)\n else if comp.front.isDigit then\n if let some k := decodeNatLitVal? comp then\n Name.mkNum n k\n else\n unreachable!\n else\n Name.mkStr n comp", "start": [ 896, 1 ], "end": [ 910, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.toName", "code": "def _root_.String.toName (s : String) : Name :=\n s.toSubstring.toName", "start": [ 912, 1 ], "end": [ 918, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeNameLit", "code": "def decodeNameLit (s : String) : Option Name :=\n if s.get 0 == '`' then\n match (s.toSubstring.drop 1).toName with\n | .anonymous => none\n | name => some name\n else\n none", "start": [ 920, 1 ], "end": [ 926, 9 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isNameLit?", "code": "def isNameLit? (stx : Syntax) : Option Name :=\n match isLit? nameLitKind stx with\n | some val => decodeNameLit val\n | _ => none", "start": [ 928, 1 ], "end": [ 931, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.hasArgs", "code": "def hasArgs : Syntax → Bool\n | Syntax.node _ _ args => args.size > 0\n | _ => false", "start": [ 933, 1 ], "end": [ 935, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isAtom", "code": "def isAtom : Syntax → Bool\n | atom _ _ => true\n | _ => false", "start": [ 937, 1 ], "end": [ 939, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isToken", "code": "def isToken (token : String) : Syntax → Bool\n | atom _ val => val.trim == token.trim\n | _ => false", "start": [ 941, 1 ], "end": [ 943, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isNone", "code": "def isNone (stx : Syntax) : Bool :=\n match stx with\n | Syntax.node _ k args => k == nullKind && args.size == 0\n | Syntax.missing => true\n | _ => false", "start": [ 945, 1 ], "end": [ 950, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getOptionalIdent?", "code": "def getOptionalIdent? (stx : Syntax) : Option Name :=\n match stx.getOptional? with\n | some stx => some stx.getId\n | none => none", "start": [ 952, 1 ], "end": [ 955, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.findAux", "code": "partial def findAux (p : Syntax → Bool) : Syntax → Option Syntax\n | stx@(Syntax.node _ _ args) => if p stx then some stx else args.findSome? (findAux p)\n | stx => if p stx then some stx else none", "start": [ 957, 1 ], "end": [ 959, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.find?", "code": "def find? (stx : Syntax) (p : Syntax → Bool) : Option Syntax :=\n findAux p stx", "start": [ 961, 1 ], "end": [ 962, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getNat", "code": "def getNat (s : NumLit) : Nat :=\n s.raw.isNatLit?.getD 0", "start": [ 968, 1 ], "end": [ 969, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getId", "code": "def getId (s : Ident) : Name :=\n s.raw.getId", "start": [ 971, 1 ], "end": [ 972, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getScientific", "code": "def getScientific (s : ScientificLit) : Nat × Bool × Nat :=\n s.raw.isScientificLit?.getD (0, false, 0)", "start": [ 974, 1 ], "end": [ 975, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getString", "code": "def getString (s : StrLit) : String :=\n s.raw.isStrLit?.getD \"\"", "start": [ 977, 1 ], "end": [ 978, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getChar", "code": "def getChar (s : CharLit) : Char :=\n s.raw.isCharLit?.getD default", "start": [ 980, 1 ], "end": [ 981, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getName", "code": "def getName (s : NameLit) : Name :=\n s.raw.isNameLit?.getD .anonymous", "start": [ 983, 1 ], "end": [ 984, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.TSyntax.getHygieneInfo", "code": "def getHygieneInfo (s : HygieneInfo) : Name :=\n s.raw[0].getId", "start": [ 986, 1 ], "end": [ 987, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HygieneInfo.mkIdent", "code": "def HygieneInfo.mkIdent (s : HygieneInfo) (val : Name) (canonical := false) : Ident :=\n let src := s.raw[0]\n let id := { extractMacroScopes src.getId with name := val.eraseMacroScopes }.review\n ⟨Syntax.ident (SourceInfo.fromRef src canonical) (toString val).toSubstring id []⟩", "start": [ 998, 1 ], "end": [ 1001, 85 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Quote", "code": "class Quote (α : Type) (k : SyntaxNodeKind := `term) where\n quote : α → TSyntax k", "start": [ 1003, 1 ], "end": [ 1005, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.getEscapedNameParts?", "code": "private def getEscapedNameParts? (acc : List String) : Name → Option (List String)\n | Name.anonymous => if acc.isEmpty then none else some acc\n | Name.str n s => do\n let s ← Name.escapePart s\n getEscapedNameParts? (s::acc) n\n | Name.num _ _ => none", "start": [ 1020, 1 ], "end": [ 1025, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.quoteNameMk", "code": "def quoteNameMk : Name → Term\n | .anonymous => mkCIdent ``Name.anonymous\n | .str n s => Syntax.mkCApp ``Name.mkStr #[quoteNameMk n, quote s]\n | .num n i => Syntax.mkCApp ``Name.mkNum #[quoteNameMk n, quote i]", "start": [ 1027, 1 ], "end": [ 1030, 69 ], "kind": "commanddeclaration" }, { "full_name": "Lean.quoteList", "code": "private def quoteList [Quote α `term] : List α → Term\n | [] => mkCIdent ``List.nil\n | (x::xs) => Syntax.mkCApp ``List.cons #[quote x, quoteList xs]", "start": [ 1041, 1 ], "end": [ 1043, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.quoteArray", "code": "private def quoteArray [Quote α `term] (xs : Array α) : Term :=\n if xs.size <= 8 then\n go 0 #[]\n else\n Syntax.mkCApp ``List.toArray #[quote xs.toList]\nwhere\n go (i : Nat) (args : Array Term) : Term :=\n if h : i < xs.size then\n go (i+1) (args.push (quote xs[i]))\n else\n Syntax.mkCApp (Name.mkStr2 \"Array\" (\"mkArray\" ++ toString xs.size)) args\n termination_by xs.size - i\n decreasing_by decreasing_trivial_pre_omega", "start": [ 1048, 1 ], "end": [ 1060, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Option.hasQuote", "code": "instance Option.hasQuote {α : Type} [Quote α `term] : Quote (Option α) `term where\n quote\n | none => mkIdent ``none\n | (some x) => Syntax.mkCApp ``some #[quote x]", "start": [ 1065, 1 ], "end": [ 1068, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.evalPrec", "code": "def evalPrec (stx : Syntax) : MacroM Nat :=\n Macro.withIncRecDepth stx do\n let stx ← expandMacros stx\n match stx with\n | `(prec| $num:num) => return num.getNat\n | _ => Macro.throwErrorAt stx \"unexpected precedence\"", "start": [ 1071, 1 ], "end": [ 1077, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.evalPrio", "code": "def evalPrio (stx : Syntax) : MacroM Nat :=\n Macro.withIncRecDepth stx do\n let stx ← expandMacros stx\n match stx with\n | `(prio| $num:num) => return num.getNat\n | _ => Macro.throwErrorAt stx \"unexpected priority\"", "start": [ 1087, 1 ], "end": [ 1093, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.evalOptPrio", "code": "def evalOptPrio : Option (TSyntax `prio) → MacroM Nat\n | some prio => evalPrio prio\n | none => return 1000", "start": [ 1103, 1 ], "end": [ 1105, 29 ], "kind": "commanddeclaration" }, { "full_name": "Array.getSepElems", "code": "abbrev getSepElems := @getEvenElems", "start": [ 1111, 1 ], "end": [ 1111, 36 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterSepElemsMAux", "code": "private partial def filterSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) (i : Nat) (acc : Array Syntax) : m (Array Syntax) := do\n if h : i < a.size then\n let stx := a[i]\n if (← p stx) then\n if acc.isEmpty then\n filterSepElemsMAux a p (i+2) (acc.push stx)\n else if hz : i ≠ 0 then\n have : i.pred < i := Nat.pred_lt hz\n have : i.pred < a.size := Nat.lt_trans this h\n let sepStx := a[i.pred]\n filterSepElemsMAux a p (i+2) ((acc.push sepStx).push stx)\n else\n filterSepElemsMAux a p (i+2) (acc.push stx)\n else\n filterSepElemsMAux a p (i+2) acc\n else\n pure acc", "start": [ 1115, 1 ], "end": [ 1131, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterSepElemsM", "code": "def filterSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) : m (Array Syntax) :=\n filterSepElemsMAux a p 0 #[]", "start": [ 1133, 1 ], "end": [ 1134, 31 ], "kind": "commanddeclaration" }, { "full_name": "Array.filterSepElems", "code": "def filterSepElems (a : Array Syntax) (p : Syntax → Bool) : Array Syntax :=\n Id.run <| a.filterSepElemsM p", "start": [ 1136, 1 ], "end": [ 1137, 32 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapSepElemsMAux", "code": "private partial def mapSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) (i : Nat) (acc : Array Syntax) : m (Array Syntax) := do\n if h : i < a.size then\n let stx := a[i]\n if i % 2 == 0 then do\n let stx ← f stx\n mapSepElemsMAux a f (i+1) (acc.push stx)\n else\n mapSepElemsMAux a f (i+1) (acc.push stx)\n else\n pure acc", "start": [ 1139, 1 ], "end": [ 1148, 13 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapSepElemsM", "code": "def mapSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) : m (Array Syntax) :=\n mapSepElemsMAux a f 0 #[]", "start": [ 1150, 1 ], "end": [ 1151, 28 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapSepElems", "code": "def mapSepElems (a : Array Syntax) (f : Syntax → Syntax) : Array Syntax :=\n Id.run <| a.mapSepElemsM f", "start": [ 1153, 1 ], "end": [ 1154, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.SepArray.getElems", "code": "def SepArray.getElems (sa : SepArray sep) : Array Syntax :=\n sa.elemsAndSeps.getSepElems", "start": [ 1160, 1 ], "end": [ 1161, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.TSepArray.getElems", "code": "def TSepArray.getElems (sa : TSepArray k sep) : TSyntaxArray k :=\n .mk sa.elemsAndSeps.getSepElems", "start": [ 1163, 1 ], "end": [ 1164, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.TSepArray.push", "code": "def TSepArray.push (sa : TSepArray k sep) (e : TSyntax k) : TSepArray k sep :=\n if sa.elemsAndSeps.isEmpty then\n { elemsAndSeps := #[e] }\n else\n { elemsAndSeps := sa.elemsAndSeps.push (mkAtom sep) |>.push e }", "start": [ 1166, 1 ], "end": [ 1170, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeInterpStrQuotedChar", "code": "private def decodeInterpStrQuotedChar (s : String) (i : String.Pos) : Option (Char × String.Pos) := do\n match decodeQuotedChar s i with\n | some r => some r\n | none =>\n let c := s.get i\n let i := s.next i\n if c == '{' then pure ('{', i)\n else none", "start": [ 1202, 1 ], "end": [ 1209, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.decodeInterpStrLit", "code": "private partial def decodeInterpStrLit (s : String) : Option String :=\n let rec loop (i : String.Pos) (acc : String) : Option String :=\n let c := s.get i\n let i := s.next i\n if c == '\\\"' || c == '{' then\n pure acc\n else if s.atEnd i then\n none\n else if c == '\\\\' then do\n if let some (c, i) := decodeInterpStrQuotedChar s i then\n loop i (acc.push c)\n else if let some i := decodeStringGap s i then\n loop i acc\n else\n none\n else\n loop i (acc.push c)\n loop ⟨1⟩ \"\"", "start": [ 1211, 1 ], "end": [ 1228, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.isInterpolatedStrLit?", "code": "partial def isInterpolatedStrLit? (stx : Syntax) : Option String :=\n match isLit? interpolatedStrLitKind stx with\n | none => none\n | some val => decodeInterpStrLit val", "start": [ 1230, 1 ], "end": [ 1233, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Syntax.getSepArgs", "code": "def getSepArgs (stx : Syntax) : Array Syntax :=\n stx.getArgs.getSepElems", "start": [ 1235, 1 ], "end": [ 1236, 26 ], "kind": "commanddeclaration" }, { "full_name": "TSyntax.expandInterpolatedStrChunks", "code": "def expandInterpolatedStrChunks (chunks : Array Syntax) (mkAppend : Syntax → Syntax → MacroM Syntax) (mkElem : Syntax → MacroM Syntax) : MacroM Syntax := do\n let mut i := 0\n let mut result := Syntax.missing\n for elem in chunks do\n let elem ← match elem.isInterpolatedStrLit? with\n | none => mkElem elem\n | some str => mkElem (Syntax.mkStrLit str)\n if i == 0 then\n result := elem\n else\n result ← mkAppend result elem\n i := i+1\n return result", "start": [ 1242, 1 ], "end": [ 1254, 16 ], "kind": "commanddeclaration" }, { "full_name": "TSyntax.expandInterpolatedStr", "code": "def expandInterpolatedStr (interpStr : TSyntax interpolatedStrKind) (type : Term) (toTypeFn : Term) : MacroM Term := do\n let r ← expandInterpolatedStrChunks interpStr.raw.getArgs (fun a b => `($a ++ $b)) (fun a => `($toTypeFn $a))\n `(($r : $type))", "start": [ 1257, 1 ], "end": [ 1259, 18 ], "kind": "commanddeclaration" }, { "full_name": "TSyntax.getDocString", "code": "def getDocString (stx : TSyntax `Lean.Parser.Command.docComment) : String :=\n match stx.raw[1] with\n | Syntax.atom _ val => val.extract 0 (val.endPos - ⟨2⟩)\n | _ => \"\"", "start": [ 1261, 1 ], "end": [ 1264, 28 ], "kind": "commanddeclaration" }, { "full_name": "Meta.Occurrences.contains", "code": "def Occurrences.contains : Occurrences → Nat → Bool\n | all, _ => true\n | pos idxs, idx => idxs.contains idx\n | neg idxs, idx => !idxs.contains idx", "start": [ 1272, 1 ], "end": [ 1275, 40 ], "kind": "commanddeclaration" }, { "full_name": "Meta.Occurrences.isAll", "code": "def Occurrences.isAll : Occurrences → Bool\n | all => true\n | _ => false", "start": [ 1277, 1 ], "end": [ 1279, 17 ], "kind": "commanddeclaration" }, { "full_name": "Meta.ApplyNewGoals", "code": "inductive ApplyNewGoals where\n | nonDependentFirst | nonDependentOnly | all", "start": [ 1281, 1 ], "end": [ 1289, 47 ], "kind": "commanddeclaration" }, { "full_name": "Meta.ApplyConfig", "code": "structure ApplyConfig where\n newGoals := ApplyNewGoals.nonDependentFirst\n \n synthAssignedInstances := true\n \n allowSynthFailures := false\n \n approx : Bool := true", "start": [ 1291, 1 ], "end": [ 1310, 24 ], "kind": "commanddeclaration" }, { "full_name": "Meta.Rewrite.NewGoals", "code": "abbrev NewGoals := ApplyNewGoals", "start": [ 1314, 1 ], "end": [ 1314, 33 ], "kind": "commanddeclaration" }, { "full_name": "Meta.Rewrite.Config", "code": "structure Config where\n transparency : TransparencyMode := .reducible\n offsetCnstrs : Bool := true\n occs : Occurrences := .all\n newGoals : NewGoals := .nonDependentFirst", "start": [ 1316, 1 ], "end": [ 1320, 44 ], "kind": "commanddeclaration" }, { "full_name": "Meta.Omega.OmegaConfig", "code": "structure OmegaConfig where\n \n splitDisjunctions : Bool := true\n \n splitNatSub : Bool := true\n \n splitNatAbs : Bool := true\n \n splitMinMax : Bool := true", "start": [ 1326, 1 ], "end": [ 1355, 29 ], "kind": "commanddeclaration" }, { "full_name": "Meta.CheckTactic.CheckGoalType", "code": "inductive CheckGoalType {α : Sort u} : (val : α) → Prop where\n| intro : (val : α) → CheckGoalType val", "start": [ 1361, 1 ], "end": [ 1368, 40 ], "kind": "commanddeclaration" }, { "full_name": "Parser.Tactic.expandSimp", "code": "@[macro $tacName] def expandSimp : Macro := fun s => do\n let c ← match s[1][0] with\n | `(config| (config := $$c)) => `(config| (config := $updateCfg $$c))\n | _ => `(config| (config := $updateCfg {}))\n let s := s.setKind $kind\n let s := s.setArg 0 (mkAtomFrom s[0] $tkn (canonical := true))\n let r := s.setArg 1 (mkNullNode #[c])\n return r", "start": [ 1398, 5 ], "end": [ 1405, 15 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/NotationExtra.lean
[ ".lake/packages/lean4/src/lean/Init/Meta.lean", ".lake/packages/lean4/src/lean/Init/Data/Array/Subarray.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/Conv.lean" ]
[ { "full_name": "Lean.expandExplicitBindersAux", "code": "def expandExplicitBindersAux (combinator : Syntax) (idents : Array Syntax) (type? : Option Syntax) (body : Syntax) : MacroM Syntax :=\n let rec loop (i : Nat) (acc : Syntax) := do\n match i with\n | 0 => pure acc\n | i+1 =>\n let ident := idents[i]![0]\n let acc ← match ident.isIdent, type? with\n | true, none => `($combinator fun $ident => $acc)\n | true, some type => `($combinator fun $ident : $type => $acc)\n | false, none => `($combinator fun _ => $acc)\n | false, some type => `($combinator fun _ : $type => $acc)\n loop i acc\n loop idents.size body", "start": [ 23, 1 ], "end": [ 35, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.expandBrackedBindersAux", "code": "def expandBrackedBindersAux (combinator : Syntax) (binders : Array Syntax) (body : Syntax) : MacroM Syntax :=\n let rec loop (i : Nat) (acc : Syntax) := do\n match i with\n | 0 => pure acc\n | i+1 =>\n let idents := binders[i]![1].getArgs\n let type := binders[i]![3]\n loop i (← expandExplicitBindersAux combinator idents (some type) acc)\n loop binders.size body", "start": [ 37, 1 ], "end": [ 45, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.expandExplicitBinders", "code": "def expandExplicitBinders (combinatorDeclName : Name) (explicitBinders : Syntax) (body : Syntax) : MacroM Syntax := do\n let combinator := mkCIdentFrom (← getRef) combinatorDeclName\n let explicitBinders := explicitBinders[0]\n if explicitBinders.getKind == ``Lean.unbracketedExplicitBinders then\n let idents := explicitBinders[0].getArgs\n let type? := if explicitBinders[1].isNone then none else some explicitBinders[1][1]\n expandExplicitBindersAux combinator idents type? body\n else if explicitBinders.getArgs.all (·.getKind == ``Lean.bracketedExplicitBinders) then\n expandBrackedBindersAux combinator explicitBinders.getArgs body\n else\n Macro.throwError \"unexpected explicit binder\"", "start": [ 47, 1 ], "end": [ 57, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.expandBrackedBinders", "code": "def expandBrackedBinders (combinatorDeclName : Name) (bracketedExplicitBinders : Syntax) (body : Syntax) : MacroM Syntax := do\n let combinator := mkCIdentFrom (← getRef) combinatorDeclName\n expandBrackedBindersAux combinator #[bracketedExplicitBinders] body", "start": [ 59, 1 ], "end": [ 61, 70 ], "kind": "commanddeclaration" }, { "full_name": "unexpandUnit", "code": "@[app_unexpander Unit.unit] def unexpandUnit : Lean.PrettyPrinter.Unexpander\n | `($(_)) => `(())", "start": [ 142, 1 ], "end": [ 143, 21 ], "kind": "commanddeclaration" }, { "full_name": "unexpandListNil", "code": "@[app_unexpander List.nil] def unexpandListNil : Lean.PrettyPrinter.Unexpander\n | `($(_)) => `([])", "start": [ 145, 1 ], "end": [ 146, 21 ], "kind": "commanddeclaration" }, { "full_name": "unexpandListCons", "code": "@[app_unexpander List.cons] def unexpandListCons : Lean.PrettyPrinter.Unexpander\n | `($(_) $x $tail) =>\n match tail with\n | `([]) => `([$x])\n | `([$xs,*]) => `([$x, $xs,*])\n | `(⋯) => `([$x, $tail]) | _ => throw ()\n | _ => throw ()", "start": [ 148, 1 ], "end": [ 155, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandListToArray", "code": "@[app_unexpander List.toArray] def unexpandListToArray : Lean.PrettyPrinter.Unexpander\n | `($(_) [$xs,*]) => `(#[$xs,*])\n | _ => throw ()", "start": [ 157, 1 ], "end": [ 159, 32 ], "kind": "commanddeclaration" }, { "full_name": "unexpandProdMk", "code": "@[app_unexpander Prod.mk] def unexpandProdMk : Lean.PrettyPrinter.Unexpander\n | `($(_) $x ($y, $ys,*)) => `(($x, $y, $ys,*))\n | `($(_) $x $y) => `(($x, $y))\n | _ => throw ()", "start": [ 161, 1 ], "end": [ 164, 39 ], "kind": "commanddeclaration" }, { "full_name": "unexpandIte", "code": "@[app_unexpander ite] def unexpandIte : Lean.PrettyPrinter.Unexpander\n | `($(_) $c $t $e) => `(if $c then $t else $e)\n | _ => throw ()", "start": [ 166, 1 ], "end": [ 168, 33 ], "kind": "commanddeclaration" }, { "full_name": "unexpandSorryAx", "code": "@[app_unexpander sorryAx] def unexpandSorryAx : Lean.PrettyPrinter.Unexpander\n | `($(_) _) => `(sorry)\n | `($(_) _ _) => `(sorry)\n | _ => throw ()", "start": [ 170, 1 ], "end": [ 173, 28 ], "kind": "commanddeclaration" }, { "full_name": "unexpandEqNDRec", "code": "@[app_unexpander Eq.ndrec] def unexpandEqNDRec : Lean.PrettyPrinter.Unexpander\n | `($(_) $m $h) => `($h ▸ $m)\n | _ => throw ()", "start": [ 175, 1 ], "end": [ 177, 30 ], "kind": "commanddeclaration" }, { "full_name": "unexpandEqRec", "code": "@[app_unexpander Eq.rec] def unexpandEqRec : Lean.PrettyPrinter.Unexpander\n | `($(_) $m $h) => `($h ▸ $m)\n | _ => throw ()", "start": [ 179, 1 ], "end": [ 181, 30 ], "kind": "commanddeclaration" }, { "full_name": "unexpandExists", "code": "@[app_unexpander Exists] def unexpandExists : Lean.PrettyPrinter.Unexpander\n | `($(_) fun $x:ident => ∃ $xs:binderIdent*, $b) => `(∃ $x:ident $xs:binderIdent*, $b)\n | `($(_) fun $x:ident => $b) => `(∃ $x:ident, $b)\n | `($(_) fun ($x:ident : $t) => $b) => `(∃ ($x:ident : $t), $b)\n | _ => throw ()", "start": [ 183, 1 ], "end": [ 187, 63 ], "kind": "commanddeclaration" }, { "full_name": "unexpandSigma", "code": "@[app_unexpander Sigma] def unexpandSigma : Lean.PrettyPrinter.Unexpander\n | `($(_) fun ($x:ident : $t) => $b) => `(($x:ident : $t) × $b)\n | _ => throw ()", "start": [ 189, 1 ], "end": [ 191, 51 ], "kind": "commanddeclaration" }, { "full_name": "unexpandPSigma", "code": "@[app_unexpander PSigma] def unexpandPSigma : Lean.PrettyPrinter.Unexpander\n | `($(_) fun ($x:ident : $t) => $b) => `(($x:ident : $t) ×' $b)\n | _ => throw ()", "start": [ 193, 1 ], "end": [ 195, 50 ], "kind": "commanddeclaration" }, { "full_name": "unexpandSubtype", "code": "@[app_unexpander Subtype] def unexpandSubtype : Lean.PrettyPrinter.Unexpander\n | `($(_) fun ($x:ident : $type) => $p) => `({ $x : $type // $p })\n | `($(_) fun $x:ident => $p) => `({ $x // $p })\n | _ => throw ()", "start": [ 197, 1 ], "end": [ 200, 54 ], "kind": "commanddeclaration" }, { "full_name": "unexpandTSyntax", "code": "@[app_unexpander TSyntax] def unexpandTSyntax : Lean.PrettyPrinter.Unexpander\n | `($f [$k]) => `($f $k)\n | _ => throw ()", "start": [ 202, 1 ], "end": [ 204, 28 ], "kind": "commanddeclaration" }, { "full_name": "unexpandTSyntaxArray", "code": "@[app_unexpander TSyntaxArray] def unexpandTSyntaxArray : Lean.PrettyPrinter.Unexpander\n | `($f [$k]) => `($f $k)\n | _ => throw ()", "start": [ 206, 1 ], "end": [ 208, 28 ], "kind": "commanddeclaration" }, { "full_name": "unexpandTSepArray", "code": "@[app_unexpander Syntax.TSepArray] def unexpandTSepArray : Lean.PrettyPrinter.Unexpander\n | `($f [$k] $sep) => `($f $k $sep)\n | _ => throw ()", "start": [ 210, 1 ], "end": [ 212, 33 ], "kind": "commanddeclaration" }, { "full_name": "unexpandGetElem", "code": "@[app_unexpander GetElem.getElem] def unexpandGetElem : Lean.PrettyPrinter.Unexpander\n | `($_ $array $index $_) => `($array[$index])\n | _ => throw ()", "start": [ 214, 1 ], "end": [ 216, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandGetElem!", "code": "@[app_unexpander getElem!] def unexpandGetElem! : Lean.PrettyPrinter.Unexpander\n | `($_ $array $index) => `($array[$index]!)\n | _ => throw ()", "start": [ 218, 1 ], "end": [ 220, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandGetElem?", "code": "@[app_unexpander getElem?] def unexpandGetElem? : Lean.PrettyPrinter.Unexpander\n | `($_ $array $index) => `($array[$index]?)\n | _ => throw ()", "start": [ 222, 1 ], "end": [ 224, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr1", "code": "@[app_unexpander Name.mkStr1] def unexpandMkStr1 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a.getString)]\n | _ => throw ()", "start": [ 226, 1 ], "end": [ 228, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr2", "code": "@[app_unexpander Name.mkStr2] def unexpandMkStr2 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString)]\n | _ => throw ()", "start": [ 230, 1 ], "end": [ 232, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr3", "code": "@[app_unexpander Name.mkStr3] def unexpandMkStr3 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString)]\n | _ => throw ()", "start": [ 234, 1 ], "end": [ 236, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr4", "code": "@[app_unexpander Name.mkStr4] def unexpandMkStr4 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str $a4:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString ++ \".\" ++ a4.getString)]\n | _ => throw ()", "start": [ 238, 1 ], "end": [ 240, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr5", "code": "@[app_unexpander Name.mkStr5] def unexpandMkStr5 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString ++ \".\" ++ a4.getString ++ \".\" ++ a5.getString)]\n | _ => throw ()", "start": [ 242, 1 ], "end": [ 244, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr6", "code": "@[app_unexpander Name.mkStr6] def unexpandMkStr6 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString ++ \".\" ++ a4.getString ++ \".\" ++ a5.getString ++ \".\" ++ a6.getString)]\n | _ => throw ()", "start": [ 246, 1 ], "end": [ 248, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr7", "code": "@[app_unexpander Name.mkStr7] def unexpandMkStr7 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str $a7:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString ++ \".\" ++ a4.getString ++ \".\" ++ a5.getString ++ \".\" ++ a6.getString ++ \".\" ++ a7.getString)]\n | _ => throw ()", "start": [ 250, 1 ], "end": [ 252, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkStr8", "code": "@[app_unexpander Name.mkStr8] def unexpandMkStr8 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1:str $a2:str $a3:str $a4:str $a5:str $a6:str $a7:str $a8:str) => return mkNode `Lean.Parser.Term.quotedName #[Syntax.mkNameLit (\"`\" ++ a1.getString ++ \".\" ++ a2.getString ++ \".\" ++ a3.getString ++ \".\" ++ a4.getString ++ \".\" ++ a5.getString ++ \".\" ++ a6.getString ++ \".\" ++ a7.getString ++ \".\" ++ a8.getString)]\n | _ => throw ()", "start": [ 254, 1 ], "end": [ 256, 19 ], "kind": "commanddeclaration" }, { "full_name": "unexpandArrayEmpty", "code": "@[app_unexpander Array.empty] def unexpandArrayEmpty : Lean.PrettyPrinter.Unexpander\n | _ => `(#[])", "start": [ 258, 1 ], "end": [ 259, 16 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray0", "code": "@[app_unexpander Array.mkArray0] def unexpandMkArray0 : Lean.PrettyPrinter.Unexpander\n | _ => `(#[])", "start": [ 261, 1 ], "end": [ 262, 16 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray1", "code": "@[app_unexpander Array.mkArray1] def unexpandMkArray1 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1) => `(#[$a1])\n | _ => throw ()", "start": [ 264, 1 ], "end": [ 266, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray2", "code": "@[app_unexpander Array.mkArray2] def unexpandMkArray2 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2) => `(#[$a1, $a2])\n | _ => throw ()", "start": [ 268, 1 ], "end": [ 270, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray3", "code": "@[app_unexpander Array.mkArray3] def unexpandMkArray3 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3) => `(#[$a1, $a2, $a3])\n | _ => throw ()", "start": [ 272, 1 ], "end": [ 274, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray4", "code": "@[app_unexpander Array.mkArray4] def unexpandMkArray4 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3 $a4) => `(#[$a1, $a2, $a3, $a4])\n | _ => throw ()", "start": [ 276, 1 ], "end": [ 278, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray5", "code": "@[app_unexpander Array.mkArray5] def unexpandMkArray5 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3 $a4 $a5) => `(#[$a1, $a2, $a3, $a4, $a5])\n | _ => throw ()", "start": [ 280, 1 ], "end": [ 282, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray6", "code": "@[app_unexpander Array.mkArray6] def unexpandMkArray6 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3 $a4 $a5 $a6) => `(#[$a1, $a2, $a3, $a4, $a5, $a6])\n | _ => throw ()", "start": [ 284, 1 ], "end": [ 286, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray7", "code": "@[app_unexpander Array.mkArray7] def unexpandMkArray7 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3 $a4 $a5 $a6 $a7) => `(#[$a1, $a2, $a3, $a4, $a5, $a6, $a7])\n | _ => throw ()", "start": [ 288, 1 ], "end": [ 290, 18 ], "kind": "commanddeclaration" }, { "full_name": "unexpandMkArray8", "code": "@[app_unexpander Array.mkArray8] def unexpandMkArray8 : Lean.PrettyPrinter.Unexpander\n | `($(_) $a1 $a2 $a3 $a4 $a5 $a6 $a7 $a8) => `(#[$a1, $a2, $a3, $a4, $a5, $a6, $a7, $a8])\n | _ => throw ()", "start": [ 292, 1 ], "end": [ 294, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Loop", "code": "inductive Loop where\n | mk", "start": [ 381, 1 ], "end": [ 382, 7 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Loop.forIn", "code": "@[inline]\npartial def Loop.forIn {β : Type u} {m : Type u → Type v} [Monad m] (_ : Loop) (init : β) (f : Unit → β → m (ForInStep β)) : m β :=\n let rec @[specialize] loop (b : β) : m β := do\n match ← f () b with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop b\n loop init", "start": [ 384, 1 ], "end": [ 390, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.singletonUnexpander", "code": "@[app_unexpander singleton]\ndef singletonUnexpander : Lean.PrettyPrinter.Unexpander\n | `($_ $a) => `({ $a:term })\n | _ => throw ()", "start": [ 428, 1 ], "end": [ 432, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.insertUnexpander", "code": "@[app_unexpander insert]\ndef insertUnexpander : Lean.PrettyPrinter.Unexpander\n | `($_ $a { $ts:term,* }) => `({$a:term, $ts,*})\n | _ => throw ()", "start": [ 434, 1 ], "end": [ 438, 18 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/PropLemmas.lean
[ ".lake/packages/lean4/src/lean/Init/NotationExtra.lean", ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "eq_mp_eq_cast", "code": "@[simp] theorem eq_mp_eq_cast (h : α = β) : Eq.mp h = cast h", "start": [ 16, 1 ], "end": [ 16, 70 ], "kind": "commanddeclaration" }, { "full_name": "eq_mpr_eq_cast", "code": "@[simp] theorem eq_mpr_eq_cast (h : α = β) : Eq.mpr h = cast h.symm", "start": [ 17, 1 ], "end": [ 17, 75 ], "kind": "commanddeclaration" }, { "full_name": "cast_cast", "code": "@[simp] theorem cast_cast : ∀ (ha : α = β) (hb : β = γ) (a : α),\n cast hb (cast ha a) = cast (ha.trans hb) a", "start": [ 19, 1 ], "end": [ 21, 23 ], "kind": "commanddeclaration" }, { "full_name": "eq_true_eq_id", "code": "@[simp] theorem eq_true_eq_id : Eq True = id", "start": [ 23, 1 ], "end": [ 24, 53 ], "kind": "commanddeclaration" }, { "full_name": "proof_irrel_heq", "code": "theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : HEq hp hq", "start": [ 26, 1 ], "end": [ 27, 41 ], "kind": "commanddeclaration" }, { "full_name": "not_not_em", "code": "theorem not_not_em (a : Prop) : ¬¬(a ∨ ¬a)", "start": [ 31, 1 ], "end": [ 31, 75 ], "kind": "commanddeclaration" }, { "full_name": "and_self_iff", "code": "theorem and_self_iff : a ∧ a ↔ a", "start": [ 35, 1 ], "end": [ 35, 59 ], "kind": "commanddeclaration" }, { "full_name": "and_not_self_iff", "code": "theorem and_not_self_iff (a : Prop) : a ∧ ¬a ↔ False", "start": [ 36, 1 ], "end": [ 36, 85 ], "kind": "commanddeclaration" }, { "full_name": "not_and_self_iff", "code": "theorem not_and_self_iff (a : Prop) : ¬a ∧ a ↔ False", "start": [ 37, 1 ], "end": [ 37, 85 ], "kind": "commanddeclaration" }, { "full_name": "And.imp", "code": "theorem And.imp (f : a → c) (g : b → d) (h : a ∧ b) : c ∧ d", "start": [ 39, 1 ], "end": [ 39, 97 ], "kind": "commanddeclaration" }, { "full_name": "And.imp_left", "code": "theorem And.imp_left (h : a → b) : a ∧ c → b ∧ c", "start": [ 40, 1 ], "end": [ 40, 62 ], "kind": "commanddeclaration" }, { "full_name": "And.imp_right", "code": "theorem And.imp_right (h : a → b) : c ∧ a → c ∧ b", "start": [ 41, 1 ], "end": [ 41, 63 ], "kind": "commanddeclaration" }, { "full_name": "and_congr", "code": "theorem and_congr (h₁ : a ↔ c) (h₂ : b ↔ d) : a ∧ b ↔ c ∧ d", "start": [ 43, 1 ], "end": [ 44, 58 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_left'", "code": "theorem and_congr_left' (h : a ↔ b) : a ∧ c ↔ b ∧ c", "start": [ 45, 1 ], "end": [ 45, 72 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_right'", "code": "theorem and_congr_right' (h : b ↔ c) : a ∧ b ↔ a ∧ c", "start": [ 46, 1 ], "end": [ 46, 73 ], "kind": "commanddeclaration" }, { "full_name": "not_and_of_not_left", "code": "theorem not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b)", "start": [ 48, 1 ], "end": [ 48, 70 ], "kind": "commanddeclaration" }, { "full_name": "not_and_of_not_right", "code": "theorem not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b)", "start": [ 49, 1 ], "end": [ 49, 83 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_right_eq", "code": "theorem and_congr_right_eq (h : a → b = c) : (a ∧ b) = (a ∧ c)", "start": [ 51, 1 ], "end": [ 52, 44 ], "kind": "commanddeclaration" }, { "full_name": "and_congr_left_eq", "code": "theorem and_congr_left_eq (h : c → a = b) : (a ∧ c) = (b ∧ c)", "start": [ 53, 1 ], "end": [ 54, 44 ], "kind": "commanddeclaration" }, { "full_name": "and_left_comm", "code": "theorem and_left_comm : a ∧ b ∧ c ↔ b ∧ a ∧ c", "start": [ 56, 1 ], "end": [ 58, 47 ], "kind": "commanddeclaration" }, { "full_name": "and_right_comm", "code": "theorem and_right_comm : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b", "start": [ 60, 1 ], "end": [ 62, 51 ], "kind": "commanddeclaration" }, { "full_name": "and_rotate", "code": "theorem and_rotate : a ∧ b ∧ c ↔ b ∧ c ∧ a", "start": [ 64, 1 ], "end": [ 64, 83 ], "kind": "commanddeclaration" }, { "full_name": "and_and_and_comm", "code": "theorem and_and_and_comm : (a ∧ b) ∧ c ∧ d ↔ (a ∧ c) ∧ b ∧ d", "start": [ 65, 1 ], "end": [ 65, 114 ], "kind": "commanddeclaration" }, { "full_name": "and_and_left", "code": "theorem and_and_left : a ∧ (b ∧ c) ↔ (a ∧ b) ∧ a ∧ c", "start": [ 66, 1 ], "end": [ 66, 92 ], "kind": "commanddeclaration" }, { "full_name": "and_and_right", "code": "theorem and_and_right : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b ∧ c", "start": [ 67, 1 ], "end": [ 67, 92 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_left", "code": "theorem and_iff_left (hb : b) : a ∧ b ↔ a", "start": [ 69, 1 ], "end": [ 69, 83 ], "kind": "commanddeclaration" }, { "full_name": "and_iff_right", "code": "theorem and_iff_right (ha : a) : a ∧ b ↔ b", "start": [ 70, 1 ], "end": [ 70, 83 ], "kind": "commanddeclaration" }, { "full_name": "or_self_iff", "code": "theorem or_self_iff : a ∨ a ↔ a", "start": [ 74, 1 ], "end": [ 74, 52 ], "kind": "commanddeclaration" }, { "full_name": "not_or_intro", "code": "theorem not_or_intro {a b : Prop} (ha : ¬a) (hb : ¬b) : ¬(a ∨ b)", "start": [ 75, 1 ], "end": [ 75, 83 ], "kind": "commanddeclaration" }, { "full_name": "or_congr", "code": "theorem or_congr (h₁ : a ↔ c) (h₂ : b ↔ d) : (a ∨ b) ↔ (c ∨ d)", "start": [ 77, 1 ], "end": [ 77, 105 ], "kind": "commanddeclaration" }, { "full_name": "or_congr_left", "code": "theorem or_congr_left (h : a ↔ b) : a ∨ c ↔ b ∨ c", "start": [ 78, 1 ], "end": [ 78, 69 ], "kind": "commanddeclaration" }, { "full_name": "or_congr_right", "code": "theorem or_congr_right (h : b ↔ c) : a ∨ b ↔ a ∨ c", "start": [ 79, 1 ], "end": [ 79, 70 ], "kind": "commanddeclaration" }, { "full_name": "or_left_comm", "code": "theorem or_left_comm : a ∨ (b ∨ c) ↔ b ∨ (a ∨ c)", "start": [ 81, 1 ], "end": [ 81, 98 ], "kind": "commanddeclaration" }, { "full_name": "or_right_comm", "code": "theorem or_right_comm : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b", "start": [ 82, 1 ], "end": [ 82, 92 ], "kind": "commanddeclaration" }, { "full_name": "or_or_or_comm", "code": "theorem or_or_or_comm : (a ∨ b) ∨ c ∨ d ↔ (a ∨ c) ∨ b ∨ d", "start": [ 84, 1 ], "end": [ 84, 108 ], "kind": "commanddeclaration" }, { "full_name": "or_or_distrib_left", "code": "theorem or_or_distrib_left : a ∨ b ∨ c ↔ (a ∨ b) ∨ a ∨ c", "start": [ 86, 1 ], "end": [ 86, 91 ], "kind": "commanddeclaration" }, { "full_name": "or_or_distrib_right", "code": "theorem or_or_distrib_right : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b ∨ c", "start": [ 87, 1 ], "end": [ 87, 94 ], "kind": "commanddeclaration" }, { "full_name": "or_rotate", "code": "theorem or_rotate : a ∨ b ∨ c ↔ b ∨ c ∨ a", "start": [ 89, 1 ], "end": [ 89, 82 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_left", "code": "theorem or_iff_left (hb : ¬b) : a ∨ b ↔ a", "start": [ 91, 1 ], "end": [ 91, 79 ], "kind": "commanddeclaration" }, { "full_name": "or_iff_right", "code": "theorem or_iff_right (ha : ¬a) : a ∨ b ↔ b", "start": [ 92, 1 ], "end": [ 92, 79 ], "kind": "commanddeclaration" }, { "full_name": "not_imp_of_and_not", "code": "theorem not_imp_of_and_not : a ∧ ¬b → ¬(a → b)", "start": [ 96, 1 ], "end": [ 97, 30 ], "kind": "commanddeclaration" }, { "full_name": "imp_and", "code": "theorem imp_and {α} : (α → b ∧ c) ↔ (α → b) ∧ (α → c)", "start": [ 99, 1 ], "end": [ 100, 84 ], "kind": "commanddeclaration" }, { "full_name": "not_and'", "code": "theorem not_and' : ¬(a ∧ b) ↔ b → ¬a", "start": [ 102, 1 ], "end": [ 102, 71 ], "kind": "commanddeclaration" }, { "full_name": "and_or_left", "code": "theorem and_or_left : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c)", "start": [ 104, 1 ], "end": [ 107, 57 ], "kind": "commanddeclaration" }, { "full_name": "or_and_right", "code": "theorem or_and_right : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c)", "start": [ 109, 1 ], "end": [ 110, 123 ], "kind": "commanddeclaration" }, { "full_name": "or_and_left", "code": "theorem or_and_left : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c)", "start": [ 112, 1 ], "end": [ 115, 70 ], "kind": "commanddeclaration" }, { "full_name": "and_or_right", "code": "theorem and_or_right : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c)", "start": [ 117, 1 ], "end": [ 118, 120 ], "kind": "commanddeclaration" }, { "full_name": "or_imp", "code": "theorem or_imp : (a ∨ b → c) ↔ (a → c) ∧ (b → c)", "start": [ 120, 1 ], "end": [ 121, 75 ], "kind": "commanddeclaration" }, { "full_name": "not_or", "code": "@[simp] theorem not_or : ¬(p ∨ q) ↔ ¬p ∧ ¬q", "start": [ 134, 1 ], "end": [ 134, 54 ], "kind": "commanddeclaration" }, { "full_name": "not_and_of_not_or_not", "code": "theorem not_and_of_not_or_not (h : ¬a ∨ ¬b) : ¬(a ∧ b)", "start": [ 136, 1 ], "end": [ 136, 87 ], "kind": "commanddeclaration" }, { "full_name": "if_false_left", "code": "@[simp]\ntheorem if_false_left [h : Decidable p] :\n ite p False q ↔ ¬p ∧ q", "start": [ 141, 1 ], "end": [ 143, 68 ], "kind": "commanddeclaration" }, { "full_name": "if_false_right", "code": "@[simp]\ntheorem if_false_right [h : Decidable p] :\n ite p q False ↔ p ∧ q", "start": [ 145, 1 ], "end": [ 147, 67 ], "kind": "commanddeclaration" }, { "full_name": "if_true_left", "code": "@[simp low]\ntheorem if_true_left [h : Decidable p] :\n ite p True q ↔ ¬p → q", "start": [ 155, 1 ], "end": [ 157, 67 ], "kind": "commanddeclaration" }, { "full_name": "if_true_right", "code": "@[simp low]\ntheorem if_true_right [h : Decidable p] :\n ite p q True ↔ p → q", "start": [ 159, 1 ], "end": [ 161, 66 ], "kind": "commanddeclaration" }, { "full_name": "dite_not", "code": "@[simp] theorem dite_not [hn : Decidable (¬p)] [h : Decidable p] (x : ¬p → α) (y : ¬¬p → α) :\n dite (¬p) x y = dite p (fun h => y (not_not_intro h)) x", "start": [ 163, 1 ], "end": [ 166, 37 ], "kind": "commanddeclaration" }, { "full_name": "ite_not", "code": "@[simp] theorem ite_not (p : Prop) [Decidable p] (x y : α) : ite (¬p) x y = ite p y x", "start": [ 168, 1 ], "end": [ 170, 37 ], "kind": "commanddeclaration" }, { "full_name": "ite_true_same", "code": "@[simp] theorem ite_true_same (p q : Prop) [h : Decidable p] : (if p then p else q) = (¬p → q)", "start": [ 172, 1 ], "end": [ 173, 37 ], "kind": "commanddeclaration" }, { "full_name": "ite_false_same", "code": "@[simp] theorem ite_false_same (p q : Prop) [h : Decidable p] : (if p then q else p) = (p ∧ q)", "start": [ 175, 1 ], "end": [ 176, 37 ], "kind": "commanddeclaration" }, { "full_name": "forall_imp", "code": "theorem forall_imp (h : ∀ a, p a → q a) : (∀ a, p a) → ∀ a, q a", "start": [ 183, 1 ], "end": [ 183, 90 ], "kind": "commanddeclaration" }, { "full_name": "forall_exists_index", "code": "@[simp] theorem forall_exists_index {q : (∃ x, p x) → Prop} :\n (∀ h, q h) ↔ ∀ x (h : p x), q ⟨x, h⟩", "start": [ 185, 1 ], "end": [ 191, 57 ], "kind": "commanddeclaration" }, { "full_name": "Exists.imp", "code": "theorem Exists.imp (h : ∀ a, p a → q a) : (∃ a, p a) → ∃ a, q a", "start": [ 193, 1 ], "end": [ 194, 27 ], "kind": "commanddeclaration" }, { "full_name": "Exists.imp'", "code": "theorem Exists.imp' {β} {q : β → Prop} (f : α → β) (hpq : ∀ a, p a → q (f a)) :\n (∃ a, p a) → ∃ b, q b", "start": [ 196, 1 ], "end": [ 198, 29 ], "kind": "commanddeclaration" }, { "full_name": "exists_imp", "code": "theorem exists_imp : ((∃ x, p x) → b) ↔ ∀ x, p x → b", "start": [ 200, 1 ], "end": [ 200, 76 ], "kind": "commanddeclaration" }, { "full_name": "exists_const", "code": "@[simp] theorem exists_const (α) [i : Nonempty α] : (∃ _ : α, b) ↔ b", "start": [ 202, 1 ], "end": [ 203, 41 ], "kind": "commanddeclaration" }, { "full_name": "forall_congr'", "code": "theorem forall_congr' (h : ∀ a, p a ↔ q a) : (∀ a, p a) ↔ ∀ a, q a", "start": [ 207, 1 ], "end": [ 208, 55 ], "kind": "commanddeclaration" }, { "full_name": "exists_congr", "code": "theorem exists_congr (h : ∀ a, p a ↔ q a) : (∃ a, p a) ↔ ∃ a, q a", "start": [ 210, 1 ], "end": [ 211, 61 ], "kind": "commanddeclaration" }, { "full_name": "forall₂_congr", "code": "theorem forall₂_congr {p q : ∀ a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) :\n (∀ a b, p a b) ↔ ∀ a b, q a b", "start": [ 215, 1 ], "end": [ 217, 46 ], "kind": "commanddeclaration" }, { "full_name": "exists₂_congr", "code": "theorem exists₂_congr {p q : ∀ a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) :\n (∃ a b, p a b) ↔ ∃ a b, q a b", "start": [ 219, 1 ], "end": [ 221, 44 ], "kind": "commanddeclaration" }, { "full_name": "forall₃_congr", "code": "theorem forall₃_congr {p q : ∀ a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) :\n (∀ a b c, p a b c) ↔ ∀ a b c, q a b c", "start": [ 224, 1 ], "end": [ 226, 46 ], "kind": "commanddeclaration" }, { "full_name": "exists₃_congr", "code": "theorem exists₃_congr {p q : ∀ a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) :\n (∃ a b c, p a b c) ↔ ∃ a b c, q a b c", "start": [ 228, 1 ], "end": [ 230, 45 ], "kind": "commanddeclaration" }, { "full_name": "forall₄_congr", "code": "theorem forall₄_congr {p q : ∀ a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) :\n (∀ a b c d, p a b c d) ↔ ∀ a b c d, q a b c d", "start": [ 233, 1 ], "end": [ 235, 46 ], "kind": "commanddeclaration" }, { "full_name": "exists₄_congr", "code": "theorem exists₄_congr {p q : ∀ a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) :\n (∃ a b c d, p a b c d) ↔ ∃ a b c d, q a b c d", "start": [ 237, 1 ], "end": [ 239, 45 ], "kind": "commanddeclaration" }, { "full_name": "forall₅_congr", "code": "theorem forall₅_congr {p q : ∀ a b c d, ε a b c d → Prop}\n (h : ∀ a b c d e, p a b c d e ↔ q a b c d e) :\n (∀ a b c d e, p a b c d e) ↔ ∀ a b c d e, q a b c d e", "start": [ 242, 1 ], "end": [ 245, 46 ], "kind": "commanddeclaration" }, { "full_name": "exists₅_congr", "code": "theorem exists₅_congr {p q : ∀ a b c d, ε a b c d → Prop}\n (h : ∀ a b c d e, p a b c d e ↔ q a b c d e) :\n (∃ a b c d e, p a b c d e) ↔ ∃ a b c d e, q a b c d e", "start": [ 247, 1 ], "end": [ 250, 45 ], "kind": "commanddeclaration" }, { "full_name": "not_exists", "code": "@[simp] theorem not_exists : (¬∃ x, p x) ↔ ∀ x, ¬p x", "start": [ 254, 1 ], "end": [ 254, 67 ], "kind": "commanddeclaration" }, { "full_name": "forall_and", "code": "theorem forall_and : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x)", "start": [ 256, 1 ], "end": [ 257, 82 ], "kind": "commanddeclaration" }, { "full_name": "exists_or", "code": "theorem exists_or : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ ∃ x, q x", "start": [ 259, 1 ], "end": [ 261, 66 ], "kind": "commanddeclaration" }, { "full_name": "exists_false", "code": "@[simp] theorem exists_false : ¬(∃ _a : α, False)", "start": [ 263, 1 ], "end": [ 263, 69 ], "kind": "commanddeclaration" }, { "full_name": "forall_const", "code": "@[simp] theorem forall_const (α : Sort _) [i : Nonempty α] : (α → b) ↔ b", "start": [ 265, 1 ], "end": [ 266, 27 ], "kind": "commanddeclaration" }, { "full_name": "Exists.nonempty", "code": "theorem Exists.nonempty : (∃ x, p x) → Nonempty α", "start": [ 268, 1 ], "end": [ 268, 66 ], "kind": "commanddeclaration" }, { "full_name": "not_forall_of_exists_not", "code": "theorem not_forall_of_exists_not {p : α → Prop} : (∃ x, ¬p x) → ¬∀ x, p x", "start": [ 270, 1 ], "end": [ 271, 27 ], "kind": "commanddeclaration" }, { "full_name": "forall_eq", "code": "@[simp] theorem forall_eq {p : α → Prop} {a' : α} : (∀ a, a = a' → p a) ↔ p a'", "start": [ 273, 1 ], "end": [ 274, 47 ], "kind": "commanddeclaration" }, { "full_name": "forall_eq'", "code": "@[simp] theorem forall_eq' {a' : α} : (∀ a, a' = a → p a) ↔ p a'", "start": [ 276, 1 ], "end": [ 276, 92 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq", "code": "@[simp] theorem exists_eq : ∃ a, a = a'", "start": [ 278, 1 ], "end": [ 278, 52 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq'", "code": "@[simp] theorem exists_eq' : ∃ a, a' = a", "start": [ 280, 1 ], "end": [ 280, 53 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_left", "code": "@[simp] theorem exists_eq_left : (∃ a, a = a' ∧ p a) ↔ p a'", "start": [ 282, 1 ], "end": [ 283, 49 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_right", "code": "@[simp] theorem exists_eq_right : (∃ a, p a ∧ a = a') ↔ p a'", "start": [ 285, 1 ], "end": [ 286, 68 ], "kind": "commanddeclaration" }, { "full_name": "exists_and_left", "code": "@[simp] theorem exists_and_left : (∃ x, b ∧ p x) ↔ b ∧ (∃ x, p x)", "start": [ 288, 1 ], "end": [ 289, 63 ], "kind": "commanddeclaration" }, { "full_name": "exists_and_right", "code": "@[simp] theorem exists_and_right : (∃ x, p x ∧ b) ↔ (∃ x, p x) ∧ b", "start": [ 291, 1 ], "end": [ 291, 89 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_left'", "code": "@[simp] theorem exists_eq_left' : (∃ a, a' = a ∧ p a) ↔ p a'", "start": [ 293, 1 ], "end": [ 293, 88 ], "kind": "commanddeclaration" }, { "full_name": "forall_eq_or_imp", "code": "@[simp] theorem forall_eq_or_imp : (∀ a, a = a' ∨ q a → p a) ↔ p a' ∧ ∀ a, q a → p a", "start": [ 295, 1 ], "end": [ 296, 44 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_or_imp", "code": "@[simp] theorem exists_eq_or_imp : (∃ a, (a = a' ∨ q a) ∧ p a) ↔ p a' ∨ ∃ a, q a ∧ p a", "start": [ 298, 1 ], "end": [ 299, 54 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_right_right", "code": "@[simp] theorem exists_eq_right_right : (∃ (a : α), p a ∧ q a ∧ a = a') ↔ p a' ∧ q a'", "start": [ 301, 1 ], "end": [ 302, 21 ], "kind": "commanddeclaration" }, { "full_name": "exists_eq_right_right'", "code": "@[simp] theorem exists_eq_right_right' : (∃ (a : α), p a ∧ q a ∧ a' = a) ↔ p a' ∧ q a'", "start": [ 304, 1 ], "end": [ 305, 23 ], "kind": "commanddeclaration" }, { "full_name": "exists_prop", "code": "@[simp] theorem exists_prop : (∃ _h : a, b) ↔ a ∧ b", "start": [ 307, 1 ], "end": [ 308, 55 ], "kind": "commanddeclaration" }, { "full_name": "exists_apply_eq_apply", "code": "@[simp] theorem exists_apply_eq_apply (f : α → β) (a' : α) : ∃ a, f a = f a'", "start": [ 310, 1 ], "end": [ 310, 90 ], "kind": "commanddeclaration" }, { "full_name": "forall_prop_of_true", "code": "theorem forall_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∀ h' : p, q h') ↔ q h", "start": [ 312, 1 ], "end": [ 313, 28 ], "kind": "commanddeclaration" }, { "full_name": "forall_comm", "code": "theorem forall_comm {p : α → β → Prop} : (∀ a b, p a b) ↔ (∀ b a, p a b)", "start": [ 315, 1 ], "end": [ 316, 43 ], "kind": "commanddeclaration" }, { "full_name": "exists_comm", "code": "theorem exists_comm {p : α → β → Prop} : (∃ a b, p a b) ↔ (∃ b a, p a b)", "start": [ 318, 1 ], "end": [ 319, 59 ], "kind": "commanddeclaration" }, { "full_name": "forall_apply_eq_imp_iff", "code": "@[simp] theorem forall_apply_eq_imp_iff {f : α → β} {p : β → Prop} :\n (∀ b a, f a = b → p b) ↔ ∀ a, p (f a)", "start": [ 321, 1 ], "end": [ 322, 67 ], "kind": "commanddeclaration" }, { "full_name": "forall_eq_apply_imp_iff", "code": "@[simp] theorem forall_eq_apply_imp_iff {f : α → β} {p : β → Prop} :\n (∀ b a, b = f a → p b) ↔ ∀ a, p (f a)", "start": [ 324, 1 ], "end": [ 325, 67 ], "kind": "commanddeclaration" }, { "full_name": "forall_apply_eq_imp_iff₂", "code": "@[simp] theorem forall_apply_eq_imp_iff₂ {f : α → β} {p : α → Prop} {q : β → Prop} :\n (∀ b a, p a → f a = b → q b) ↔ ∀ a, p a → q (f a)", "start": [ 327, 1 ], "end": [ 329, 67 ], "kind": "commanddeclaration" }, { "full_name": "forall_prop_of_false", "code": "theorem forall_prop_of_false {p : Prop} {q : p → Prop} (hn : ¬p) : (∀ h' : p, q h') ↔ True", "start": [ 331, 1 ], "end": [ 332, 36 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_not", "code": "@[simp] theorem Decidable.not_not [Decidable p] : ¬¬p ↔ p", "start": [ 338, 1 ], "end": [ 338, 89 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_not_self", "code": "abbrev Decidable.or_not_self := em", "start": [ 340, 1 ], "end": [ 341, 35 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_or_self", "code": "theorem Decidable.not_or_self (p : Prop) [h : Decidable p] : ¬p ∨ p", "start": [ 343, 1 ], "end": [ 345, 23 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.by_contra", "code": "theorem Decidable.by_contra [Decidable p] : (¬p → False) → p", "start": [ 347, 1 ], "end": [ 347, 75 ], "kind": "commanddeclaration" }, { "full_name": "Or.by_cases", "code": "protected def Or.by_cases [Decidable p] {α : Sort u} (h : p ∨ q) (h₁ : p → α) (h₂ : q → α) : α :=\n if hp : p then h₁ hp else h₂ (h.resolve_left hp)", "start": [ 349, 1 ], "end": [ 351, 51 ], "kind": "commanddeclaration" }, { "full_name": "Or.by_cases'", "code": "protected def Or.by_cases' [Decidable q] {α : Sort u} (h : p ∨ q) (h₁ : p → α) (h₂ : q → α) : α :=\n if hq : q then h₂ hq else h₁ (h.resolve_right hq)", "start": [ 353, 1 ], "end": [ 355, 52 ], "kind": "commanddeclaration" }, { "full_name": "exists_prop_decidable", "code": "instance exists_prop_decidable {p} (P : p → Prop)\n [Decidable p] [∀ h, Decidable (P h)] : Decidable (∃ h, P h) :=\nif h : p then\n decidable_of_decidable_of_iff ⟨fun h2 => ⟨h, h2⟩, fun ⟨_, h2⟩ => h2⟩\nelse isFalse fun ⟨h', _⟩ => h h'", "start": [ 357, 1 ], "end": [ 361, 33 ], "kind": "commanddeclaration" }, { "full_name": "forall_prop_decidable", "code": "instance forall_prop_decidable {p} (P : p → Prop)\n [Decidable p] [∀ h, Decidable (P h)] : Decidable (∀ h, P h) :=\nif h : p then\n decidable_of_decidable_of_iff ⟨fun h2 _ => h2, fun al => al h⟩\nelse isTrue fun h2 => absurd h2 h", "start": [ 363, 1 ], "end": [ 367, 34 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_true_iff", "code": "theorem decide_eq_true_iff (p : Prop) [Decidable p] : (decide p = true) ↔ p", "start": [ 369, 1 ], "end": [ 369, 87 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_false_iff_not", "code": "@[simp] theorem decide_eq_false_iff_not (p : Prop) {_ : Decidable p} : (decide p = false) ↔ ¬p", "start": [ 371, 1 ], "end": [ 372, 40 ], "kind": "commanddeclaration" }, { "full_name": "decide_eq_decide", "code": "@[simp] theorem decide_eq_decide {p q : Prop} {_ : Decidable p} {_ : Decidable q} :\n decide p = decide q ↔ (p ↔ q)", "start": [ 374, 1 ], "end": [ 376, 89 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.of_not_imp", "code": "theorem Decidable.of_not_imp [Decidable a] (h : ¬(a → b)) : a", "start": [ 378, 1 ], "end": [ 379, 41 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_imp_symm", "code": "theorem Decidable.not_imp_symm [Decidable a] (h : ¬a → b) (hb : ¬b) : a", "start": [ 381, 1 ], "end": [ 382, 28 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_imp_comm", "code": "theorem Decidable.not_imp_comm [Decidable a] [Decidable b] : (¬a → b) ↔ (¬b → a)", "start": [ 384, 1 ], "end": [ 385, 31 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_imp_self", "code": "@[simp] theorem Decidable.not_imp_self [Decidable a] : (¬a → a) ↔ a", "start": [ 387, 1 ], "end": [ 388, 52 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_iff_not_imp_left", "code": "theorem Decidable.or_iff_not_imp_left [Decidable a] : a ∨ b ↔ (¬a → b)", "start": [ 390, 1 ], "end": [ 391, 53 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_iff_not_imp_right", "code": "theorem Decidable.or_iff_not_imp_right [Decidable b] : a ∨ b ↔ (¬b → a)", "start": [ 393, 1 ], "end": [ 394, 36 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_imp_not", "code": "theorem Decidable.not_imp_not [Decidable a] : (¬a → ¬b) ↔ (b → a)", "start": [ 396, 1 ], "end": [ 397, 45 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_or_of_imp", "code": "theorem Decidable.not_or_of_imp [Decidable a] (h : a → b) : ¬a ∨ b", "start": [ 399, 1 ], "end": [ 400, 42 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_iff_not_or", "code": "theorem Decidable.imp_iff_not_or [Decidable a] : (a → b) ↔ (¬a ∨ b)", "start": [ 402, 1 ], "end": [ 403, 39 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_iff_or_not", "code": "theorem Decidable.imp_iff_or_not [Decidable b] : b → a ↔ a ∨ ¬b", "start": [ 405, 1 ], "end": [ 406, 41 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_or", "code": "theorem Decidable.imp_or [h : Decidable a] : (a → b ∨ c) ↔ (a → b) ∨ (a → c)", "start": [ 408, 1 ], "end": [ 412, 66 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_or'", "code": "theorem Decidable.imp_or' [Decidable b] : (a → b ∨ c) ↔ (a → b) ∨ (a → c)", "start": [ 414, 1 ], "end": [ 416, 88 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_imp_iff_and_not", "code": "theorem Decidable.not_imp_iff_and_not [Decidable a] : ¬(a → b) ↔ a ∧ ¬b", "start": [ 418, 1 ], "end": [ 419, 66 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.peirce", "code": "theorem Decidable.peirce (a b : Prop) [Decidable a] : ((a → b) → a) → a", "start": [ 421, 1 ], "end": [ 422, 53 ], "kind": "commanddeclaration" }, { "full_name": "peirce'", "code": "theorem peirce' {a : Prop} (H : ∀ b : Prop, (a → b) → a) : a", "start": [ 424, 1 ], "end": [ 424, 71 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_iff_not", "code": "theorem Decidable.not_iff_not [Decidable a] [Decidable b] : (¬a ↔ ¬b) ↔ (a ↔ b)", "start": [ 426, 1 ], "end": [ 427, 75 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_iff_comm", "code": "theorem Decidable.not_iff_comm [Decidable a] [Decidable b] : (¬a ↔ b) ↔ (¬b ↔ a)", "start": [ 429, 1 ], "end": [ 430, 79 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_iff", "code": "theorem Decidable.not_iff [Decidable b] : ¬(a ↔ b) ↔ (¬a ↔ b)", "start": [ 432, 1 ], "end": [ 436, 46 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.iff_not_comm", "code": "theorem Decidable.iff_not_comm [Decidable a] [Decidable b] : (a ↔ ¬b) ↔ (b ↔ ¬a)", "start": [ 438, 1 ], "end": [ 439, 73 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.iff_iff_and_or_not_and_not", "code": "theorem Decidable.iff_iff_and_or_not_and_not {a b : Prop} [Decidable b] :\n (a ↔ b) ↔ (a ∧ b) ∨ (¬a ∧ ¬b)", "start": [ 441, 1 ], "end": [ 444, 56 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.iff_iff_not_or_and_or_not", "code": "theorem Decidable.iff_iff_not_or_and_or_not [Decidable a] [Decidable b] :\n (a ↔ b) ↔ (¬a ∨ b) ∧ (a ∨ ¬b)", "start": [ 446, 1 ], "end": [ 448, 76 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_and_not_right", "code": "theorem Decidable.not_and_not_right [Decidable b] : ¬(a ∧ ¬b) ↔ (a → b)", "start": [ 450, 1 ], "end": [ 451, 76 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_and_iff_or_not_not", "code": "theorem Decidable.not_and_iff_or_not_not [Decidable a] : ¬(a ∧ b) ↔ ¬a ∨ ¬b", "start": [ 453, 1 ], "end": [ 454, 81 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_and_iff_or_not_not'", "code": "theorem Decidable.not_and_iff_or_not_not' [Decidable b] : ¬(a ∧ b) ↔ ¬a ∨ ¬b", "start": [ 456, 1 ], "end": [ 457, 81 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_iff_not_and_not", "code": "theorem Decidable.or_iff_not_and_not [Decidable a] [Decidable b] : a ∨ b ↔ ¬(¬a ∧ ¬b)", "start": [ 459, 1 ], "end": [ 460, 25 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.and_iff_not_or_not", "code": "theorem Decidable.and_iff_not_or_not [Decidable a] [Decidable b] : a ∧ b ↔ ¬(¬a ∨ ¬b)", "start": [ 462, 1 ], "end": [ 463, 41 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_iff_right_iff", "code": "theorem Decidable.imp_iff_right_iff [Decidable a] : (a → b ↔ b) ↔ a ∨ b", "start": [ 465, 1 ], "end": [ 468, 77 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.imp_iff_left_iff", "code": "theorem Decidable.imp_iff_left_iff [Decidable a] : (b ↔ a → b) ↔ a ∨ b", "start": [ 470, 1 ], "end": [ 471, 71 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.and_or_imp", "code": "theorem Decidable.and_or_imp [Decidable a] : a ∧ b ∨ (a → c) ↔ a → b ∨ c", "start": [ 473, 1 ], "end": [ 475, 61 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_congr_left'", "code": "theorem Decidable.or_congr_left' [Decidable c] (h : ¬c → (a ↔ b)) : a ∨ c ↔ b ∨ c", "start": [ 477, 1 ], "end": [ 478, 75 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.or_congr_right'", "code": "theorem Decidable.or_congr_right' [Decidable a] (h : ¬a → (b ↔ c)) : a ∨ b ↔ a ∨ c", "start": [ 480, 1 ], "end": [ 481, 73 ], "kind": "commanddeclaration" }, { "full_name": "decidable_of_iff", "code": "@[inline] def decidable_of_iff (a : Prop) (h : a ↔ b) [Decidable a] : Decidable b :=\n decidable_of_decidable_of_iff h", "start": [ 483, 1 ], "end": [ 488, 34 ], "kind": "commanddeclaration" }, { "full_name": "decidable_of_iff'", "code": "@[inline] def decidable_of_iff' (b : Prop) (h : a ↔ b) [Decidable b] : Decidable a :=\n decidable_of_decidable_of_iff h.symm", "start": [ 490, 1 ], "end": [ 493, 39 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.predToBool", "code": "instance Decidable.predToBool (p : α → Prop) [DecidablePred p] :\n CoeDep (α → Prop) p (α → Bool) := ⟨fun b => decide <| p b⟩", "start": [ 495, 1 ], "end": [ 496, 63 ], "kind": "commanddeclaration" }, { "full_name": "decidable_of_bool", "code": "def decidable_of_bool : ∀ (b : Bool), (b ↔ a) → Decidable a\n | true, h => isTrue (h.1 rfl)\n | false, h => isFalse (mt h.2 Bool.noConfusion)", "start": [ 498, 1 ], "end": [ 502, 50 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_forall", "code": "protected theorem Decidable.not_forall {p : α → Prop} [Decidable (∃ x, ¬p x)]\n [∀ x, Decidable (p x)] : (¬∀ x, p x) ↔ ∃ x, ¬p x", "start": [ 504, 1 ], "end": [ 507, 29 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_forall_not", "code": "protected theorem Decidable.not_forall_not {p : α → Prop} [Decidable (∃ x, p x)] :\n (¬∀ x, ¬p x) ↔ ∃ x, p x", "start": [ 509, 1 ], "end": [ 511, 89 ], "kind": "commanddeclaration" }, { "full_name": "Decidable.not_exists_not", "code": "protected theorem Decidable.not_exists_not {p : α → Prop} [∀ x, Decidable (p x)] :\n (¬∃ x, ¬p x) ↔ ∀ x, p x", "start": [ 513, 1 ], "end": [ 515, 44 ], "kind": "commanddeclaration" }, { "full_name": "decide_implies", "code": "@[simp]\ntheorem decide_implies (u v : Prop)\n [duv : Decidable (u → v)] [du : Decidable u] {dv : u → Decidable v}\n : decide (u → v) = dite u (fun h => @decide v (dv h)) (fun _ => true)", "start": [ 532, 1 ], "end": [ 539, 13 ], "kind": "commanddeclaration" }, { "full_name": "decide_ite", "code": "@[simp]\ntheorem decide_ite (u : Prop) [du : Decidable u] (p q : Prop)\n [dpq : Decidable (ite u p q)] [dp : Decidable p] [dq : Decidable q] :\n decide (ite u p q) = ite u (decide p) (decide q)", "start": [ 551, 1 ], "end": [ 555, 24 ], "kind": "commanddeclaration" }, { "full_name": "ite_true_decide_same", "code": "@[simp] theorem ite_true_decide_same (p : Prop) [h : Decidable p] (b : Bool) :\n (if p then decide p else b) = (decide p || b)", "start": [ 558, 1 ], "end": [ 560, 39 ], "kind": "commanddeclaration" }, { "full_name": "ite_false_decide_same", "code": "@[simp] theorem ite_false_decide_same (p : Prop) [h : Decidable p] (b : Bool) :\n (if p then b else decide p) = (decide p && b)", "start": [ 563, 1 ], "end": [ 565, 39 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Classical.lean
[ ".lake/packages/lean4/src/lean/Init/PropLemmas.lean" ]
[ { "full_name": "Classical.indefiniteDescription", "code": "noncomputable def indefiniteDescription {α : Sort u} (p : α → Prop) (h : ∃ x, p x) : {x // p x} :=\n choice <| let ⟨x, px⟩ := h; ⟨⟨x, px⟩⟩", "start": [ 15, 1 ], "end": [ 16, 40 ], "kind": "commanddeclaration" }, { "full_name": "Classical.choose", "code": "noncomputable def choose {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : α :=\n (indefiniteDescription p h).val", "start": [ 18, 1 ], "end": [ 26, 34 ], "kind": "commanddeclaration" }, { "full_name": "Classical.choose_spec", "code": "theorem choose_spec {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : p (choose h)", "start": [ 28, 1 ], "end": [ 29, 39 ], "kind": "commanddeclaration" }, { "full_name": "Classical.em", "code": "theorem em (p : Prop) : p ∨ ¬p", "start": [ 31, 1 ], "end": [ 63, 27 ], "kind": "commanddeclaration" }, { "full_name": "Classical.exists_true_of_nonempty", "code": "theorem exists_true_of_nonempty {α : Sort u} : Nonempty α → ∃ _ : α, True", "start": [ 65, 1 ], "end": [ 66, 24 ], "kind": "commanddeclaration" }, { "full_name": "Classical.inhabited_of_nonempty", "code": "noncomputable def inhabited_of_nonempty {α : Sort u} (h : Nonempty α) : Inhabited α :=\n ⟨choice h⟩", "start": [ 68, 1 ], "end": [ 69, 13 ], "kind": "commanddeclaration" }, { "full_name": "Classical.inhabited_of_exists", "code": "noncomputable def inhabited_of_exists {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : Inhabited α :=\n inhabited_of_nonempty (Exists.elim h (fun w _ => ⟨w⟩))", "start": [ 71, 1 ], "end": [ 72, 57 ], "kind": "commanddeclaration" }, { "full_name": "Classical.propDecidable", "code": "noncomputable scoped instance (priority := low) propDecidable (a : Prop) : Decidable a :=\n choice <| match em a with\n | Or.inl h => ⟨isTrue h⟩\n | Or.inr h => ⟨isFalse h⟩", "start": [ 74, 1 ], "end": [ 78, 30 ], "kind": "commanddeclaration" }, { "full_name": "Classical.decidableInhabited", "code": "noncomputable def decidableInhabited (a : Prop) : Inhabited (Decidable a) where\n default := inferInstance", "start": [ 80, 1 ], "end": [ 81, 27 ], "kind": "commanddeclaration" }, { "full_name": "Classical.typeDecidableEq", "code": "noncomputable def typeDecidableEq (α : Sort u) : DecidableEq α :=\n fun _ _ => inferInstance", "start": [ 83, 1 ], "end": [ 84, 27 ], "kind": "commanddeclaration" }, { "full_name": "Classical.typeDecidable", "code": "noncomputable def typeDecidable (α : Sort u) : PSum α (α → False) :=\n match (propDecidable (Nonempty α)) with\n | (isTrue hp) => PSum.inl (@default _ (inhabited_of_nonempty hp))\n | (isFalse hn) => PSum.inr (fun a => absurd (Nonempty.intro a) hn)", "start": [ 86, 1 ], "end": [ 89, 69 ], "kind": "commanddeclaration" }, { "full_name": "Classical.strongIndefiniteDescription", "code": "noncomputable def strongIndefiniteDescription {α : Sort u} (p : α → Prop) (h : Nonempty α) : {x : α // (∃ y : α, p y) → p x} :=\n @dite _ (∃ x : α, p x) (propDecidable _)\n (fun (hp : ∃ x : α, p x) =>\n show {x : α // (∃ y : α, p y) → p x} from\n let xp := indefiniteDescription _ hp;\n ⟨xp.val, fun _ => xp.property⟩)\n (fun hp => ⟨choice h, fun h => absurd h hp⟩)", "start": [ 91, 1 ], "end": [ 97, 49 ], "kind": "commanddeclaration" }, { "full_name": "Classical.epsilon", "code": "noncomputable def epsilon {α : Sort u} [h : Nonempty α] (p : α → Prop) : α :=\n (strongIndefiniteDescription p h).val", "start": [ 99, 1 ], "end": [ 101, 40 ], "kind": "commanddeclaration" }, { "full_name": "Classical.epsilon_spec_aux", "code": "theorem epsilon_spec_aux {α : Sort u} (h : Nonempty α) (p : α → Prop) : (∃ y, p y) → p (@epsilon α h p)", "start": [ 103, 1 ], "end": [ 104, 45 ], "kind": "commanddeclaration" }, { "full_name": "Classical.epsilon_spec", "code": "theorem epsilon_spec {α : Sort u} {p : α → Prop} (hex : ∃ y, p y) : p (@epsilon α (nonempty_of_exists hex) p)", "start": [ 106, 1 ], "end": [ 107, 50 ], "kind": "commanddeclaration" }, { "full_name": "Classical.epsilon_singleton", "code": "theorem epsilon_singleton {α : Sort u} (x : α) : @epsilon α ⟨x⟩ (fun y => y = x) = x", "start": [ 109, 1 ], "end": [ 110, 44 ], "kind": "commanddeclaration" }, { "full_name": "Classical.axiomOfChoice", "code": "theorem axiomOfChoice {α : Sort u} {β : α → Sort v} {r : ∀ x, β x → Prop} (h : ∀ x, ∃ y, r x y) : ∃ (f : ∀ x, β x), ∀ x, r x (f x)", "start": [ 112, 1 ], "end": [ 114, 34 ], "kind": "commanddeclaration" }, { "full_name": "Classical.skolem", "code": "theorem skolem {α : Sort u} {b : α → Sort v} {p : ∀ x, b x → Prop} : (∀ x, ∃ y, p x y) ↔ ∃ (f : ∀ x, b x), ∀ x, p x (f x)", "start": [ 116, 1 ], "end": [ 117, 50 ], "kind": "commanddeclaration" }, { "full_name": "Classical.propComplete", "code": "theorem propComplete (a : Prop) : a = True ∨ a = False", "start": [ 119, 1 ], "end": [ 122, 38 ], "kind": "commanddeclaration" }, { "full_name": "Classical.byCases", "code": "theorem byCases {p q : Prop} (hpq : p → q) (hnpq : ¬p → q) : q", "start": [ 125, 1 ], "end": [ 126, 54 ], "kind": "commanddeclaration" }, { "full_name": "Classical.byContradiction", "code": "theorem byContradiction {p : Prop} (h : ¬p → False) : p", "start": [ 129, 1 ], "end": [ 130, 55 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_not", "code": "@[simp] theorem not_not : ¬¬a ↔ a", "start": [ 132, 1 ], "end": [ 135, 55 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_forall", "code": "@[simp low] theorem not_forall {p : α → Prop} : (¬∀ x, p x) ↔ ∃ x, ¬p x", "start": [ 137, 1 ], "end": [ 137, 96 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_forall_not", "code": "theorem not_forall_not {p : α → Prop} : (¬∀ x, ¬p x) ↔ ∃ x, p x", "start": [ 139, 1 ], "end": [ 139, 92 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_exists_not", "code": "theorem not_exists_not {p : α → Prop} : (¬∃ x, ¬p x) ↔ ∀ x, p x", "start": [ 140, 1 ], "end": [ 140, 92 ], "kind": "commanddeclaration" }, { "full_name": "Classical.forall_or_exists_not", "code": "theorem forall_or_exists_not (P : α → Prop) : (∀ a, P a) ∨ ∃ a, ¬ P a", "start": [ 142, 1 ], "end": [ 143, 32 ], "kind": "commanddeclaration" }, { "full_name": "Classical.exists_or_forall_not", "code": "theorem exists_or_forall_not (P : α → Prop) : (∃ a, P a) ∨ ∀ a, ¬ P a", "start": [ 144, 1 ], "end": [ 145, 32 ], "kind": "commanddeclaration" }, { "full_name": "Classical.or_iff_not_imp_left", "code": "theorem or_iff_not_imp_left : a ∨ b ↔ (¬a → b)", "start": [ 147, 1 ], "end": [ 147, 81 ], "kind": "commanddeclaration" }, { "full_name": "Classical.or_iff_not_imp_right", "code": "theorem or_iff_not_imp_right : a ∨ b ↔ (¬b → a)", "start": [ 148, 1 ], "end": [ 148, 82 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_imp_iff_and_not", "code": "theorem not_imp_iff_and_not : ¬(a → b) ↔ a ∧ ¬b", "start": [ 150, 1 ], "end": [ 150, 81 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_and_iff_or_not_not", "code": "theorem not_and_iff_or_not_not : ¬(a ∧ b) ↔ ¬a ∨ ¬b", "start": [ 152, 1 ], "end": [ 152, 88 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_iff", "code": "theorem not_iff : ¬(a ↔ b) ↔ (¬a ↔ b)", "start": [ 154, 1 ], "end": [ 154, 59 ], "kind": "commanddeclaration" }, { "full_name": "Classical.imp_iff_left_iff", "code": "@[simp] theorem imp_iff_left_iff : (b ↔ a → b) ↔ a ∨ b", "start": [ 156, 1 ], "end": [ 156, 86 ], "kind": "commanddeclaration" }, { "full_name": "Classical.imp_iff_right_iff", "code": "@[simp] theorem imp_iff_right_iff : (a → b ↔ b) ↔ a ∨ b", "start": [ 157, 1 ], "end": [ 157, 87 ], "kind": "commanddeclaration" }, { "full_name": "Classical.and_or_imp", "code": "@[simp] theorem and_or_imp : a ∧ b ∨ (a → c) ↔ a → b ∨ c", "start": [ 159, 1 ], "end": [ 159, 81 ], "kind": "commanddeclaration" }, { "full_name": "Classical.not_imp", "code": "@[simp] theorem not_imp : ¬(a → b) ↔ a ∧ ¬b", "start": [ 161, 1 ], "end": [ 161, 77 ], "kind": "commanddeclaration" }, { "full_name": "Classical.imp_and_neg_imp_iff", "code": "@[simp] theorem imp_and_neg_imp_iff (p q : Prop) : (p → q) ∧ (¬p → q) ↔ q", "start": [ 163, 1 ], "end": [ 165, 59 ], "kind": "commanddeclaration" }, { "full_name": "Exists.choose", "code": "@[reducible] noncomputable def Exists.choose {p : α → Prop} (P : ∃ a, p a) : α := Classical.choose P", "start": [ 172, 1 ], "end": [ 174, 101 ], "kind": "commanddeclaration" }, { "full_name": "Exists.choose_spec", "code": "theorem Exists.choose_spec {p : α → Prop} (P : ∃ a, p a) : p P.choose", "start": [ 176, 1 ], "end": [ 177, 97 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/ByCases.lean
[ ".lake/packages/lean4/src/lean/Init/Classical.lean" ]
[ { "full_name": "if_true", "code": "@[simp] theorem if_true {_ : Decidable True} (t e : α) : ite True t e = t", "start": [ 24, 1 ], "end": [ 24, 92 ], "kind": "commanddeclaration" }, { "full_name": "if_false", "code": "@[simp] theorem if_false {_ : Decidable False} (t e : α) : ite False t e = e", "start": [ 26, 1 ], "end": [ 26, 90 ], "kind": "commanddeclaration" }, { "full_name": "ite_id", "code": "theorem ite_id [Decidable c] {α} (t : α) : (if c then t else t) = t", "start": [ 28, 1 ], "end": [ 28, 88 ], "kind": "commanddeclaration" }, { "full_name": "apply_dite", "code": "theorem apply_dite (f : α → β) (P : Prop) [Decidable P] (x : P → α) (y : ¬P → α) :\n f (dite P x y) = dite P (fun h => f (x h)) (fun h => f (y h))", "start": [ 30, 1 ], "end": [ 33, 30 ], "kind": "commanddeclaration" }, { "full_name": "apply_ite", "code": "theorem apply_ite (f : α → β) (P : Prop) [Decidable P] (x y : α) :\n f (ite P x y) = ite P (f x) (f y)", "start": [ 35, 1 ], "end": [ 38, 43 ], "kind": "commanddeclaration" }, { "full_name": "dite_eq_left_iff", "code": "@[simp] theorem dite_eq_left_iff {P : Prop} [Decidable P] {B : ¬ P → α} :\n dite P (fun _ => a) B = a ↔ ∀ h, B h = a", "start": [ 40, 1 ], "end": [ 42, 69 ], "kind": "commanddeclaration" }, { "full_name": "dite_eq_right_iff", "code": "@[simp] theorem dite_eq_right_iff {P : Prop} [Decidable P] {A : P → α} :\n (dite P A fun _ => b) = b ↔ ∀ h, A h = b", "start": [ 44, 1 ], "end": [ 46, 69 ], "kind": "commanddeclaration" }, { "full_name": "ite_eq_left_iff", "code": "@[simp] theorem ite_eq_left_iff {P : Prop} [Decidable P] : ite P a b = a ↔ ¬P → b = a", "start": [ 48, 1 ], "end": [ 49, 19 ], "kind": "commanddeclaration" }, { "full_name": "ite_eq_right_iff", "code": "@[simp] theorem ite_eq_right_iff {P : Prop} [Decidable P] : ite P a b = b ↔ P → a = b", "start": [ 51, 1 ], "end": [ 52, 20 ], "kind": "commanddeclaration" }, { "full_name": "dite_eq_ite", "code": "@[simp] theorem dite_eq_ite [Decidable P] : (dite P (fun _ => a) fun _ => b) = ite P a b", "start": [ 54, 1 ], "end": [ 55, 96 ], "kind": "commanddeclaration" }, { "full_name": "ite_some_none_eq_none", "code": "theorem ite_some_none_eq_none [Decidable P] :\n (if P then some x else none) = none ↔ ¬ P", "start": [ 58, 1 ], "end": [ 61, 6 ], "kind": "commanddeclaration" }, { "full_name": "ite_some_none_eq_some", "code": "@[simp] theorem ite_some_none_eq_some [Decidable P] :\n (if P then some x else none) = some y ↔ P ∧ x = y", "start": [ 63, 1 ], "end": [ 65, 21 ], "kind": "commanddeclaration" }, { "full_name": "dite_some_none_eq_none", "code": "theorem dite_some_none_eq_none [Decidable P] {x : P → α} :\n (if h : P then some (x h) else none) = none ↔ ¬P", "start": [ 68, 1 ], "end": [ 71, 6 ], "kind": "commanddeclaration" }, { "full_name": "dite_some_none_eq_some", "code": "@[simp] theorem dite_some_none_eq_some [Decidable P] {x : P → α} {y : α} :\n (if h : P then some (x h) else none) = some y ↔ ∃ h : P, x h = y", "start": [ 73, 1 ], "end": [ 78, 44 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Prod.lean
[ ".lake/packages/lean4/src/lean/Init/SimpLemmas.lean" ]
[]
.lake/packages/lean4/src/lean/Init/TacticsExtra.lean
[ ".lake/packages/lean4/src/lean/Init/NotationExtra.lean", ".lake/packages/lean4/src/lean/Init/Tactics.lean" ]
[ { "full_name": "Lean.Parser.Tactic.expandIfThenElse", "code": "private def expandIfThenElse\n (ifTk thenTk elseTk pos neg : Syntax)\n (mkIf : Term → Term → MacroM Term) : MacroM (TSyntax `tactic) := do\n let mkCase tk holeOrTacticSeq mkName : MacroM (Term × Array (TSyntax `tactic)) := do\n if holeOrTacticSeq.isOfKind `Lean.Parser.Term.syntheticHole then\n pure (⟨holeOrTacticSeq⟩, #[])\n else if holeOrTacticSeq.isOfKind `Lean.Parser.Term.hole then\n pure (← mkName, #[])\n else\n let hole ← withFreshMacroScope mkName\n let holeId := hole.raw[1]\n let case ← (open TSyntax.Compat in `(tactic|\n case $holeId:ident =>%$tk\n with_annotate_state $tk skip\n $holeOrTacticSeq))\n pure (hole, #[case])\n let (posHole, posCase) ← mkCase thenTk pos `(?pos)\n let (negHole, negCase) ← mkCase elseTk neg `(?neg)\n `(tactic| ((open Classical in refine%$ifTk $(← mkIf posHole negHole)); $[$(posCase ++ negCase)]*))", "start": [ 15, 1 ], "end": [ 34, 101 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/RCases.lean
[ ".lake/packages/lean4/src/lean/Init/Meta.lean", ".lake/packages/lean4/src/lean/Init/Tactics.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/ToString/Macro.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/Meta.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/NotationExtra.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean", ".lake/packages/lean4/src/lean/Init/Conv.lean" ]
[ { "full_name": "Int.subNatNat_of_sub_eq_zero", "code": "theorem subNatNat_of_sub_eq_zero {m n : Nat} (h : n - m = 0) : subNatNat m n = ↑(m - n)", "start": [ 17, 1 ], "end": [ 18, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_of_sub_eq_succ", "code": "theorem subNatNat_of_sub_eq_succ {m n k : Nat} (h : n - m = succ k) : subNatNat m n = -[k+1]", "start": [ 20, 1 ], "end": [ 21, 20 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_zero", "code": "@[simp] protected theorem neg_zero : -(0:Int) = 0", "start": [ 23, 1 ], "end": [ 23, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_add", "code": "@[norm_cast] theorem ofNat_add (n m : Nat) : (↑(n + m) : Int) = n + m", "start": [ 25, 1 ], "end": [ 25, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul", "code": "@[norm_cast] theorem ofNat_mul (n m : Nat) : (↑(n * m) : Int) = n * m", "start": [ 26, 1 ], "end": [ 26, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_succ", "code": "theorem ofNat_succ (n : Nat) : (succ n : Int) = n + 1", "start": [ 27, 1 ], "end": [ 27, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_ofNat_zero", "code": "@[local simp] theorem neg_ofNat_zero : -((0 : Nat) : Int) = 0", "start": [ 29, 1 ], "end": [ 29, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_ofNat_succ", "code": "@[local simp] theorem neg_ofNat_succ (n : Nat) : -(succ n : Int) = -[n+1]", "start": [ 30, 1 ], "end": [ 30, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_negSucc", "code": "@[local simp] theorem neg_negSucc (n : Nat) : -(-[n+1]) = succ n", "start": [ 31, 1 ], "end": [ 31, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_coe", "code": "theorem negSucc_coe (n : Nat) : -[n+1] = -↑(n + 1)", "start": [ 33, 1 ], "end": [ 33, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat_eq", "code": "theorem negOfNat_eq : negOfNat n = -ofNat n", "start": [ 35, 1 ], "end": [ 35, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_def", "code": "@[simp] theorem add_def {a b : Int} : Int.add a b = a + b", "start": [ 39, 1 ], "end": [ 39, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_add_ofNat", "code": "@[local simp] theorem ofNat_add_ofNat (m n : Nat) : (↑m + ↑n : Int) = ↑(m + n)", "start": [ 41, 1 ], "end": [ 41, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_add_negSucc", "code": "@[local simp] theorem ofNat_add_negSucc (m n : Nat) : ↑m + -[n+1] = subNatNat m (succ n)", "start": [ 42, 1 ], "end": [ 42, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_add_ofNat", "code": "@[local simp] theorem negSucc_add_ofNat (m n : Nat) : -[m+1] + ↑n = subNatNat n (succ m)", "start": [ 43, 1 ], "end": [ 43, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_add_negSucc", "code": "@[local simp] theorem negSucc_add_negSucc (m n : Nat) : -[m+1] + -[n+1] = -[succ (m + n) +1]", "start": [ 44, 1 ], "end": [ 44, 100 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_def", "code": "@[simp] theorem mul_def {a b : Int} : Int.mul a b = a * b", "start": [ 46, 1 ], "end": [ 46, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul_ofNat", "code": "@[local simp] theorem ofNat_mul_ofNat (m n : Nat) : (↑m * ↑n : Int) = ↑(m * n)", "start": [ 48, 1 ], "end": [ 48, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul_negSucc'", "code": "@[local simp] theorem ofNat_mul_negSucc' (m n : Nat) : ↑m * -[n+1] = negOfNat (m * succ n)", "start": [ 49, 1 ], "end": [ 49, 98 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_ofNat'", "code": "@[local simp] theorem negSucc_mul_ofNat' (m n : Nat) : -[m+1] * ↑n = negOfNat (succ m * n)", "start": [ 50, 1 ], "end": [ 50, 98 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_negSucc'", "code": "@[local simp] theorem negSucc_mul_negSucc' (m n : Nat) :\n -[m+1] * -[n+1] = ofNat (succ m * succ n)", "start": [ 51, 1 ], "end": [ 52, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_inj", "code": "@[norm_cast] theorem ofNat_inj : ((m : Nat) : Int) = (n : Nat) ↔ m = n", "start": [ 56, 1 ], "end": [ 56, 98 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_eq_zero", "code": "theorem ofNat_eq_zero : ((n : Nat) : Int) = 0 ↔ n = 0", "start": [ 58, 1 ], "end": [ 58, 67 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_ne_zero", "code": "theorem ofNat_ne_zero : ((n : Nat) : Int) ≠ 0 ↔ n ≠ 0", "start": [ 60, 1 ], "end": [ 60, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_inj", "code": "theorem negSucc_inj : negSucc m = negSucc n ↔ m = n", "start": [ 62, 1 ], "end": [ 62, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_eq", "code": "theorem negSucc_eq (n : Nat) : -[n+1] = -((n : Int) + 1)", "start": [ 64, 1 ], "end": [ 64, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_ne_zero", "code": "@[simp] theorem negSucc_ne_zero (n : Nat) : -[n+1] ≠ 0", "start": [ 66, 1 ], "end": [ 66, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_ne_negSucc", "code": "@[simp] theorem zero_ne_negSucc (n : Nat) : 0 ≠ -[n+1]", "start": [ 68, 1 ], "end": [ 68, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.Nat.cast_ofNat_Int", "code": "@[simp, norm_cast] theorem Nat.cast_ofNat_Int :\n (Nat.cast (no_index (OfNat.ofNat n)) : Int) = OfNat.ofNat n", "start": [ 70, 1 ], "end": [ 71, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_neg", "code": "@[simp] protected theorem neg_neg : ∀ a : Int, -(-a) = a", "start": [ 75, 1 ], "end": [ 78, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_inj", "code": "protected theorem neg_inj {a b : Int} : -a = -b ↔ a = b", "start": [ 80, 1 ], "end": [ 81, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_eq_zero", "code": "@[simp] protected theorem neg_eq_zero : -a = 0 ↔ a = 0", "start": [ 83, 1 ], "end": [ 83, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_ne_zero", "code": "protected theorem neg_ne_zero : -a ≠ 0 ↔ a ≠ 0", "start": [ 85, 1 ], "end": [ 85, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_eq_add_neg", "code": "protected theorem sub_eq_add_neg {a b : Int} : a - b = a + -b", "start": [ 87, 1 ], "end": [ 87, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg_one", "code": "theorem add_neg_one (i : Int) : i + -1 = i - 1", "start": [ 89, 1 ], "end": [ 89, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_elim", "code": "theorem subNatNat_elim (m n : Nat) (motive : Nat → Nat → Int → Prop)\n (hp : ∀ i n, motive (n + i) n i)\n (hn : ∀ i m, motive m (m + i + 1) -[i+1]) :\n motive m n (subNatNat m n)", "start": [ 94, 1 ], "end": [ 105, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_add_left", "code": "theorem subNatNat_add_left : subNatNat (m + n) m = n", "start": [ 107, 1 ], "end": [ 109, 90 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_add_right", "code": "theorem subNatNat_add_right : subNatNat m (m + n + 1) = negSucc n", "start": [ 111, 1 ], "end": [ 112, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_add_add", "code": "theorem subNatNat_add_add (m n k : Nat) : subNatNat (m + k) (n + k) = subNatNat m n", "start": [ 114, 1 ], "end": [ 123, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_of_le", "code": "theorem subNatNat_of_le {m n : Nat} (h : n ≤ m) : subNatNat m n = ↑(m - n)", "start": [ 125, 1 ], "end": [ 126, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_of_lt", "code": "theorem subNatNat_of_lt {m n : Nat} (h : m < n) : subNatNat m n = -[pred (n - m) +1]", "start": [ 128, 1 ], "end": [ 129, 83 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_comm", "code": "protected theorem add_comm : ∀ a b : Int, a + b = b + a", "start": [ 135, 1 ], "end": [ 139, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_zero", "code": "@[simp] protected theorem add_zero : ∀ a : Int, a + 0 = a", "start": [ 142, 1 ], "end": [ 144, 19 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_add", "code": "@[simp] protected theorem zero_add (a : Int) : 0 + a = a", "start": [ 146, 1 ], "end": [ 146, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_add_negSucc_of_lt", "code": "theorem ofNat_add_negSucc_of_lt (h : m < n.succ) : ofNat m + -[n+1] = -[n - m+1]", "start": [ 151, 1 ], "end": [ 152, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_sub", "code": "theorem subNatNat_sub (h : n ≤ m) (k : Nat) : subNatNat (m - n) k = subNatNat m (k + n)", "start": [ 154, 1 ], "end": [ 155, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_add", "code": "theorem subNatNat_add (m n k : Nat) : subNatNat (m + n) k = m + subNatNat n k", "start": [ 157, 1 ], "end": [ 164, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_add_negSucc", "code": "theorem subNatNat_add_negSucc (m n k : Nat) :\n subNatNat m n + -[k+1] = subNatNat m (n + succ k)", "start": [ 166, 1 ], "end": [ 180, 20 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_assoc", "code": "protected theorem add_assoc : ∀ a b c : Int, a + b + c = a + (b + c)", "start": [ 182, 1 ], "end": [ 202, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_left_comm", "code": "protected theorem add_left_comm (a b c : Int) : a + (b + c) = b + (a + c)", "start": [ 205, 1 ], "end": [ 206, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_right_comm", "code": "protected theorem add_right_comm (a b c : Int) : a + b + c = a + c + b", "start": [ 208, 1 ], "end": [ 209, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_self", "code": "theorem subNatNat_self : ∀ n, subNatNat n n = 0", "start": [ 213, 1 ], "end": [ 215, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_left_neg", "code": "@[local simp] protected theorem add_left_neg : ∀ a : Int, -a + a = 0", "start": [ 219, 1 ], "end": [ 222, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_right_neg", "code": "@[local simp] protected theorem add_right_neg (a : Int) : a + -a = 0", "start": [ 224, 1 ], "end": [ 225, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_eq_of_add_eq_zero", "code": "@[simp] protected theorem neg_eq_of_add_eq_zero {a b : Int} (h : a + b = 0) : -a = b", "start": [ 227, 1 ], "end": [ 228, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_neg_of_eq_neg", "code": "protected theorem eq_neg_of_eq_neg {a b : Int} (h : a = -b) : b = -a", "start": [ 230, 1 ], "end": [ 231, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_neg_comm", "code": "protected theorem eq_neg_comm {a b : Int} : a = -b ↔ b = -a", "start": [ 233, 1 ], "end": [ 234, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_eq_comm", "code": "protected theorem neg_eq_comm {a b : Int} : -a = b ↔ -b = a", "start": [ 236, 1 ], "end": [ 237, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_cancel_left", "code": "protected theorem neg_add_cancel_left (a b : Int) : -a + (a + b) = b", "start": [ 239, 1 ], "end": [ 240, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg_cancel_left", "code": "protected theorem add_neg_cancel_left (a b : Int) : a + (-a + b) = b", "start": [ 242, 1 ], "end": [ 243, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg_cancel_right", "code": "protected theorem add_neg_cancel_right (a b : Int) : a + b + -b = a", "start": [ 245, 1 ], "end": [ 246, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_cancel_right", "code": "protected theorem neg_add_cancel_right (a b : Int) : a + -b + b = a", "start": [ 248, 1 ], "end": [ 249, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_left_cancel", "code": "protected theorem add_left_cancel {a b c : Int} (h : a + b = a + c) : b = c", "start": [ 251, 1 ], "end": [ 253, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add", "code": "@[local simp] protected theorem neg_add {a b : Int} : -(a + b) = -a + -b", "start": [ 255, 1 ], "end": [ 258, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_sub_one", "code": "@[simp] theorem negSucc_sub_one (n : Nat) : -[n+1] - 1 = -[n + 1 +1]", "start": [ 262, 1 ], "end": [ 262, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_self", "code": "@[simp] protected theorem sub_self (a : Int) : a - a = 0", "start": [ 264, 1 ], "end": [ 265, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_zero", "code": "@[simp] protected theorem sub_zero (a : Int) : a - 0 = a", "start": [ 267, 1 ], "end": [ 267, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_sub", "code": "@[simp] protected theorem zero_sub (a : Int) : 0 - a = -a", "start": [ 269, 1 ], "end": [ 269, 90 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_eq_zero_of_eq", "code": "protected theorem sub_eq_zero_of_eq {a b : Int} (h : a = b) : a - b = 0", "start": [ 271, 1 ], "end": [ 272, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_of_sub_eq_zero", "code": "protected theorem eq_of_sub_eq_zero {a b : Int} (h : a - b = 0) : a = b", "start": [ 274, 1 ], "end": [ 277, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_eq_zero", "code": "protected theorem sub_eq_zero {a b : Int} : a - b = 0 ↔ a = b", "start": [ 279, 1 ], "end": [ 280, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_sub", "code": "protected theorem sub_sub (a b c : Int) : a - b - c = a - (b + c)", "start": [ 282, 1 ], "end": [ 283, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_sub", "code": "protected theorem neg_sub (a b : Int) : -(a - b) = b - a", "start": [ 285, 1 ], "end": [ 286, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_sub_self", "code": "protected theorem sub_sub_self (a b : Int) : a - (a - b) = b", "start": [ 288, 1 ], "end": [ 289, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_neg", "code": "protected theorem sub_neg (a b : Int) : a - -b = a + b", "start": [ 291, 1 ], "end": [ 291, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_add_cancel", "code": "@[simp] protected theorem sub_add_cancel (a b : Int) : a - b + b = a", "start": [ 293, 1 ], "end": [ 294, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_sub_cancel", "code": "@[simp] protected theorem add_sub_cancel (a b : Int) : a + b - b = a", "start": [ 296, 1 ], "end": [ 297, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_sub_assoc", "code": "protected theorem add_sub_assoc (a b c : Int) : a + b - c = a + (b - c)", "start": [ 299, 1 ], "end": [ 300, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_sub", "code": "@[norm_cast] theorem ofNat_sub (h : m ≤ n) : ((n - m : Nat) : Int) = n - m", "start": [ 302, 1 ], "end": [ 307, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_coe'", "code": "theorem negSucc_coe' (n : Nat) : -[n+1] = -↑n - 1", "start": [ 309, 1 ], "end": [ 310, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.subNatNat_eq_coe", "code": "protected theorem subNatNat_eq_coe {m n : Nat} : subNatNat m n = ↑m - ↑n", "start": [ 312, 1 ], "end": [ 320, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_sub", "code": "theorem toNat_sub (m n : Nat) : toNat (m - n) = m - n", "start": [ 322, 1 ], "end": [ 326, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_right_inj", "code": "@[simp]\nprotected theorem add_right_inj (i j k : Int) : (i + k = j + k) ↔ i = j", "start": [ 330, 1 ], "end": [ 335, 27 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_left_inj", "code": "@[simp]\nprotected theorem add_left_inj (i j k : Int) : (k + i = k + j) ↔ i = j", "start": [ 337, 1 ], "end": [ 339, 24 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_left_inj", "code": "@[simp]\nprotected theorem sub_left_inj (i j k : Int) : (k - i = k - j) ↔ i = j", "start": [ 341, 1 ], "end": [ 343, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_right_inj", "code": "@[simp]\nprotected theorem sub_right_inj (i j k : Int) : (i - k = j - k) ↔ i = j", "start": [ 345, 1 ], "end": [ 347, 28 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul_negSucc", "code": "@[simp] theorem ofNat_mul_negSucc (m n : Nat) : (m : Int) * -[n+1] = -↑(m * succ n)", "start": [ 351, 1 ], "end": [ 351, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_ofNat", "code": "@[simp] theorem negSucc_mul_ofNat (m n : Nat) : -[m+1] * n = -↑(succ m * n)", "start": [ 353, 1 ], "end": [ 353, 83 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_negSucc", "code": "@[simp] theorem negSucc_mul_negSucc (m n : Nat) : -[m+1] * -[n+1] = succ m * succ n", "start": [ 355, 1 ], "end": [ 355, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_comm", "code": "protected theorem mul_comm (a b : Int) : a * b = b * a", "start": [ 357, 1 ], "end": [ 358, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul_negOfNat", "code": "theorem ofNat_mul_negOfNat (m n : Nat) : (m : Nat) * negOfNat n = negOfNat (m * n)", "start": [ 361, 1 ], "end": [ 362, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat_mul_ofNat", "code": "theorem negOfNat_mul_ofNat (m n : Nat) : negOfNat m * (n : Nat) = negOfNat (m * n)", "start": [ 364, 1 ], "end": [ 365, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_negOfNat", "code": "theorem negSucc_mul_negOfNat (m n : Nat) : -[m+1] * negOfNat n = ofNat (succ m * n)", "start": [ 367, 1 ], "end": [ 368, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat_mul_negSucc", "code": "theorem negOfNat_mul_negSucc (m n : Nat) : negOfNat n * -[m+1] = ofNat (n * succ m)", "start": [ 370, 1 ], "end": [ 371, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_assoc", "code": "protected theorem mul_assoc (a b c : Int) : a * b * c = a * (b * c)", "start": [ 376, 1 ], "end": [ 377, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_left_comm", "code": "protected theorem mul_left_comm (a b c : Int) : a * (b * c) = b * (a * c)", "start": [ 380, 1 ], "end": [ 381, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_right_comm", "code": "protected theorem mul_right_comm (a b c : Int) : a * b * c = a * c * b", "start": [ 383, 1 ], "end": [ 384, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_zero", "code": "@[simp] protected theorem mul_zero (a : Int) : a * 0 = 0", "start": [ 386, 1 ], "end": [ 386, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_mul", "code": "@[simp] protected theorem zero_mul (a : Int) : 0 * a = 0", "start": [ 388, 1 ], "end": [ 388, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat_eq_subNatNat_zero", "code": "theorem negOfNat_eq_subNatNat_zero (n) : negOfNat n = subNatNat 0 n", "start": [ 390, 1 ], "end": [ 390, 90 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mul_subNatNat", "code": "theorem ofNat_mul_subNatNat (m n k : Nat) :\n m * subNatNat n k = subNatNat (m * n) (m * k)", "start": [ 392, 1 ], "end": [ 404, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.negOfNat_add", "code": "theorem negOfNat_add (m n : Nat) : negOfNat m + negOfNat n = negOfNat (m + n)", "start": [ 406, 1 ], "end": [ 407, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_mul_subNatNat", "code": "theorem negSucc_mul_subNatNat (m n k : Nat) :\n -[m+1] * subNatNat n k = subNatNat (succ m * k) (succ m * n)", "start": [ 409, 1 ], "end": [ 421, 88 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_add", "code": "protected theorem mul_add : ∀ a b c : Int, a * (b + c) = a * b + a * c", "start": [ 425, 1 ], "end": [ 436, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_mul", "code": "protected theorem add_mul (a b c : Int) : (a + b) * c = a * c + b * c", "start": [ 438, 1 ], "end": [ 439, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_mul_eq_neg_mul", "code": "protected theorem neg_mul_eq_neg_mul (a b : Int) : -(a * b) = -a * b", "start": [ 441, 1 ], "end": [ 442, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_mul_eq_mul_neg", "code": "protected theorem neg_mul_eq_mul_neg (a b : Int) : -(a * b) = a * -b", "start": [ 444, 1 ], "end": [ 445, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_mul", "code": "@[local simp] protected theorem neg_mul (a b : Int) : -a * b = -(a * b)", "start": [ 447, 1 ], "end": [ 448, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_neg", "code": "@[local simp] protected theorem mul_neg (a b : Int) : a * -b = -(a * b)", "start": [ 450, 1 ], "end": [ 451, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_mul_neg", "code": "protected theorem neg_mul_neg (a b : Int) : -a * -b = a * b", "start": [ 453, 1 ], "end": [ 453, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_mul_comm", "code": "protected theorem neg_mul_comm (a b : Int) : -a * b = a * -b", "start": [ 455, 1 ], "end": [ 455, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_sub", "code": "protected theorem mul_sub (a b c : Int) : a * (b - c) = a * b - a * c", "start": [ 457, 1 ], "end": [ 458, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_mul", "code": "protected theorem sub_mul (a b c : Int) : (a - b) * c = a * c - b * c", "start": [ 460, 1 ], "end": [ 461, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.one_mul", "code": "@[simp] protected theorem one_mul : ∀ a : Int, 1 * a = a", "start": [ 463, 1 ], "end": [ 465, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_one", "code": "@[simp] protected theorem mul_one (a : Int) : a * 1 = a", "start": [ 467, 1 ], "end": [ 467, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_neg_one", "code": "protected theorem mul_neg_one (a : Int) : a * -1 = -a", "start": [ 472, 1 ], "end": [ 472, 90 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_eq_neg_one_mul", "code": "protected theorem neg_eq_neg_one_mul : ∀ a : Int, -a = -1 * a", "start": [ 474, 1 ], "end": [ 477, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_eq_zero", "code": "protected theorem mul_eq_zero {a b : Int} : a * b = 0 ↔ a = 0 ∨ b = 0", "start": [ 479, 1 ], "end": [ 484, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ne_zero", "code": "protected theorem mul_ne_zero {a b : Int} (a0 : a ≠ 0) (b0 : b ≠ 0) : a * b ≠ 0", "start": [ 486, 1 ], "end": [ 487, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_of_mul_eq_mul_right", "code": "protected theorem eq_of_mul_eq_mul_right {a b c : Int} (ha : a ≠ 0) (h : b * a = c * a) : b = c", "start": [ 489, 1 ], "end": [ 491, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_of_mul_eq_mul_left", "code": "protected theorem eq_of_mul_eq_mul_left {a b c : Int} (ha : a ≠ 0) (h : a * b = a * c) : b = c", "start": [ 493, 1 ], "end": [ 497, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_eq_mul_left_iff", "code": "theorem mul_eq_mul_left_iff {a b c : Int} (h : c ≠ 0) : c * a = c * b ↔ a = b", "start": [ 499, 1 ], "end": [ 500, 70 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_eq_mul_right_iff", "code": "theorem mul_eq_mul_right_iff {a b c : Int} (h : c ≠ 0) : a * c = b * c ↔ a = b", "start": [ 502, 1 ], "end": [ 503, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_one_of_mul_eq_self_left", "code": "theorem eq_one_of_mul_eq_self_left {a b : Int} (Hpos : a ≠ 0) (H : b * a = a) : b = 1", "start": [ 505, 1 ], "end": [ 506, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_one_of_mul_eq_self_right", "code": "theorem eq_one_of_mul_eq_self_right {a b : Int} (Hpos : b ≠ 0) (H : b * a = b) : a = 1", "start": [ 508, 1 ], "end": [ 509, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.natCast_zero", "code": "theorem natCast_zero : ((0 : Nat) : Int) = (0 : Int)", "start": [ 518, 1 ], "end": [ 518, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.natCast_one", "code": "theorem natCast_one : ((1 : Nat) : Int) = (1 : Int)", "start": [ 520, 1 ], "end": [ 520, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.natCast_add", "code": "@[simp] theorem natCast_add (a b : Nat) : ((a + b : Nat) : Int) = (a : Int) + (b : Int)", "start": [ 522, 1 ], "end": [ 525, 7 ], "kind": "commanddeclaration" }, { "full_name": "Int.natCast_mul", "code": "@[simp] theorem natCast_mul (a b : Nat) : ((a * b : Nat) : Int) = (a : Int) * (b : Int)", "start": [ 527, 1 ], "end": [ 528, 7 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/BinderPredicates.lean
[ ".lake/packages/lean4/src/lean/Init/NotationExtra.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Prod.lean", ".lake/packages/lean4/src/lean/Init/ByCases.lean" ]
[ { "full_name": "Nat.Linear.Var", "code": "abbrev Var := Nat", "start": [ 16, 1 ], "end": [ 16, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Context", "code": "abbrev Context := List Nat", "start": [ 18, 1 ], "end": [ 18, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.fixedVar", "code": "def fixedVar := 100000000", "start": [ 20, 1 ], "end": [ 23, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Var.denote", "code": "def Var.denote (ctx : Context) (v : Var) : Nat :=\n bif v == fixedVar then 1 else go ctx v\nwhere\n go : List Nat → Nat → Nat\n | [], _ => 0\n | a::_, 0 => a\n | _::as, i+1 => go as i", "start": [ 25, 1 ], "end": [ 31, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr", "code": "inductive Expr where\n | num (v : Nat)\n | var (i : Var)\n | add (a b : Expr)\n | mulL (k : Nat) (a : Expr)\n | mulR (a : Expr) (k : Nat)\n deriving Inhabited", "start": [ 33, 1 ], "end": [ 39, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.denote", "code": "def Expr.denote (ctx : Context) : Expr → Nat\n | Expr.add a b => Nat.add (denote ctx a) (denote ctx b)\n | Expr.num k => k\n | Expr.var v => v.denote ctx\n | Expr.mulL k e => Nat.mul k (denote ctx e)\n | Expr.mulR e k => Nat.mul (denote ctx e) k", "start": [ 41, 1 ], "end": [ 46, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly", "code": "abbrev Poly := List (Nat × Var)", "start": [ 48, 1 ], "end": [ 48, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote", "code": "def Poly.denote (ctx : Context) (p : Poly) : Nat :=\n match p with\n | [] => 0\n | (k, v) :: p => Nat.add (Nat.mul k (v.denote ctx)) (denote ctx p)", "start": [ 50, 1 ], "end": [ 53, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.insertSorted", "code": "def Poly.insertSorted (k : Nat) (v : Var) (p : Poly) : Poly :=\n match p with\n | [] => [(k, v)]\n | (k', v') :: p => bif Nat.blt v v' then (k, v) :: (k', v') :: p else (k', v') :: insertSorted k v p", "start": [ 55, 1 ], "end": [ 58, 103 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.sort", "code": "def Poly.sort (p : Poly) : Poly :=\n let rec go (p : Poly) (r : Poly) : Poly :=\n match p with\n | [] => r\n | (k, v) :: p => go p (r.insertSorted k v)\n go p []", "start": [ 60, 1 ], "end": [ 65, 10 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.fuse", "code": "def Poly.fuse (p : Poly) : Poly :=\n match p with\n | [] => []\n | (k, v) :: p =>\n match fuse p with\n | [] => [(k, v)]\n | (k', v') :: p' => bif v == v' then (Nat.add k k', v)::p' else (k, v) :: (k', v') :: p'", "start": [ 67, 1 ], "end": [ 73, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.mul", "code": "def Poly.mul (k : Nat) (p : Poly) : Poly :=\n bif k == 0 then\n []\n else bif k == 1 then\n p\n else\n go p\nwhere\n go : Poly → Poly\n | [] => []\n | (k', v) :: p => (Nat.mul k k', v) :: go p", "start": [ 75, 1 ], "end": [ 85, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.cancelAux", "code": "def Poly.cancelAux (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly) : Poly × Poly :=\n match fuel with\n | 0 => (r₁.reverse ++ m₁, r₂.reverse ++ m₂)\n | fuel + 1 =>\n match m₁, m₂ with\n | m₁, [] => (r₁.reverse ++ m₁, r₂.reverse)\n | [], m₂ => (r₁.reverse, r₂.reverse ++ m₂)\n | (k₁, v₁) :: m₁, (k₂, v₂) :: m₂ =>\n bif Nat.blt v₁ v₂ then\n cancelAux fuel m₁ ((k₂, v₂) :: m₂) ((k₁, v₁) :: r₁) r₂\n else bif Nat.blt v₂ v₁ then\n cancelAux fuel ((k₁, v₁) :: m₁) m₂ r₁ ((k₂, v₂) :: r₂)\n else bif Nat.blt k₁ k₂ then\n cancelAux fuel m₁ m₂ r₁ ((Nat.sub k₂ k₁, v₁) :: r₂)\n else bif Nat.blt k₂ k₁ then\n cancelAux fuel m₁ m₂ ((Nat.sub k₁ k₂, v₁) :: r₁) r₂\n else\n cancelAux fuel m₁ m₂ r₁ r₂", "start": [ 87, 1 ], "end": [ 104, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.hugeFuel", "code": "def hugeFuel := 1000000", "start": [ 106, 1 ], "end": [ 106, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.cancel", "code": "def Poly.cancel (p₁ p₂ : Poly) : Poly × Poly :=\n cancelAux hugeFuel p₁ p₂ [] []", "start": [ 108, 1 ], "end": [ 109, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.isNum?", "code": "def Poly.isNum? (p : Poly) : Option Nat :=\n match p with\n | [] => some 0\n | [(k, v)] => bif v == fixedVar then some k else none\n | _ => none", "start": [ 111, 1 ], "end": [ 115, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.isZero", "code": "def Poly.isZero (p : Poly) : Bool :=\n match p with\n | [] => true\n | _ => false", "start": [ 117, 1 ], "end": [ 120, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.isNonZero", "code": "def Poly.isNonZero (p : Poly) : Bool :=\n match p with\n | [] => false\n | (k, v) :: p => bif v == fixedVar then k > 0 else isNonZero p", "start": [ 122, 1 ], "end": [ 125, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_eq", "code": "def Poly.denote_eq (ctx : Context) (mp : Poly × Poly) : Prop := mp.1.denote ctx = mp.2.denote ctx", "start": [ 127, 1 ], "end": [ 127, 98 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_le", "code": "def Poly.denote_le (ctx : Context) (mp : Poly × Poly) : Prop := mp.1.denote ctx ≤ mp.2.denote ctx", "start": [ 129, 1 ], "end": [ 129, 98 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.combineAux", "code": "def Poly.combineAux (fuel : Nat) (p₁ p₂ : Poly) : Poly :=\n match fuel with\n | 0 => p₁ ++ p₂\n | fuel + 1 =>\n match p₁, p₂ with\n | p₁, [] => p₁\n | [], p₂ => p₂\n | (k₁, v₁) :: p₁, (k₂, v₂) :: p₂ =>\n bif Nat.blt v₁ v₂ then\n (k₁, v₁) :: combineAux fuel p₁ ((k₂, v₂) :: p₂)\n else bif Nat.blt v₂ v₁ then\n (k₂, v₂) :: combineAux fuel ((k₁, v₁) :: p₁) p₂\n else\n (Nat.add k₁ k₂, v₁) :: combineAux fuel p₁ p₂", "start": [ 131, 1 ], "end": [ 144, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.combine", "code": "def Poly.combine (p₁ p₂ : Poly) : Poly :=\n combineAux hugeFuel p₁ p₂", "start": [ 146, 1 ], "end": [ 147, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.toPoly", "code": "def Expr.toPoly : Expr → Poly\n | Expr.num k => bif k == 0 then [] else [ (k, fixedVar) ]\n | Expr.var i => [(1, i)]\n | Expr.add a b => a.toPoly ++ b.toPoly\n | Expr.mulL k a => a.toPoly.mul k\n | Expr.mulR a k => a.toPoly.mul k", "start": [ 149, 1 ], "end": [ 154, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.norm", "code": "def Poly.norm (p : Poly) : Poly :=\n p.sort.fuse", "start": [ 156, 1 ], "end": [ 157, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.toNormPoly", "code": "def Expr.toNormPoly (e : Expr) : Poly :=\n e.toPoly.norm", "start": [ 159, 1 ], "end": [ 160, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.inc", "code": "def Expr.inc (e : Expr) : Expr :=\n Expr.add e (Expr.num 1)", "start": [ 162, 1 ], "end": [ 163, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr", "code": "structure PolyCnstr where\n eq : Bool\n lhs : Poly\n rhs : Poly\n deriving BEq", "start": [ 165, 1 ], "end": [ 169, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.mul", "code": "def PolyCnstr.mul (k : Nat) (c : PolyCnstr) : PolyCnstr :=\n { c with lhs := c.lhs.mul k, rhs := c.rhs.mul k }", "start": [ 185, 1 ], "end": [ 186, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.combine", "code": "def PolyCnstr.combine (c₁ c₂ : PolyCnstr) : PolyCnstr :=\n let (lhs, rhs) := Poly.cancel (c₁.lhs.combine c₂.lhs) (c₁.rhs.combine c₂.rhs)\n { eq := c₁.eq && c₂.eq, lhs, rhs }", "start": [ 188, 1 ], "end": [ 190, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr", "code": "structure ExprCnstr where\n eq : Bool\n lhs : Expr\n rhs : Expr", "start": [ 192, 1 ], "end": [ 195, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.denote", "code": "def PolyCnstr.denote (ctx : Context) (c : PolyCnstr) : Prop :=\n bif c.eq then\n Poly.denote_eq ctx (c.lhs, c.rhs)\n else\n Poly.denote_le ctx (c.lhs, c.rhs)", "start": [ 197, 1 ], "end": [ 201, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.norm", "code": "def PolyCnstr.norm (c : PolyCnstr) : PolyCnstr :=\n let (lhs, rhs) := Poly.cancel c.lhs.sort.fuse c.rhs.sort.fuse\n { eq := c.eq, lhs, rhs }", "start": [ 203, 1 ], "end": [ 205, 27 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.isUnsat", "code": "def PolyCnstr.isUnsat (c : PolyCnstr) : Bool :=\n bif c.eq then\n (c.lhs.isZero && c.rhs.isNonZero) || (c.lhs.isNonZero && c.rhs.isZero)\n else\n c.lhs.isNonZero && c.rhs.isZero", "start": [ 207, 1 ], "end": [ 211, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.isValid", "code": "def PolyCnstr.isValid (c : PolyCnstr) : Bool :=\n bif c.eq then\n c.lhs.isZero && c.rhs.isZero\n else\n c.lhs.isZero", "start": [ 213, 1 ], "end": [ 217, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.denote", "code": "def ExprCnstr.denote (ctx : Context) (c : ExprCnstr) : Prop :=\n bif c.eq then\n c.lhs.denote ctx = c.rhs.denote ctx\n else\n c.lhs.denote ctx ≤ c.rhs.denote ctx", "start": [ 219, 1 ], "end": [ 223, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.toPoly", "code": "def ExprCnstr.toPoly (c : ExprCnstr) : PolyCnstr :=\n { c with lhs := c.lhs.toPoly, rhs := c.rhs.toPoly }", "start": [ 225, 1 ], "end": [ 226, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.toNormPoly", "code": "def ExprCnstr.toNormPoly (c : ExprCnstr) : PolyCnstr :=\n let (lhs, rhs) := Poly.cancel c.lhs.toNormPoly c.rhs.toNormPoly\n { c with lhs, rhs }", "start": [ 228, 1 ], "end": [ 230, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate", "code": "abbrev Certificate := List (Nat × ExprCnstr)", "start": [ 232, 1 ], "end": [ 232, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.combineHyps", "code": "def Certificate.combineHyps (c : PolyCnstr) (hs : Certificate) : PolyCnstr :=\n match hs with\n | [] => c\n | (k, c') :: hs => combineHyps (PolyCnstr.combine c (c'.toNormPoly.mul (Nat.add k 1))) hs", "start": [ 234, 1 ], "end": [ 237, 92 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.combine", "code": "def Certificate.combine (hs : Certificate) : PolyCnstr :=\n match hs with\n | [] => { eq := true, lhs := [], rhs := [] }\n | (k, c) :: hs => combineHyps (c.toNormPoly.mul (Nat.add k 1)) hs", "start": [ 239, 1 ], "end": [ 242, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.denote", "code": "def Certificate.denote (ctx : Context) (c : Certificate) : Prop :=\n match c with\n | [] => False\n | (_, c)::hs => c.denote ctx → denote ctx hs", "start": [ 244, 1 ], "end": [ 247, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.monomialToExpr", "code": "def monomialToExpr (k : Nat) (v : Var) : Expr :=\n bif v == fixedVar then\n Expr.num k\n else bif k == 1 then\n Expr.var v\n else\n Expr.mulL k (Expr.var v)", "start": [ 249, 1 ], "end": [ 255, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.toExpr", "code": "def Poly.toExpr (p : Poly) : Expr :=\n match p with\n | [] => Expr.num 0\n | (k, v) :: p => go (monomialToExpr k v) p\nwhere\n go (e : Expr) (p : Poly) : Expr :=\n match p with\n | [] => e\n | (k, v) :: p => go (Expr.add e (monomialToExpr k v)) p", "start": [ 257, 1 ], "end": [ 265, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.toExpr", "code": "def PolyCnstr.toExpr (c : PolyCnstr) : ExprCnstr :=\n { c with lhs := c.lhs.toExpr, rhs := c.rhs.toExpr }", "start": [ 267, 1 ], "end": [ 268, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_insertSorted", "code": "theorem Poly.denote_insertSorted (ctx : Context) (k : Nat) (v : Var) (p : Poly) : (p.insertSorted k v).denote ctx = p.denote ctx + k * v.denote ctx", "start": [ 274, 1 ], "end": [ 277, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_sort_go", "code": "theorem Poly.denote_sort_go (ctx : Context) (p : Poly) (r : Poly) : (sort.go p r).denote ctx = p.denote ctx + r.denote ctx", "start": [ 281, 1 ], "end": [ 284, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_sort", "code": "theorem Poly.denote_sort (ctx : Context) (m : Poly) : m.sort.denote ctx = m.denote ctx", "start": [ 288, 1 ], "end": [ 289, 7 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_append", "code": "theorem Poly.denote_append (ctx : Context) (p q : Poly) : (p ++ q).denote ctx = p.denote ctx + q.denote ctx", "start": [ 293, 1 ], "end": [ 296, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_cons", "code": "theorem Poly.denote_cons (ctx : Context) (k : Nat) (v : Var) (p : Poly) : denote ctx ((k, v) :: p) = k * v.denote ctx + p.denote ctx", "start": [ 300, 1 ], "end": [ 303, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_reverseAux", "code": "theorem Poly.denote_reverseAux (ctx : Context) (p q : Poly) : denote ctx (List.reverseAux p q) = denote ctx (p ++ q)", "start": [ 307, 1 ], "end": [ 310, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_reverse", "code": "theorem Poly.denote_reverse (ctx : Context) (p : Poly) : denote ctx (List.reverse p) = denote ctx p", "start": [ 314, 1 ], "end": [ 315, 22 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_fuse", "code": "theorem Poly.denote_fuse (ctx : Context) (p : Poly) : p.fuse.denote ctx = p.denote ctx", "start": [ 319, 1 ], "end": [ 327, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_mul", "code": "theorem Poly.denote_mul (ctx : Context) (k : Nat) (p : Poly) : (p.mul k).denote ctx = k * p.denote ctx", "start": [ 331, 1 ], "end": [ 337, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.eq_of_not_blt_eq_true", "code": "private theorem eq_of_not_blt_eq_true (h₁ : ¬ (Nat.blt x y = true)) (h₂ : ¬ (Nat.blt y x = true)) : x = y", "start": [ 339, 1 ], "end": [ 342, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_eq_cancelAux", "code": "theorem Poly.denote_eq_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly)\n (h : denote_eq ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)) : denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂)", "start": [ 346, 1 ], "end": [ 378, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_denote_eq_cancelAux", "code": "theorem Poly.of_denote_eq_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly)\n (h : denote_eq ctx (cancelAux fuel m₁ m₂ r₁ r₂)) : denote_eq ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)", "start": [ 380, 1 ], "end": [ 409, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_eq_cancel", "code": "theorem Poly.denote_eq_cancel {ctx : Context} {m₁ m₂ : Poly} (h : denote_eq ctx (m₁, m₂)) : denote_eq ctx (cancel m₁ m₂)", "start": [ 411, 1 ], "end": [ 412, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_denote_eq_cancel", "code": "theorem Poly.of_denote_eq_cancel {ctx : Context} {m₁ m₂ : Poly} (h : denote_eq ctx (cancel m₁ m₂)) : denote_eq ctx (m₁, m₂)", "start": [ 414, 1 ], "end": [ 417, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_eq_cancel_eq", "code": "theorem Poly.denote_eq_cancel_eq (ctx : Context) (m₁ m₂ : Poly) : denote_eq ctx (cancel m₁ m₂) = denote_eq ctx (m₁, m₂)", "start": [ 419, 1 ], "end": [ 420, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_le_cancelAux", "code": "theorem Poly.denote_le_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly)\n (h : denote_le ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)) : denote_le ctx (cancelAux fuel m₁ m₂ r₁ r₂)", "start": [ 424, 1 ], "end": [ 456, 9 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_denote_le_cancelAux", "code": "theorem Poly.of_denote_le_cancelAux (ctx : Context) (fuel : Nat) (m₁ m₂ r₁ r₂ : Poly)\n (h : denote_le ctx (cancelAux fuel m₁ m₂ r₁ r₂)) : denote_le ctx (r₁.reverse ++ m₁, r₂.reverse ++ m₂)", "start": [ 458, 1 ], "end": [ 489, 23 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_le_cancel", "code": "theorem Poly.denote_le_cancel {ctx : Context} {m₁ m₂ : Poly} (h : denote_le ctx (m₁, m₂)) : denote_le ctx (cancel m₁ m₂)", "start": [ 491, 1 ], "end": [ 492, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_denote_le_cancel", "code": "theorem Poly.of_denote_le_cancel {ctx : Context} {m₁ m₂ : Poly} (h : denote_le ctx (cancel m₁ m₂)) : denote_le ctx (m₁, m₂)", "start": [ 494, 1 ], "end": [ 497, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_le_cancel_eq", "code": "theorem Poly.denote_le_cancel_eq (ctx : Context) (m₁ m₂ : Poly) : denote_le ctx (cancel m₁ m₂) = denote_le ctx (m₁, m₂)", "start": [ 499, 1 ], "end": [ 500, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_combineAux", "code": "theorem Poly.denote_combineAux (ctx : Context) (fuel : Nat) (p₁ p₂ : Poly) : (p₁.combineAux fuel p₂).denote ctx = p₁.denote ctx + p₂.denote ctx", "start": [ 504, 1 ], "end": [ 512, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_combine", "code": "theorem Poly.denote_combine (ctx : Context) (p₁ p₂ : Poly) : (p₁.combine p₂).denote ctx = p₁.denote ctx + p₂.denote ctx", "start": [ 514, 1 ], "end": [ 515, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.denote_toPoly", "code": "theorem Expr.denote_toPoly (ctx : Context) (e : Expr) : e.toPoly.denote ctx = e.denote ctx", "start": [ 519, 1 ], "end": [ 525, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.eq_of_toNormPoly", "code": "theorem Expr.eq_of_toNormPoly (ctx : Context) (a b : Expr) (h : a.toNormPoly = b.toNormPoly) : a.denote ctx = b.denote ctx", "start": [ 529, 1 ], "end": [ 533, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.of_cancel_eq", "code": "theorem Expr.of_cancel_eq (ctx : Context) (a b c d : Expr) (h : Poly.cancel a.toNormPoly b.toNormPoly = (c.toPoly, d.toPoly)) : (a.denote ctx = b.denote ctx) = (c.denote ctx = d.denote ctx)", "start": [ 535, 1 ], "end": [ 539, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.of_cancel_le", "code": "theorem Expr.of_cancel_le (ctx : Context) (a b c d : Expr) (h : Poly.cancel a.toNormPoly b.toNormPoly = (c.toPoly, d.toPoly)) : (a.denote ctx ≤ b.denote ctx) = (c.denote ctx ≤ d.denote ctx)", "start": [ 541, 1 ], "end": [ 545, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.of_cancel_lt", "code": "theorem Expr.of_cancel_lt (ctx : Context) (a b c d : Expr) (h : Poly.cancel a.inc.toNormPoly b.toNormPoly = (c.inc.toPoly, d.toPoly)) : (a.denote ctx < b.denote ctx) = (c.denote ctx < d.denote ctx)", "start": [ 547, 1 ], "end": [ 548, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.toPoly_norm_eq", "code": "theorem ExprCnstr.toPoly_norm_eq (c : ExprCnstr) : c.toPoly.norm = c.toNormPoly", "start": [ 550, 1 ], "end": [ 551, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.denote_toPoly", "code": "theorem ExprCnstr.denote_toPoly (ctx : Context) (c : ExprCnstr) : c.toPoly.denote ctx = c.denote ctx", "start": [ 553, 1 ], "end": [ 558, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.denote_toNormPoly", "code": "theorem ExprCnstr.denote_toNormPoly (ctx : Context) (c : ExprCnstr) : c.toNormPoly.denote ctx = c.denote ctx", "start": [ 562, 1 ], "end": [ 567, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.mul.go_denote", "code": "theorem Poly.mul.go_denote (ctx : Context) (k : Nat) (p : Poly) : (Poly.mul.go k p).denote ctx = k * p.denote ctx", "start": [ 571, 1 ], "end": [ 574, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.denote_mul", "code": "theorem PolyCnstr.denote_mul (ctx : Context) (k : Nat) (c : PolyCnstr) : (c.mul (k+1)).denote ctx = c.denote ctx", "start": [ 581, 1 ], "end": [ 591, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.denote_combine", "code": "theorem PolyCnstr.denote_combine {ctx : Context} {c₁ c₂ : PolyCnstr} (h₁ : c₁.denote ctx) (h₂ : c₂.denote ctx) : (c₁.combine c₂).denote ctx", "start": [ 597, 1 ], "end": [ 605, 113 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.isNum?_eq_some", "code": "theorem Poly.isNum?_eq_some (ctx : Context) {p : Poly} {k : Nat} : p.isNum? = some k → p.denote ctx = k", "start": [ 609, 1 ], "end": [ 614, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_isZero", "code": "theorem Poly.of_isZero (ctx : Context) {p : Poly} (h : isZero p = true) : p.denote ctx = 0", "start": [ 616, 1 ], "end": [ 620, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.of_isNonZero", "code": "theorem Poly.of_isNonZero (ctx : Context) {p : Poly} (h : isNonZero p = true) : p.denote ctx > 0", "start": [ 622, 1 ], "end": [ 629, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.eq_false_of_isUnsat", "code": "theorem PolyCnstr.eq_false_of_isUnsat (ctx : Context) {c : PolyCnstr} : c.isUnsat → c.denote ctx = False", "start": [ 631, 1 ], "end": [ 640, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.PolyCnstr.eq_true_of_isValid", "code": "theorem PolyCnstr.eq_true_of_isValid (ctx : Context) {c : PolyCnstr} : c.isValid → c.denote ctx = True", "start": [ 642, 1 ], "end": [ 649, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.eq_false_of_isUnsat", "code": "theorem ExprCnstr.eq_false_of_isUnsat (ctx : Context) (c : ExprCnstr) (h : c.toNormPoly.isUnsat) : c.denote ctx = False", "start": [ 651, 1 ], "end": [ 654, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.eq_true_of_isValid", "code": "theorem ExprCnstr.eq_true_of_isValid (ctx : Context) (c : ExprCnstr) (h : c.toNormPoly.isValid) : c.denote ctx = True", "start": [ 656, 1 ], "end": [ 659, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.of_combineHyps", "code": "theorem Certificate.of_combineHyps (ctx : Context) (c : PolyCnstr) (cs : Certificate) (h : (combineHyps c cs).denote ctx → False) : c.denote ctx → cs.denote ctx", "start": [ 661, 1 ], "end": [ 670, 20 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.of_combine", "code": "theorem Certificate.of_combine (ctx : Context) (cs : Certificate) (h : cs.combine.denote ctx → False) : cs.denote ctx", "start": [ 672, 1 ], "end": [ 679, 14 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Certificate.of_combine_isUnsat", "code": "theorem Certificate.of_combine_isUnsat (ctx : Context) (cs : Certificate) (h : cs.combine.isUnsat) : cs.denote ctx", "start": [ 681, 1 ], "end": [ 683, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.denote_monomialToExpr", "code": "theorem denote_monomialToExpr (ctx : Context) (k : Nat) (v : Var) : (monomialToExpr k v).denote ctx = k * v.denote ctx", "start": [ 685, 1 ], "end": [ 689, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_toExpr_go", "code": "theorem Poly.denote_toExpr_go (ctx : Context) (e : Expr) (p : Poly) : (toExpr.go e p).denote ctx = e.denote ctx + p.denote ctx", "start": [ 693, 1 ], "end": [ 696, 77 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Poly.denote_toExpr", "code": "theorem Poly.denote_toExpr (ctx : Context) (p : Poly) : p.toExpr.denote ctx = p.denote ctx", "start": [ 700, 1 ], "end": [ 703, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.ExprCnstr.eq_of_toNormPoly_eq", "code": "theorem ExprCnstr.eq_of_toNormPoly_eq (ctx : Context) (c d : ExprCnstr) (h : c.toNormPoly == d.toPoly) : c.denote ctx = d.denote ctx", "start": [ 705, 1 ], "end": [ 708, 13 ], "kind": "commanddeclaration" }, { "full_name": "Nat.Linear.Expr.eq_of_toNormPoly_eq", "code": "theorem Expr.eq_of_toNormPoly_eq (ctx : Context) (e e' : Expr) (h : e.toNormPoly == e'.toPoly) : e.denote ctx = e'.denote ctx", "start": [ 710, 1 ], "end": [ 713, 13 ], "kind": "commanddeclaration" }, { "full_name": "elimOffset", "code": "def elimOffset {α : Sort u} (a b k : Nat) (h₁ : a + k = b + k) (h₂ : a = b → α) : α := by\n simp_arith at h₁\n exact h₂ h₁", "start": [ 717, 1 ], "end": [ 719, 14 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Option/Instances.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean" ]
[ { "full_name": "Option.eq_of_eq_some", "code": "theorem eq_of_eq_some {α : Type u} : ∀ {x y : Option α}, (∀z, x = some z ↔ y = some z) → x = y", "start": [ 13, 1 ], "end": [ 17, 74 ], "kind": "commanddeclaration" }, { "full_name": "Option.eq_none_of_isNone", "code": "theorem eq_none_of_isNone {α : Type u} : ∀ {o : Option α}, o.isNone → o = none", "start": [ 19, 1 ], "end": [ 20, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.mem_def", "code": "@[simp] theorem mem_def {a : α} {b : Option α} : a ∈ b ↔ b = some a", "start": [ 24, 1 ], "end": [ 24, 76 ], "kind": "commanddeclaration" }, { "full_name": "Option.isNone_iff_eq_none", "code": "@[simp] theorem isNone_iff_eq_none {o : Option α} : o.isNone ↔ o = none", "start": [ 29, 1 ], "end": [ 30, 52 ], "kind": "commanddeclaration" }, { "full_name": "Option.some_inj", "code": "theorem some_inj {a b : α} : some a = some b ↔ a = b", "start": [ 32, 1 ], "end": [ 32, 69 ], "kind": "commanddeclaration" }, { "full_name": "Option.decidable_eq_none", "code": "@[inline] def decidable_eq_none {o : Option α} : Decidable (o = none) :=\n decidable_of_decidable_of_iff isNone_iff_eq_none", "start": [ 34, 1 ], "end": [ 40, 51 ], "kind": "commanddeclaration" }, { "full_name": "Option.pbind", "code": "@[simp, inline]\ndef pbind : ∀ x : Option α, (∀ a : α, a ∈ x → Option β) → Option β\n | none, _ => none\n | some a, f => f a rfl", "start": [ 52, 1 ], "end": [ 61, 25 ], "kind": "commanddeclaration" }, { "full_name": "Option.pmap", "code": "@[simp, inline] def pmap {p : α → Prop} (f : ∀ a : α, p a → β) :\n ∀ x : Option α, (∀ a, a ∈ x → p a) → Option β\n | none, _ => none\n | some a, H => f a (H a rfl)", "start": [ 63, 1 ], "end": [ 71, 31 ], "kind": "commanddeclaration" }, { "full_name": "Option.forM", "code": "@[inline] protected def forM [Pure m] : Option α → (α → m PUnit) → m PUnit\n | none , _ => pure ⟨⟩\n | some a, f => f a", "start": [ 73, 1 ], "end": [ 76, 21 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Ext.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Macro.lean", ".lake/packages/lean4/src/lean/Init/RCases.lean", ".lake/packages/lean4/src/lean/Init/TacticsExtra.lean" ]
[ { "full_name": "Lean.Elab.Tactic.Ext.$extName", "code": "@[ext $(prio)?] protected theorem $extName:ident : ext_type% $flat $struct:ident", "start": [ 59, 5 ], "end": [ 60, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Elab.Tactic.Ext.$extIffName", "code": "protected theorem $extIffName:ident : ext_iff_type% $flat $struct:ident", "start": [ 61, 5 ], "end": [ 64, 61 ], "kind": "commanddeclaration" }, { "full_name": "Prod.ext", "code": "@[ext] theorem Prod.ext : {x y : Prod α β} → x.fst = y.fst → x.snd = y.snd → x = y", "start": [ 101, 1 ], "end": [ 102, 34 ], "kind": "commanddeclaration" }, { "full_name": "PProd.ext", "code": "@[ext] theorem PProd.ext : {x y : PProd α β} → x.fst = y.fst → x.snd = y.snd → x = y", "start": [ 104, 1 ], "end": [ 105, 34 ], "kind": "commanddeclaration" }, { "full_name": "Sigma.ext", "code": "@[ext] theorem Sigma.ext : {x y : Sigma β} → x.fst = y.fst → HEq x.snd y.snd → x = y", "start": [ 107, 1 ], "end": [ 108, 35 ], "kind": "commanddeclaration" }, { "full_name": "PSigma.ext", "code": "@[ext] theorem PSigma.ext : {x y : PSigma β} → x.fst = y.fst → HEq x.snd y.snd → x = y", "start": [ 110, 1 ], "end": [ 111, 35 ], "kind": "commanddeclaration" }, { "full_name": "PUnit.ext", "code": "@[ext] protected theorem PUnit.ext (x y : PUnit) : x = y", "start": [ 113, 1 ], "end": [ 113, 64 ], "kind": "commanddeclaration" }, { "full_name": "Unit.ext", "code": "protected theorem Unit.ext (x y : Unit) : x = y", "start": [ 114, 1 ], "end": [ 114, 55 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Dvd.lean
[ ".lake/packages/lean4/src/lean/Init/Meta.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Div.lean" ]
[ { "full_name": "Nat.dvd_refl", "code": "protected theorem dvd_refl (a : Nat) : a ∣ a", "start": [ 12, 1 ], "end": [ 12, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_zero", "code": "protected theorem dvd_zero (a : Nat) : a ∣ 0", "start": [ 14, 1 ], "end": [ 14, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_mul_left", "code": "protected theorem dvd_mul_left (a b : Nat) : a ∣ b * a", "start": [ 16, 1 ], "end": [ 16, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_mul_right", "code": "protected theorem dvd_mul_right (a b : Nat) : a ∣ a * b", "start": [ 17, 1 ], "end": [ 17, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_trans", "code": "protected theorem dvd_trans {a b c : Nat} (h₁ : a ∣ b) (h₂ : b ∣ c) : a ∣ c", "start": [ 19, 1 ], "end": [ 22, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_zero_dvd", "code": "protected theorem eq_zero_of_zero_dvd {a : Nat} (h : 0 ∣ a) : a = 0", "start": [ 24, 1 ], "end": [ 25, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_dvd", "code": "@[simp] protected theorem zero_dvd {n : Nat} : 0 ∣ n ↔ n = 0", "start": [ 27, 1 ], "end": [ 28, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_add", "code": "protected theorem dvd_add {a b c : Nat} (h₁ : a ∣ b) (h₂ : a ∣ c) : a ∣ b + c", "start": [ 30, 1 ], "end": [ 31, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_add_iff_right", "code": "protected theorem dvd_add_iff_right {k m n : Nat} (h : k ∣ m) : k ∣ n ↔ k ∣ m + n", "start": [ 33, 1 ], "end": [ 37, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_add_iff_left", "code": "protected theorem dvd_add_iff_left {k m n : Nat} (h : k ∣ n) : k ∣ m ↔ k ∣ m + n", "start": [ 39, 1 ], "end": [ 40, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_mod_iff", "code": "theorem dvd_mod_iff {k m n : Nat} (h: k ∣ n) : k ∣ m % n ↔ k ∣ m", "start": [ 42, 1 ], "end": [ 44, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_dvd", "code": "theorem le_of_dvd {m n : Nat} (h : 0 < n) : m ∣ n → m ≤ n", "start": [ 46, 1 ], "end": [ 55, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_antisymm", "code": "protected theorem dvd_antisymm : ∀ {m n : Nat}, m ∣ n → n ∣ m → m = n", "start": [ 57, 1 ], "end": [ 60, 96 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_dvd_of_pos", "code": "theorem pos_of_dvd_of_pos {m n : Nat} (H1 : m ∣ n) (H2 : 0 < n) : 0 < m", "start": [ 62, 1 ], "end": [ 63, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_dvd", "code": "@[simp] protected theorem one_dvd (n : Nat) : 1 ∣ n", "start": [ 65, 1 ], "end": [ 65, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_one_of_dvd_one", "code": "theorem eq_one_of_dvd_one {n : Nat} (H : n ∣ 1) : n = 1", "start": [ 67, 1 ], "end": [ 67, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_eq_zero_of_dvd", "code": "theorem mod_eq_zero_of_dvd {m n : Nat} (H : m ∣ n) : n % m = 0", "start": [ 69, 1 ], "end": [ 70, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_of_mod_eq_zero", "code": "theorem dvd_of_mod_eq_zero {m n : Nat} (H : n % m = 0) : m ∣ n", "start": [ 72, 1 ], "end": [ 75, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_iff_mod_eq_zero", "code": "theorem dvd_iff_mod_eq_zero (m n : Nat) : m ∣ n ↔ n % m = 0", "start": [ 77, 1 ], "end": [ 78, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidable_dvd", "code": "instance decidable_dvd : @DecidableRel Nat (·∣·) :=\n fun _ _ => decidable_of_decidable_of_iff (dvd_iff_mod_eq_zero _ _).symm", "start": [ 80, 1 ], "end": [ 81, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.emod_pos_of_not_dvd", "code": "theorem emod_pos_of_not_dvd {a b : Nat} (h : ¬ a ∣ b) : 0 < b % a", "start": [ 83, 1 ], "end": [ 85, 29 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_cancel'", "code": "protected theorem mul_div_cancel' {n m : Nat} (H : n ∣ m) : n * (m / n) = m", "start": [ 87, 1 ], "end": [ 89, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_mul_cancel", "code": "protected theorem div_mul_cancel {n m : Nat} (H : n ∣ m) : m / n * n = m", "start": [ 91, 1 ], "end": [ 92, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_mod_of_dvd", "code": "@[simp] theorem mod_mod_of_dvd (a : Nat) (h : c ∣ b) : a % b % c = a % c", "start": [ 94, 1 ], "end": [ 98, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_of_mul_dvd_mul_left", "code": "protected theorem dvd_of_mul_dvd_mul_left\n (kpos : 0 < k) (H : k * m ∣ k * n) : m ∣ n", "start": [ 100, 1 ], "end": [ 104, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_of_mul_dvd_mul_right", "code": "protected theorem dvd_of_mul_dvd_mul_right (kpos : 0 < k) (H : m * k ∣ n * k) : m ∣ n", "start": [ 106, 1 ], "end": [ 107, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_sub", "code": "theorem dvd_sub {k m n : Nat} (H : n ≤ m) (h₁ : k ∣ m) (h₂ : k ∣ n) : k ∣ m - n", "start": [ 109, 1 ], "end": [ 110, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_dvd_mul", "code": "protected theorem mul_dvd_mul {a b c d : Nat} : a ∣ b → c ∣ d → a * c ∣ b * d", "start": [ 112, 1 ], "end": [ 114, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_dvd_mul_left", "code": "protected theorem mul_dvd_mul_left (a : Nat) (h : b ∣ c) : a * b ∣ a * c", "start": [ 116, 1 ], "end": [ 117, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_dvd_mul_right", "code": "protected theorem mul_dvd_mul_right (h: a ∣ b) (c : Nat) : a * c ∣ b * c", "start": [ 119, 1 ], "end": [ 120, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_one", "code": "@[simp] theorem dvd_one {n : Nat} : n ∣ 1 ↔ n = 1", "start": [ 122, 1 ], "end": [ 123, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_div_assoc", "code": "protected theorem mul_div_assoc (m : Nat) (H : k ∣ n) : m * n / k = m * (n / k)", "start": [ 125, 1 ], "end": [ 130, 56 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Int/Order.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Int/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/ByCases.lean" ]
[ { "full_name": "Int.nonneg_def", "code": "theorem nonneg_def {a : Int} : NonNeg a ↔ ∃ n : Nat, a = n", "start": [ 20, 1 ], "end": [ 21, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.NonNeg.elim", "code": "theorem NonNeg.elim {a : Int} : NonNeg a → ∃ n : Nat, a = n", "start": [ 23, 1 ], "end": [ 23, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.nonneg_or_nonneg_neg", "code": "theorem nonneg_or_nonneg_neg : ∀ (a : Int), NonNeg a ∨ NonNeg (-a)", "start": [ 25, 1 ], "end": [ 27, 24 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_def", "code": "theorem le_def (a b : Int) : a ≤ b ↔ NonNeg (b - a)", "start": [ 29, 1 ], "end": [ 29, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_iff_add_one_le", "code": "theorem lt_iff_add_one_le (a b : Int) : a < b ↔ a + 1 ≤ b", "start": [ 31, 1 ], "end": [ 31, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.le.intro_sub", "code": "theorem le.intro_sub {a b : Int} (n : Nat) (h : b - a = n) : a ≤ b", "start": [ 33, 1 ], "end": [ 34, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.le.intro", "code": "theorem le.intro {a b : Int} (n : Nat) (h : a + n = b) : a ≤ b", "start": [ 38, 1 ], "end": [ 39, 88 ], "kind": "commanddeclaration" }, { "full_name": "Int.le.dest_sub", "code": "theorem le.dest_sub {a b : Int} (h : a ≤ b) : ∃ n : Nat, b - a = n", "start": [ 41, 1 ], "end": [ 41, 85 ], "kind": "commanddeclaration" }, { "full_name": "Int.le.dest", "code": "theorem le.dest {a b : Int} (h : a ≤ b) : ∃ n : Nat, a + n = b", "start": [ 43, 1 ], "end": [ 45, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_total", "code": "protected theorem le_total (a b : Int) : a ≤ b ∨ b ≤ a", "start": [ 47, 1 ], "end": [ 49, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_le", "code": "@[simp, norm_cast] theorem ofNat_le {m n : Nat} : (↑m : Int) ≤ ↑n ↔ m ≤ n", "start": [ 51, 1 ], "end": [ 57, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_zero_le", "code": "theorem ofNat_zero_le (n : Nat) : 0 ≤ (↑n : Int)", "start": [ 59, 1 ], "end": [ 59, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_ofNat_of_zero_le", "code": "theorem eq_ofNat_of_zero_le {a : Int} (h : 0 ≤ a) : ∃ n : Nat, a = n", "start": [ 61, 1 ], "end": [ 62, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_succ_of_zero_lt", "code": "theorem eq_succ_of_zero_lt {a : Int} (h : 0 < a) : ∃ n : Nat, a = n.succ", "start": [ 64, 1 ], "end": [ 66, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_succ", "code": "theorem lt_add_succ (a : Int) (n : Nat) : a < a + Nat.succ n", "start": [ 68, 1 ], "end": [ 69, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt.intro", "code": "theorem lt.intro {a b : Int} {n : Nat} (h : a + Nat.succ n = b) : a < b", "start": [ 71, 1 ], "end": [ 72, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt.dest", "code": "theorem lt.dest {a b : Int} (h : a < b) : ∃ n : Nat, a + Nat.succ n = b", "start": [ 74, 1 ], "end": [ 75, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_lt", "code": "@[simp, norm_cast] theorem ofNat_lt {n m : Nat} : (↑n : Int) < ↑m ↔ n < m", "start": [ 77, 1 ], "end": [ 78, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_pos", "code": "@[simp, norm_cast] theorem ofNat_pos {n : Nat} : 0 < (↑n : Int) ↔ 0 < n", "start": [ 80, 1 ], "end": [ 80, 84 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_nonneg", "code": "theorem ofNat_nonneg (n : Nat) : 0 ≤ (n : Int)", "start": [ 82, 1 ], "end": [ 82, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_succ_pos", "code": "theorem ofNat_succ_pos (n : Nat) : 0 < (succ n : Int)", "start": [ 84, 1 ], "end": [ 84, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_refl", "code": "@[simp] protected theorem le_refl (a : Int) : a ≤ a", "start": [ 86, 1 ], "end": [ 87, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_trans", "code": "protected theorem le_trans {a b c : Int} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c", "start": [ 89, 1 ], "end": [ 91, 67 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_antisymm", "code": "protected theorem le_antisymm {a b : Int} (h₁ : a ≤ b) (h₂ : b ≤ a) : a = b", "start": [ 93, 1 ], "end": [ 97, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_irrefl", "code": "@[simp] protected theorem lt_irrefl (a : Int) : ¬a < a", "start": [ 99, 1 ], "end": [ 104, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.ne_of_lt", "code": "protected theorem ne_of_lt {a b : Int} (h : a < b) : a ≠ b", "start": [ 106, 1 ], "end": [ 107, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.ne_of_gt", "code": "protected theorem ne_of_gt {a b : Int} (h : b < a) : a ≠ b", "start": [ 109, 1 ], "end": [ 109, 84 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_lt", "code": "protected theorem le_of_lt {a b : Int} (h : a < b) : a ≤ b", "start": [ 111, 1 ], "end": [ 112, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_iff_le_and_ne", "code": "protected theorem lt_iff_le_and_ne {a b : Int} : a < b ↔ a ≤ b ∧ a ≠ b", "start": [ 114, 1 ], "end": [ 118, 82 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_succ", "code": "theorem lt_succ (a : Int) : a < a + 1", "start": [ 120, 1 ], "end": [ 120, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_lt_one", "code": "protected theorem zero_lt_one : (0 : Int) < 1", "start": [ 122, 1 ], "end": [ 122, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_iff_le_not_le", "code": "protected theorem lt_iff_le_not_le {a b : Int} : a < b ↔ a ≤ b ∧ ¬b ≤ a", "start": [ 124, 1 ], "end": [ 128, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_not_ge", "code": "protected theorem lt_of_not_ge {a b : Int} (h : ¬a ≤ b) : b < a", "start": [ 130, 1 ], "end": [ 131, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.not_le_of_gt", "code": "protected theorem not_le_of_gt {a b : Int} (h : b < a) : ¬a ≤ b", "start": [ 133, 1 ], "end": [ 134, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.not_le", "code": "protected theorem not_le {a b : Int} : ¬a ≤ b ↔ b < a", "start": [ 136, 1 ], "end": [ 137, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.not_lt", "code": "protected theorem not_lt {a b : Int} : ¬a < b ↔ b ≤ a", "start": [ 139, 1 ], "end": [ 140, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_trichotomy", "code": "protected theorem lt_trichotomy (a b : Int) : a < b ∨ a = b ∨ b < a", "start": [ 142, 1 ], "end": [ 145, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.ne_iff_lt_or_gt", "code": "protected theorem ne_iff_lt_or_gt {a b : Int} : a ≠ b ↔ a < b ∨ b < a", "start": [ 147, 1 ], "end": [ 159, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_or_gt_of_ne", "code": "protected theorem lt_or_gt_of_ne {a b : Int} : a ≠ b → a < b ∨ b < a", "start": [ 161, 1 ], "end": [ 161, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_iff_le_and_ge", "code": "protected theorem eq_iff_le_and_ge {x y : Int} : x = y ↔ x ≤ y ∧ y ≤ x", "start": [ 163, 1 ], "end": [ 167, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_le_of_lt", "code": "protected theorem lt_of_le_of_lt {a b c : Int} (h₁ : a ≤ b) (h₂ : b < c) : a < c", "start": [ 169, 1 ], "end": [ 170, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_lt_of_le", "code": "protected theorem lt_of_lt_of_le {a b c : Int} (h₁ : a < b) (h₂ : b ≤ c) : a < c", "start": [ 172, 1 ], "end": [ 173, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_trans", "code": "protected theorem lt_trans {a b c : Int} (h₁ : a < b) (h₂ : b < c) : a < c", "start": [ 175, 1 ], "end": [ 176, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_def", "code": "protected theorem min_def (n m : Int) : min n m = if n ≤ m then n else m", "start": [ 186, 1 ], "end": [ 186, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.max_def", "code": "protected theorem max_def (n m : Int) : max n m = if n ≤ m then m else n", "start": [ 188, 1 ], "end": [ 188, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_comm", "code": "protected theorem min_comm (a b : Int) : min a b = min b a", "start": [ 190, 1 ], "end": [ 194, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_le_right", "code": "protected theorem min_le_right (a b : Int) : min a b ≤ b", "start": [ 197, 1 ], "end": [ 197, 100 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_le_left", "code": "protected theorem min_le_left (a b : Int) : min a b ≤ a", "start": [ 199, 1 ], "end": [ 199, 97 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_eq_left", "code": "protected theorem min_eq_left {a b : Int} (h : a ≤ b) : min a b = a", "start": [ 201, 1 ], "end": [ 201, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.min_eq_right", "code": "protected theorem min_eq_right {a b : Int} (h : b ≤ a) : min a b = b", "start": [ 203, 1 ], "end": [ 204, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_min", "code": "protected theorem le_min {a b c : Int} : a ≤ min b c ↔ a ≤ b ∧ a ≤ c", "start": [ 206, 1 ], "end": [ 208, 62 ], "kind": "commanddeclaration" }, { "full_name": "Int.max_comm", "code": "protected theorem max_comm (a b : Int) : max a b = max b a", "start": [ 210, 1 ], "end": [ 214, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_max_left", "code": "protected theorem le_max_left (a b : Int) : a ≤ max a b", "start": [ 217, 1 ], "end": [ 217, 99 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_max_right", "code": "protected theorem le_max_right (a b : Int) : b ≤ max a b", "start": [ 219, 1 ], "end": [ 219, 97 ], "kind": "commanddeclaration" }, { "full_name": "Int.max_le", "code": "protected theorem max_le {a b c : Int} : max a b ≤ c ↔ a ≤ c ∧ b ≤ c", "start": [ 221, 1 ], "end": [ 223, 62 ], "kind": "commanddeclaration" }, { "full_name": "Int.max_eq_right", "code": "protected theorem max_eq_right {a b : Int} (h : a ≤ b) : max a b = b", "start": [ 225, 1 ], "end": [ 226, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.max_eq_left", "code": "protected theorem max_eq_left {a b : Int} (h : b ≤ a) : max a b = a", "start": [ 228, 1 ], "end": [ 229, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_natAbs_of_zero_le", "code": "theorem eq_natAbs_of_zero_le {a : Int} (h : 0 ≤ a) : a = natAbs a", "start": [ 231, 1 ], "end": [ 233, 14 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_natAbs", "code": "theorem le_natAbs {a : Int} : a ≤ natAbs a", "start": [ 235, 1 ], "end": [ 238, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_lt_zero", "code": "theorem negSucc_lt_zero (n : Nat) : -[n+1] < 0", "start": [ 240, 1 ], "end": [ 241, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_not_nonneg", "code": "@[simp] theorem negSucc_not_nonneg (n : Nat) : 0 ≤ -[n+1] ↔ False", "start": [ 243, 1 ], "end": [ 244, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add_left", "code": "protected theorem add_le_add_left {a b : Int} (h : a ≤ b) (c : Int) : c + a ≤ c + b", "start": [ 246, 1 ], "end": [ 247, 68 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_left", "code": "protected theorem add_lt_add_left {a b : Int} (h : a < b) (c : Int) : c + a < c + b", "start": [ 249, 1 ], "end": [ 251, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add_right", "code": "protected theorem add_le_add_right {a b : Int} (h : a ≤ b) (c : Int) : a + c ≤ b + c", "start": [ 253, 1 ], "end": [ 254, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_right", "code": "protected theorem add_lt_add_right {a b : Int} (h : a < b) (c : Int) : a + c < b + c", "start": [ 256, 1 ], "end": [ 257, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_add_le_add_left", "code": "protected theorem le_of_add_le_add_left {a b c : Int} (h : a + b ≤ a + c) : b ≤ c", "start": [ 259, 1 ], "end": [ 262, 13 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_add_le_add_right", "code": "protected theorem le_of_add_le_add_right {a b c : Int} (h : a + b ≤ c + b) : a ≤ c", "start": [ 264, 1 ], "end": [ 265, 84 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add_iff_left", "code": "protected theorem add_le_add_iff_left (a : Int) : a + b ≤ a + c ↔ b ≤ c", "start": [ 267, 1 ], "end": [ 268, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add_iff_right", "code": "protected theorem add_le_add_iff_right (c : Int) : a + c ≤ b + c ↔ a ≤ b", "start": [ 270, 1 ], "end": [ 271, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add", "code": "protected theorem add_le_add {a b c d : Int} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d", "start": [ 273, 1 ], "end": [ 274, 70 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_nonneg_right", "code": "protected theorem le_add_of_nonneg_right {a b : Int} (h : 0 ≤ b) : a ≤ a + b", "start": [ 276, 1 ], "end": [ 278, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_nonneg_left", "code": "protected theorem le_add_of_nonneg_left {a b : Int} (h : 0 ≤ b) : a ≤ b + a", "start": [ 280, 1 ], "end": [ 282, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_le_neg", "code": "protected theorem neg_le_neg {a b : Int} (h : a ≤ b) : -b ≤ -a", "start": [ 284, 1 ], "end": [ 287, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_neg_le_neg", "code": "protected theorem le_of_neg_le_neg {a b : Int} (h : -b ≤ -a) : a ≤ b", "start": [ 289, 1 ], "end": [ 291, 19 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_nonpos_of_nonneg", "code": "protected theorem neg_nonpos_of_nonneg {a : Int} (h : 0 ≤ a) : -a ≤ 0", "start": [ 293, 1 ], "end": [ 295, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_nonneg_of_nonpos", "code": "protected theorem neg_nonneg_of_nonpos {a : Int} (h : a ≤ 0) : 0 ≤ -a", "start": [ 297, 1 ], "end": [ 299, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_lt_neg", "code": "protected theorem neg_lt_neg {a b : Int} (h : a < b) : -b < -a", "start": [ 301, 1 ], "end": [ 304, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_neg_of_pos", "code": "protected theorem neg_neg_of_pos {a : Int} (h : 0 < a) : -a < 0", "start": [ 306, 1 ], "end": [ 308, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_pos_of_neg", "code": "protected theorem neg_pos_of_neg {a : Int} (h : a < 0) : 0 < -a", "start": [ 310, 1 ], "end": [ 312, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_nonneg_of_le", "code": "protected theorem sub_nonneg_of_le {a b : Int} (h : b ≤ a) : 0 ≤ a - b", "start": [ 314, 1 ], "end": [ 316, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_sub_nonneg", "code": "protected theorem le_of_sub_nonneg {a b : Int} (h : 0 ≤ a - b) : b ≤ a", "start": [ 318, 1 ], "end": [ 320, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_pos_of_lt", "code": "protected theorem sub_pos_of_lt {a b : Int} (h : b < a) : 0 < a - b", "start": [ 322, 1 ], "end": [ 324, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_sub_pos", "code": "protected theorem lt_of_sub_pos {a b : Int} (h : 0 < a - b) : b < a", "start": [ 326, 1 ], "end": [ 328, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_left_le_of_le_add", "code": "protected theorem sub_left_le_of_le_add {a b c : Int} (h : a ≤ b + c) : a - b ≤ c", "start": [ 330, 1 ], "end": [ 332, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_le_self", "code": "protected theorem sub_le_self (a : Int) {b : Int} (h : 0 ≤ b) : a - b ≤ a", "start": [ 334, 1 ], "end": [ 337, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_self", "code": "protected theorem sub_lt_self (a : Int) {b : Int} (h : 0 < b) : a - b < a", "start": [ 339, 1 ], "end": [ 342, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_one_le_of_lt", "code": "theorem add_one_le_of_lt {a b : Int} (H : a < b) : a + 1 ≤ b", "start": [ 344, 1 ], "end": [ 344, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_nonneg", "code": "protected theorem mul_nonneg {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b", "start": [ 349, 1 ], "end": [ 352, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_pos", "code": "protected theorem mul_pos {a b : Int} (ha : 0 < a) (hb : 0 < b) : 0 < a * b", "start": [ 354, 1 ], "end": [ 357, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul_of_pos_left", "code": "protected theorem mul_lt_mul_of_pos_left {a b c : Int}\n (h₁ : a < b) (h₂ : 0 < c) : c * a < c * b", "start": [ 359, 1 ], "end": [ 363, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul_of_pos_right", "code": "protected theorem mul_lt_mul_of_pos_right {a b c : Int}\n (h₁ : a < b) (h₂ : 0 < c) : a * c < b * c", "start": [ 365, 1 ], "end": [ 370, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_mul_of_nonneg_left", "code": "protected theorem mul_le_mul_of_nonneg_left {a b c : Int}\n (h₁ : a ≤ b) (h₂ : 0 ≤ c) : c * a ≤ c * b", "start": [ 372, 1 ], "end": [ 380, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_mul_of_nonneg_right", "code": "protected theorem mul_le_mul_of_nonneg_right {a b c : Int}\n (h₁ : a ≤ b) (h₂ : 0 ≤ c) : a * c ≤ b * c", "start": [ 382, 1 ], "end": [ 384, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_mul", "code": "protected theorem mul_le_mul {a b c d : Int}\n (hac : a ≤ c) (hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) : a * b ≤ c * d", "start": [ 386, 1 ], "end": [ 388, 98 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_nonpos_of_nonneg_of_nonpos", "code": "protected theorem mul_nonpos_of_nonneg_of_nonpos {a b : Int}\n (ha : 0 ≤ a) (hb : b ≤ 0) : a * b ≤ 0", "start": [ 390, 1 ], "end": [ 393, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_nonpos_of_nonpos_of_nonneg", "code": "protected theorem mul_nonpos_of_nonpos_of_nonneg {a b : Int}\n (ha : a ≤ 0) (hb : 0 ≤ b) : a * b ≤ 0", "start": [ 395, 1 ], "end": [ 398, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_mul_of_nonpos_right", "code": "protected theorem mul_le_mul_of_nonpos_right {a b c : Int}\n (h : b ≤ a) (hc : c ≤ 0) : a * c ≤ b * c", "start": [ 400, 1 ], "end": [ 404, 94 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_mul_of_nonpos_left", "code": "protected theorem mul_le_mul_of_nonpos_left {a b c : Int}\n (ha : a ≤ 0) (h : c ≤ b) : a * b ≤ a * c", "start": [ 406, 1 ], "end": [ 409, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_ofNat", "code": "@[simp] theorem natAbs_ofNat (n : Nat) : natAbs ↑n = n", "start": [ 413, 1 ], "end": [ 413, 62 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_negSucc", "code": "@[simp] theorem natAbs_negSucc (n : Nat) : natAbs -[n+1] = n.succ", "start": [ 414, 1 ], "end": [ 414, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_zero", "code": "@[simp] theorem natAbs_zero : natAbs (0 : Int) = (0 : Nat)", "start": [ 415, 1 ], "end": [ 415, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_one", "code": "@[simp] theorem natAbs_one : natAbs (1 : Int) = (1 : Nat)", "start": [ 416, 1 ], "end": [ 416, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_eq_zero", "code": "@[simp] theorem natAbs_eq_zero : natAbs a = 0 ↔ a = 0", "start": [ 418, 1 ], "end": [ 422, 20 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_pos", "code": "theorem natAbs_pos : 0 < natAbs a ↔ a ≠ 0", "start": [ 424, 1 ], "end": [ 424, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_neg", "code": "@[simp] theorem natAbs_neg : ∀ (a : Int), natAbs (-a) = natAbs a", "start": [ 426, 1 ], "end": [ 429, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_eq", "code": "theorem natAbs_eq : ∀ (a : Int), a = natAbs a ∨ a = -↑(natAbs a)", "start": [ 431, 1 ], "end": [ 433, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_negOfNat", "code": "theorem natAbs_negOfNat (n : Nat) : natAbs (negOfNat n) = n", "start": [ 435, 1 ], "end": [ 436, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_mul", "code": "theorem natAbs_mul (a b : Int) : natAbs (a * b) = natAbs a * natAbs b", "start": [ 438, 1 ], "end": [ 440, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_eq_natAbs_iff", "code": "theorem natAbs_eq_natAbs_iff {a b : Int} : a.natAbs = b.natAbs ↔ a = b ∨ a = -b", "start": [ 442, 1 ], "end": [ 449, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_of_nonneg", "code": "theorem natAbs_of_nonneg {a : Int} (H : 0 ≤ a) : (natAbs a : Int) = a", "start": [ 451, 1 ], "end": [ 453, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_natAbs_of_nonpos", "code": "theorem ofNat_natAbs_of_nonpos {a : Int} (H : a ≤ 0) : (natAbs a : Int) = -a", "start": [ 455, 1 ], "end": [ 456, 67 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_eq_max", "code": "theorem toNat_eq_max : ∀ a : Int, (toNat a : Int) = max a 0", "start": [ 460, 1 ], "end": [ 462, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_zero", "code": "@[simp] theorem toNat_zero : (0 : Int).toNat = 0", "start": [ 464, 1 ], "end": [ 464, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_one", "code": "@[simp] theorem toNat_one : (1 : Int).toNat = 1", "start": [ 466, 1 ], "end": [ 466, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_of_nonneg", "code": "@[simp] theorem toNat_of_nonneg {a : Int} (h : 0 ≤ a) : (toNat a : Int) = a", "start": [ 468, 1 ], "end": [ 469, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_ofNat", "code": "@[simp] theorem toNat_ofNat (n : Nat) : toNat ↑n = n", "start": [ 471, 1 ], "end": [ 471, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_ofNat_add_one", "code": "@[simp] theorem toNat_ofNat_add_one {n : Nat} : ((n : Int) + 1).toNat = n + 1", "start": [ 473, 1 ], "end": [ 473, 85 ], "kind": "commanddeclaration" }, { "full_name": "Int.self_le_toNat", "code": "theorem self_le_toNat (a : Int) : a ≤ toNat a", "start": [ 475, 1 ], "end": [ 475, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_toNat", "code": "@[simp] theorem le_toNat {n : Nat} {z : Int} (h : 0 ≤ z) : n ≤ z.toNat ↔ (n : Int) ≤ z", "start": [ 477, 1 ], "end": [ 478, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_lt", "code": "@[simp] theorem toNat_lt {n : Nat} {z : Int} (h : 0 ≤ z) : z.toNat < n ↔ z < (n : Int)", "start": [ 480, 1 ], "end": [ 481, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_add", "code": "theorem toNat_add {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : (a + b).toNat = a.toNat + b.toNat", "start": [ 483, 1 ], "end": [ 485, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_add_nat", "code": "theorem toNat_add_nat {a : Int} (ha : 0 ≤ a) (n : Nat) : (a + n).toNat = a.toNat + n", "start": [ 487, 1 ], "end": [ 488, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.pred_toNat", "code": "@[simp] theorem pred_toNat : ∀ i : Int, (i - 1).toNat = i.toNat - 1", "start": [ 490, 1 ], "end": [ 493, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_sub_toNat_neg", "code": "@[simp] theorem toNat_sub_toNat_neg : ∀ n : Int, ↑n.toNat - ↑(-n).toNat = n", "start": [ 495, 1 ], "end": [ 498, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_add_toNat_neg_eq_natAbs", "code": "@[simp] theorem toNat_add_toNat_neg_eq_natAbs : ∀ n : Int, n.toNat + (-n).toNat = n.natAbs", "start": [ 500, 1 ], "end": [ 503, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.toNat_neg_nat", "code": "@[simp] theorem toNat_neg_nat : ∀ n : Nat, (-(n : Int)).toNat = 0", "start": [ 505, 1 ], "end": [ 507, 15 ], "kind": "commanddeclaration" }, { "full_name": "Int.mem_toNat'", "code": "theorem mem_toNat' : ∀ (a : Int) (n : Nat), toNat' a = some n ↔ a = n", "start": [ 511, 1 ], "end": [ 513, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_not_le", "code": "protected theorem le_of_not_le {a b : Int} : ¬ a ≤ b → b ≤ a", "start": [ 517, 1 ], "end": [ 517, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_not_pos", "code": "@[simp] theorem negSucc_not_pos (n : Nat) : 0 < -[n+1] ↔ False", "start": [ 519, 1 ], "end": [ 520, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_negSucc_of_lt_zero", "code": "theorem eq_negSucc_of_lt_zero : ∀ {a : Int}, a < 0 → ∃ n : Nat, a = -[n+1]", "start": [ 522, 1 ], "end": [ 524, 27 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_add_lt_add_left", "code": "protected theorem lt_of_add_lt_add_left {a b c : Int} (h : a + b < a + c) : b < c", "start": [ 526, 1 ], "end": [ 529, 13 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_add_lt_add_right", "code": "protected theorem lt_of_add_lt_add_right {a b c : Int} (h : a + b < c + b) : a < c", "start": [ 531, 1 ], "end": [ 532, 84 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_iff_left", "code": "protected theorem add_lt_add_iff_left (a : Int) : a + b < a + c ↔ b < c", "start": [ 534, 1 ], "end": [ 535, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_iff_right", "code": "protected theorem add_lt_add_iff_right (c : Int) : a + c < b + c ↔ a < b", "start": [ 537, 1 ], "end": [ 538, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add", "code": "protected theorem add_lt_add {a b c d : Int} (h₁ : a < b) (h₂ : c < d) : a + c < b + d", "start": [ 540, 1 ], "end": [ 541, 70 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_of_le_of_lt", "code": "protected theorem add_lt_add_of_le_of_lt {a b c d : Int} (h₁ : a ≤ b) (h₂ : c < d) :\n a + c < b + d", "start": [ 543, 1 ], "end": [ 545, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_add_of_lt_of_le", "code": "protected theorem add_lt_add_of_lt_of_le {a b c d : Int} (h₁ : a < b) (h₂ : c ≤ d) :\n a + c < b + d", "start": [ 547, 1 ], "end": [ 549, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_pos_right", "code": "protected theorem lt_add_of_pos_right (a : Int) {b : Int} (h : 0 < b) : a < a + b", "start": [ 551, 1 ], "end": [ 553, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_pos_left", "code": "protected theorem lt_add_of_pos_left (a : Int) {b : Int} (h : 0 < b) : a < b + a", "start": [ 555, 1 ], "end": [ 557, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_nonneg", "code": "protected theorem add_nonneg {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b", "start": [ 559, 1 ], "end": [ 560, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_pos", "code": "protected theorem add_pos {a b : Int} (ha : 0 < a) (hb : 0 < b) : 0 < a + b", "start": [ 562, 1 ], "end": [ 563, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_pos_of_pos_of_nonneg", "code": "protected theorem add_pos_of_pos_of_nonneg {a b : Int} (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b", "start": [ 565, 1 ], "end": [ 566, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_pos_of_nonneg_of_pos", "code": "protected theorem add_pos_of_nonneg_of_pos {a b : Int} (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b", "start": [ 568, 1 ], "end": [ 569, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_nonpos", "code": "protected theorem add_nonpos {a b : Int} (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0", "start": [ 571, 1 ], "end": [ 572, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg", "code": "protected theorem add_neg {a b : Int} (ha : a < 0) (hb : b < 0) : a + b < 0", "start": [ 574, 1 ], "end": [ 575, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg_of_neg_of_nonpos", "code": "protected theorem add_neg_of_neg_of_nonpos {a b : Int} (ha : a < 0) (hb : b ≤ 0) : a + b < 0", "start": [ 577, 1 ], "end": [ 578, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_neg_of_nonpos_of_neg", "code": "protected theorem add_neg_of_nonpos_of_neg {a b : Int} (ha : a ≤ 0) (hb : b < 0) : a + b < 0", "start": [ 580, 1 ], "end": [ 581, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_le_of_pos", "code": "protected theorem lt_add_of_le_of_pos {a b c : Int} (hbc : b ≤ c) (ha : 0 < a) : b < c + a", "start": [ 583, 1 ], "end": [ 584, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_one_le_iff", "code": "theorem add_one_le_iff {a b : Int} : a + 1 ≤ b ↔ a < b", "start": [ 586, 1 ], "end": [ 586, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_one_iff", "code": "theorem lt_add_one_iff {a b : Int} : a < b + 1 ↔ a ≤ b", "start": [ 588, 1 ], "end": [ 588, 85 ], "kind": "commanddeclaration" }, { "full_name": "Int.succ_ofNat_pos", "code": "@[simp] theorem succ_ofNat_pos (n : Nat) : 0 < (n : Int) + 1", "start": [ 590, 1 ], "end": [ 591, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.not_ofNat_neg", "code": "theorem not_ofNat_neg (n : Nat) : ¬((n : Int) < 0)", "start": [ 593, 1 ], "end": [ 594, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_one", "code": "theorem le_add_one {a b : Int} (h : a ≤ b) : a ≤ b + 1", "start": [ 596, 1 ], "end": [ 597, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.nonneg_of_neg_nonpos", "code": "protected theorem nonneg_of_neg_nonpos {a : Int} (h : -a ≤ 0) : 0 ≤ a", "start": [ 599, 1 ], "end": [ 600, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.nonpos_of_neg_nonneg", "code": "protected theorem nonpos_of_neg_nonneg {a : Int} (h : 0 ≤ -a) : a ≤ 0", "start": [ 602, 1 ], "end": [ 603, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_neg_lt_neg", "code": "protected theorem lt_of_neg_lt_neg {a b : Int} (h : -b < -a) : a < b", "start": [ 605, 1 ], "end": [ 606, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.pos_of_neg_neg", "code": "protected theorem pos_of_neg_neg {a : Int} (h : -a < 0) : 0 < a", "start": [ 608, 1 ], "end": [ 609, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_of_neg_pos", "code": "protected theorem neg_of_neg_pos {a : Int} (h : 0 < -a) : a < 0", "start": [ 611, 1 ], "end": [ 613, 28 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_neg_of_le_neg", "code": "protected theorem le_neg_of_le_neg {a b : Int} (h : a ≤ -b) : b ≤ -a", "start": [ 615, 1 ], "end": [ 617, 25 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_le_of_neg_le", "code": "protected theorem neg_le_of_neg_le {a b : Int} (h : -a ≤ b) : -b ≤ a", "start": [ 619, 1 ], "end": [ 621, 25 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_neg_of_lt_neg", "code": "protected theorem lt_neg_of_lt_neg {a b : Int} (h : a < -b) : b < -a", "start": [ 623, 1 ], "end": [ 625, 25 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_lt_of_neg_lt", "code": "protected theorem neg_lt_of_neg_lt {a b : Int} (h : -a < b) : -b < a", "start": [ 627, 1 ], "end": [ 629, 25 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_nonpos_of_le", "code": "protected theorem sub_nonpos_of_le {a b : Int} (h : a ≤ b) : a - b ≤ 0", "start": [ 631, 1 ], "end": [ 633, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_sub_nonpos", "code": "protected theorem le_of_sub_nonpos {a b : Int} (h : a - b ≤ 0) : a ≤ b", "start": [ 635, 1 ], "end": [ 637, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_neg_of_lt", "code": "protected theorem sub_neg_of_lt {a b : Int} (h : a < b) : a - b < 0", "start": [ 639, 1 ], "end": [ 641, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_sub_neg", "code": "protected theorem lt_of_sub_neg {a b : Int} (h : a - b < 0) : a < b", "start": [ 643, 1 ], "end": [ 645, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_of_le_neg_add", "code": "protected theorem add_le_of_le_neg_add {a b c : Int} (h : b ≤ -a + c) : a + b ≤ c", "start": [ 647, 1 ], "end": [ 649, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_neg_add_of_add_le", "code": "protected theorem le_neg_add_of_add_le {a b c : Int} (h : a + b ≤ c) : b ≤ -a + c", "start": [ 651, 1 ], "end": [ 653, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_of_le_sub_left", "code": "protected theorem add_le_of_le_sub_left {a b c : Int} (h : b ≤ c - a) : a + b ≤ c", "start": [ 655, 1 ], "end": [ 657, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_sub_left_of_add_le", "code": "protected theorem le_sub_left_of_add_le {a b c : Int} (h : a + b ≤ c) : b ≤ c - a", "start": [ 659, 1 ], "end": [ 661, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_of_le_sub_right", "code": "protected theorem add_le_of_le_sub_right {a b c : Int} (h : a ≤ c - b) : a + b ≤ c", "start": [ 663, 1 ], "end": [ 665, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_sub_right_of_add_le", "code": "protected theorem le_sub_right_of_add_le {a b c : Int} (h : a + b ≤ c) : a ≤ c - b", "start": [ 667, 1 ], "end": [ 669, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_neg_add_le", "code": "protected theorem le_add_of_neg_add_le {a b c : Int} (h : -b + a ≤ c) : a ≤ b + c", "start": [ 671, 1 ], "end": [ 673, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_le_of_le_add", "code": "protected theorem neg_add_le_of_le_add {a b c : Int} (h : a ≤ b + c) : -b + a ≤ c", "start": [ 675, 1 ], "end": [ 677, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_sub_left_le", "code": "protected theorem le_add_of_sub_left_le {a b c : Int} (h : a - b ≤ c) : a ≤ b + c", "start": [ 679, 1 ], "end": [ 681, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_sub_right_le", "code": "protected theorem le_add_of_sub_right_le {a b c : Int} (h : a - c ≤ b) : a ≤ b + c", "start": [ 683, 1 ], "end": [ 685, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_right_le_of_le_add", "code": "protected theorem sub_right_le_of_le_add {a b c : Int} (h : a ≤ b + c) : a - c ≤ b", "start": [ 687, 1 ], "end": [ 689, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_neg_add_le_left", "code": "protected theorem le_add_of_neg_add_le_left {a b c : Int} (h : -b + a ≤ c) : a ≤ b + c", "start": [ 691, 1 ], "end": [ 693, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_le_left_of_le_add", "code": "protected theorem neg_add_le_left_of_le_add {a b c : Int} (h : a ≤ b + c) : -b + a ≤ c", "start": [ 695, 1 ], "end": [ 697, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_neg_add_le_right", "code": "protected theorem le_add_of_neg_add_le_right {a b c : Int} (h : -c + a ≤ b) : a ≤ b + c", "start": [ 699, 1 ], "end": [ 701, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_le_right_of_le_add", "code": "protected theorem neg_add_le_right_of_le_add {a b c : Int} (h : a ≤ b + c) : -c + a ≤ b", "start": [ 703, 1 ], "end": [ 705, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_neg_le_sub_left", "code": "protected theorem le_add_of_neg_le_sub_left {a b c : Int} (h : -a ≤ b - c) : c ≤ a + b", "start": [ 707, 1 ], "end": [ 708, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_le_sub_left_of_le_add", "code": "protected theorem neg_le_sub_left_of_le_add {a b c : Int} (h : c ≤ a + b) : -a ≤ b - c", "start": [ 710, 1 ], "end": [ 712, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_add_of_neg_le_sub_right", "code": "protected theorem le_add_of_neg_le_sub_right {a b c : Int} (h : -b ≤ a - c) : c ≤ a + b", "start": [ 714, 1 ], "end": [ 715, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_le_sub_right_of_le_add", "code": "protected theorem neg_le_sub_right_of_le_add {a b c : Int} (h : c ≤ a + b) : -b ≤ a - c", "start": [ 717, 1 ], "end": [ 718, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_le_of_sub_le", "code": "protected theorem sub_le_of_sub_le {a b c : Int} (h : a - b ≤ c) : a - c ≤ b", "start": [ 720, 1 ], "end": [ 721, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_le_sub_left", "code": "protected theorem sub_le_sub_left {a b : Int} (h : a ≤ b) (c : Int) : c - b ≤ c - a", "start": [ 723, 1 ], "end": [ 724, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_le_sub_right", "code": "protected theorem sub_le_sub_right {a b : Int} (h : a ≤ b) (c : Int) : a - c ≤ b - c", "start": [ 726, 1 ], "end": [ 727, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_le_sub", "code": "protected theorem sub_le_sub {a b c d : Int} (hab : a ≤ b) (hcd : c ≤ d) : a - d ≤ b - c", "start": [ 729, 1 ], "end": [ 730, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_of_lt_neg_add", "code": "protected theorem add_lt_of_lt_neg_add {a b c : Int} (h : b < -a + c) : a + b < c", "start": [ 732, 1 ], "end": [ 734, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_neg_add_of_add_lt", "code": "protected theorem lt_neg_add_of_add_lt {a b c : Int} (h : a + b < c) : b < -a + c", "start": [ 736, 1 ], "end": [ 738, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_of_lt_sub_left", "code": "protected theorem add_lt_of_lt_sub_left {a b c : Int} (h : b < c - a) : a + b < c", "start": [ 740, 1 ], "end": [ 742, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_sub_left_of_add_lt", "code": "protected theorem lt_sub_left_of_add_lt {a b c : Int} (h : a + b < c) : b < c - a", "start": [ 744, 1 ], "end": [ 746, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_of_lt_sub_right", "code": "protected theorem add_lt_of_lt_sub_right {a b c : Int} (h : a < c - b) : a + b < c", "start": [ 748, 1 ], "end": [ 750, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_sub_right_of_add_lt", "code": "protected theorem lt_sub_right_of_add_lt {a b c : Int} (h : a + b < c) : a < c - b", "start": [ 752, 1 ], "end": [ 754, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_neg_add_lt", "code": "protected theorem lt_add_of_neg_add_lt {a b c : Int} (h : -b + a < c) : a < b + c", "start": [ 756, 1 ], "end": [ 758, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_lt_of_lt_add", "code": "protected theorem neg_add_lt_of_lt_add {a b c : Int} (h : a < b + c) : -b + a < c", "start": [ 760, 1 ], "end": [ 762, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_sub_left_lt", "code": "protected theorem lt_add_of_sub_left_lt {a b c : Int} (h : a - b < c) : a < b + c", "start": [ 764, 1 ], "end": [ 766, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_left_lt_of_lt_add", "code": "protected theorem sub_left_lt_of_lt_add {a b c : Int} (h : a < b + c) : a - b < c", "start": [ 768, 1 ], "end": [ 770, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_sub_right_lt", "code": "protected theorem lt_add_of_sub_right_lt {a b c : Int} (h : a - c < b) : a < b + c", "start": [ 772, 1 ], "end": [ 774, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_right_lt_of_lt_add", "code": "protected theorem sub_right_lt_of_lt_add {a b c : Int} (h : a < b + c) : a - c < b", "start": [ 776, 1 ], "end": [ 778, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_neg_add_lt_left", "code": "protected theorem lt_add_of_neg_add_lt_left {a b c : Int} (h : -b + a < c) : a < b + c", "start": [ 780, 1 ], "end": [ 782, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_lt_left_of_lt_add", "code": "protected theorem neg_add_lt_left_of_lt_add {a b c : Int} (h : a < b + c) : -b + a < c", "start": [ 784, 1 ], "end": [ 786, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_neg_add_lt_right", "code": "protected theorem lt_add_of_neg_add_lt_right {a b c : Int} (h : -c + a < b) : a < b + c", "start": [ 788, 1 ], "end": [ 790, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_add_lt_right_of_lt_add", "code": "protected theorem neg_add_lt_right_of_lt_add {a b c : Int} (h : a < b + c) : -c + a < b", "start": [ 792, 1 ], "end": [ 794, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_neg_lt_sub_left", "code": "protected theorem lt_add_of_neg_lt_sub_left {a b c : Int} (h : -a < b - c) : c < a + b", "start": [ 796, 1 ], "end": [ 797, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_lt_sub_left_of_lt_add", "code": "protected theorem neg_lt_sub_left_of_lt_add {a b c : Int} (h : c < a + b) : -a < b - c", "start": [ 799, 1 ], "end": [ 801, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_of_neg_lt_sub_right", "code": "protected theorem lt_add_of_neg_lt_sub_right {a b c : Int} (h : -b < a - c) : c < a + b", "start": [ 803, 1 ], "end": [ 804, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_lt_sub_right_of_lt_add", "code": "protected theorem neg_lt_sub_right_of_lt_add {a b c : Int} (h : c < a + b) : -b < a - c", "start": [ 806, 1 ], "end": [ 807, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_lt_iff", "code": "protected theorem add_lt_iff (a b c : Int) : a + b < c ↔ a < -b + c", "start": [ 809, 1 ], "end": [ 810, 83 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_iff", "code": "protected theorem sub_lt_iff (a b c : Int) : a - b < c ↔ a < c + b", "start": [ 812, 1 ], "end": [ 813, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_of_sub_lt", "code": "protected theorem sub_lt_of_sub_lt {a b c : Int} (h : a - b < c) : a - c < b", "start": [ 815, 1 ], "end": [ 816, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_left", "code": "protected theorem sub_lt_sub_left {a b : Int} (h : a < b) (c : Int) : c - b < c - a", "start": [ 818, 1 ], "end": [ 819, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_right", "code": "protected theorem sub_lt_sub_right {a b : Int} (h : a < b) (c : Int) : a - c < b - c", "start": [ 821, 1 ], "end": [ 822, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub", "code": "protected theorem sub_lt_sub {a b c d : Int} (hab : a < b) (hcd : c < d) : a - d < b - c", "start": [ 824, 1 ], "end": [ 825, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_sub_lt_sub_left", "code": "protected theorem lt_of_sub_lt_sub_left {a b c : Int} (h : c - a < c - b) : b < a", "start": [ 827, 1 ], "end": [ 828, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_sub_lt_sub_right", "code": "protected theorem lt_of_sub_lt_sub_right {a b c : Int} (h : a - c < b - c) : a < b", "start": [ 830, 1 ], "end": [ 831, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_left_iff", "code": "@[simp] protected theorem sub_lt_sub_left_iff (a b c : Int) :\n c - a < c - b ↔ b < a", "start": [ 833, 1 ], "end": [ 835, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_right_iff", "code": "@[simp] protected theorem sub_lt_sub_right_iff (a b c : Int) :\n a - c < b - c ↔ a < b", "start": [ 837, 1 ], "end": [ 839, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_of_le_of_lt", "code": "protected theorem sub_lt_sub_of_le_of_lt {a b c d : Int}\n (hab : a ≤ b) (hcd : c < d) : a - d < b - c", "start": [ 841, 1 ], "end": [ 843, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_lt_sub_of_lt_of_le", "code": "protected theorem sub_lt_sub_of_lt_of_le {a b c d : Int}\n (hab : a < b) (hcd : c ≤ d) : a - d < b - c", "start": [ 845, 1 ], "end": [ 847, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_le_add_three", "code": "protected theorem add_le_add_three {a b c d e f : Int}\n (h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) : a + b + c ≤ d + e + f", "start": [ 849, 1 ], "end": [ 851, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.exists_eq_neg_ofNat", "code": "theorem exists_eq_neg_ofNat {a : Int} (H : a ≤ 0) : ∃ n : Nat, a = -(n : Int)", "start": [ 853, 1 ], "end": [ 855, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_add_one_le", "code": "theorem lt_of_add_one_le {a b : Int} (H : a + 1 ≤ b) : a < b", "start": [ 857, 1 ], "end": [ 857, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_add_one_of_le", "code": "theorem lt_add_one_of_le {a b : Int} (H : a ≤ b) : a < b + 1", "start": [ 859, 1 ], "end": [ 859, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_lt_add_one", "code": "theorem le_of_lt_add_one {a b : Int} (H : a < b + 1) : a ≤ b", "start": [ 861, 1 ], "end": [ 861, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_one_lt_of_le", "code": "theorem sub_one_lt_of_le {a b : Int} (H : a ≤ b) : a - 1 < b", "start": [ 863, 1 ], "end": [ 864, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_sub_one_lt", "code": "theorem le_of_sub_one_lt {a b : Int} (H : a - 1 < b) : a ≤ b", "start": [ 866, 1 ], "end": [ 867, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_sub_one_of_lt", "code": "theorem le_sub_one_of_lt {a b : Int} (H : a < b) : a ≤ b - 1", "start": [ 869, 1 ], "end": [ 869, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_le_sub_one", "code": "theorem lt_of_le_sub_one {a b : Int} (H : a ≤ b - 1) : a < b", "start": [ 871, 1 ], "end": [ 871, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul", "code": "protected theorem mul_lt_mul {a b c d : Int}\n (h₁ : a < c) (h₂ : b ≤ d) (h₃ : 0 < b) (h₄ : 0 ≤ c) : a * b < c * d", "start": [ 875, 1 ], "end": [ 877, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul'", "code": "protected theorem mul_lt_mul' {a b c d : Int}\n (h₁ : a ≤ c) (h₂ : b < d) (h₃ : 0 ≤ b) (h₄ : 0 < c) : a * b < c * d", "start": [ 879, 1 ], "end": [ 881, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_neg_of_pos_of_neg", "code": "protected theorem mul_neg_of_pos_of_neg {a b : Int} (ha : 0 < a) (hb : b < 0) : a * b < 0", "start": [ 883, 1 ], "end": [ 885, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_neg_of_neg_of_pos", "code": "protected theorem mul_neg_of_neg_of_pos {a b : Int} (ha : a < 0) (hb : 0 < b) : a * b < 0", "start": [ 887, 1 ], "end": [ 889, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_nonneg_of_nonpos_of_nonpos", "code": "protected theorem mul_nonneg_of_nonpos_of_nonpos {a b : Int}\n (ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a * b", "start": [ 891, 1 ], "end": [ 894, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul_of_neg_left", "code": "protected theorem mul_lt_mul_of_neg_left {a b c : Int} (h : b < a) (hc : c < 0) : c * a < c * b", "start": [ 896, 1 ], "end": [ 901, 28 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_mul_of_neg_right", "code": "protected theorem mul_lt_mul_of_neg_right {a b c : Int} (h : b < a) (hc : c < 0) : a * c < b * c", "start": [ 903, 1 ], "end": [ 908, 28 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_pos_of_neg_of_neg", "code": "protected theorem mul_pos_of_neg_of_neg {a b : Int} (ha : a < 0) (hb : b < 0) : 0 < a * b", "start": [ 910, 1 ], "end": [ 912, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_self_le_mul_self", "code": "protected theorem mul_self_le_mul_self {a b : Int} (h1 : 0 ≤ a) (h2 : a ≤ b) : a * a ≤ b * b", "start": [ 914, 1 ], "end": [ 915, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_self_lt_mul_self", "code": "protected theorem mul_self_lt_mul_self {a b : Int} (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b", "start": [ 917, 1 ], "end": [ 918, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_zero", "code": "@[simp] theorem sign_zero : sign 0 = 0", "start": [ 922, 1 ], "end": [ 922, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_one", "code": "@[simp] theorem sign_one : sign 1 = 1", "start": [ 923, 1 ], "end": [ 923, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_neg_one", "code": "theorem sign_neg_one : sign (-1) = -1", "start": [ 924, 1 ], "end": [ 924, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_of_add_one", "code": "@[simp] theorem sign_of_add_one (x : Nat) : Int.sign (x + 1) = 1", "start": [ 926, 1 ], "end": [ 926, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_negSucc", "code": "@[simp] theorem sign_negSucc (x : Nat) : Int.sign (Int.negSucc x) = -1", "start": [ 927, 1 ], "end": [ 927, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_sign", "code": "theorem natAbs_sign (z : Int) : z.sign.natAbs = if z = 0 then 0 else 1", "start": [ 929, 1 ], "end": [ 930, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_sign_of_nonzero", "code": "theorem natAbs_sign_of_nonzero {z : Int} (hz : z ≠ 0) : z.sign.natAbs = 1", "start": [ 932, 1 ], "end": [ 933, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_ofNat_of_nonzero", "code": "theorem sign_ofNat_of_nonzero {n : Nat} (hn : n ≠ 0) : Int.sign n = 1", "start": [ 935, 1 ], "end": [ 937, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_neg", "code": "@[simp] theorem sign_neg (z : Int) : Int.sign (-z) = -Int.sign z", "start": [ 939, 1 ], "end": [ 940, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_mul_natAbs", "code": "theorem sign_mul_natAbs : ∀ a : Int, sign a * natAbs a = a", "start": [ 942, 1 ], "end": [ 945, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_mul", "code": "@[simp] theorem sign_mul : ∀ a b, sign (a * b) = sign a * sign b", "start": [ 947, 1 ], "end": [ 949, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_one_of_pos", "code": "theorem sign_eq_one_of_pos {a : Int} (h : 0 < a) : sign a = 1", "start": [ 951, 1 ], "end": [ 953, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_neg_one_of_neg", "code": "theorem sign_eq_neg_one_of_neg {a : Int} (h : a < 0) : sign a = -1", "start": [ 955, 1 ], "end": [ 957, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_zero_of_sign_eq_zero", "code": "theorem eq_zero_of_sign_eq_zero : ∀ {a : Int}, sign a = 0 → a = 0", "start": [ 959, 1 ], "end": [ 960, 16 ], "kind": "commanddeclaration" }, { "full_name": "Int.pos_of_sign_eq_one", "code": "theorem pos_of_sign_eq_one : ∀ {a : Int}, sign a = 1 → 0 < a", "start": [ 962, 1 ], "end": [ 963, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_of_sign_eq_neg_one", "code": "theorem neg_of_sign_eq_neg_one : ∀ {a : Int}, sign a = -1 → a < 0", "start": [ 965, 1 ], "end": [ 968, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_one_iff_pos", "code": "theorem sign_eq_one_iff_pos (a : Int) : sign a = 1 ↔ 0 < a", "start": [ 970, 1 ], "end": [ 971, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_neg_one_iff_neg", "code": "theorem sign_eq_neg_one_iff_neg (a : Int) : sign a = -1 ↔ a < 0", "start": [ 973, 1 ], "end": [ 974, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_zero_iff_zero", "code": "@[simp] theorem sign_eq_zero_iff_zero (a : Int) : sign a = 0 ↔ a = 0", "start": [ 976, 1 ], "end": [ 977, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_sign", "code": "@[simp] theorem sign_sign : sign (sign x) = sign x", "start": [ 979, 1 ], "end": [ 983, 22 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_nonneg", "code": "@[simp] theorem sign_nonneg : 0 ≤ sign x ↔ 0 ≤ x", "start": [ 985, 1 ], "end": [ 991, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_sign", "code": "theorem mul_sign : ∀ i : Int, i * sign i = natAbs i", "start": [ 993, 1 ], "end": [ 996, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_ne_zero", "code": "theorem natAbs_ne_zero {a : Int} : a.natAbs ≠ 0 ↔ a ≠ 0", "start": [ 1000, 1 ], "end": [ 1000, 88 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_mul_self", "code": "theorem natAbs_mul_self : ∀ {a : Int}, ↑(natAbs a * natAbs a) = a * a", "start": [ 1002, 1 ], "end": [ 1004, 19 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_nat_or_neg", "code": "theorem eq_nat_or_neg (a : Int) : ∃ n : Nat, a = n ∨ a = -↑n", "start": [ 1006, 1 ], "end": [ 1006, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_mul_natAbs_eq", "code": "theorem natAbs_mul_natAbs_eq {a b : Int} {c : Nat}\n (h : a * b = (c : Int)) : a.natAbs * b.natAbs = c", "start": [ 1008, 1 ], "end": [ 1009, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_mul_self'", "code": "@[simp] theorem natAbs_mul_self' (a : Int) : (natAbs a * natAbs a : Int) = a * a", "start": [ 1011, 1 ], "end": [ 1012, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_eq_iff", "code": "theorem natAbs_eq_iff {a : Int} {n : Nat} : a.natAbs = n ↔ a = n ∨ a = -↑n", "start": [ 1014, 1 ], "end": [ 1015, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_add_le", "code": "theorem natAbs_add_le (a b : Int) : natAbs (a + b) ≤ natAbs a + natAbs b", "start": [ 1017, 1 ], "end": [ 1034, 27 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_sub_le", "code": "theorem natAbs_sub_le (a b : Int) : natAbs (a - b) ≤ natAbs a + natAbs b", "start": [ 1036, 1 ], "end": [ 1037, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_eq'", "code": "theorem negSucc_eq' (m : Nat) : -[m+1] = -m - 1", "start": [ 1039, 1 ], "end": [ 1039, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_lt_natAbs_of_nonneg_of_lt", "code": "theorem natAbs_lt_natAbs_of_nonneg_of_lt {a b : Int}\n (w₁ : 0 ≤ a) (w₂ : a < b) : a.natAbs < b.natAbs", "start": [ 1041, 1 ], "end": [ 1044, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_natAbs_iff_mul_eq_zero", "code": "theorem eq_natAbs_iff_mul_eq_zero : natAbs a = n ↔ (a - n) * (a + n) = 0", "start": [ 1046, 1 ], "end": [ 1047, 87 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Int/DivMod.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Int/Basic.lean" ]
[ { "full_name": "Int.div", "code": "@[extern \"lean_int_div\"]\ndef div : (@& Int) → (@& Int) → Int\n | ofNat m, ofNat n => ofNat (m / n)\n | ofNat m, -[n +1] => -ofNat (m / succ n)\n | -[m +1], ofNat n => -ofNat (succ m / n)\n | -[m +1], -[n +1] => ofNat (succ m / succ n)", "start": [ 23, 1 ], "end": [ 60, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod", "code": "@[extern \"lean_int_mod\"]\ndef mod : (@& Int) → (@& Int) → Int\n | ofNat m, ofNat n => ofNat (m % n)\n | ofNat m, -[n +1] => ofNat (m % succ n)\n | -[m +1], ofNat n => -ofNat (succ m % n)\n | -[m +1], -[n +1] => -ofNat (succ m % succ n)", "start": [ 62, 1 ], "end": [ 94, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv", "code": "def fdiv : Int → Int → Int\n | 0, _ => 0\n | ofNat m, ofNat n => ofNat (m / n)\n | ofNat (succ m), -[n+1] => -[m / succ n +1]\n | -[_+1], 0 => 0\n | -[m+1], ofNat (succ n) => -[m / succ n +1]\n | -[m+1], -[n+1] => ofNat (succ m / succ n)", "start": [ 100, 1 ], "end": [ 111, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod", "code": "def fmod : Int → Int → Int\n | 0, _ => 0\n | ofNat m, ofNat n => ofNat (m % n)\n | ofNat (succ m), -[n+1] => subNatNat (m % succ n) n\n | -[m+1], ofNat n => subNatNat n (succ (m % n))\n | -[m+1], -[n+1] => -ofNat (succ m % succ n)", "start": [ 113, 1 ], "end": [ 123, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv", "code": "@[extern \"lean_int_ediv\"]\ndef ediv : (@& Int) → (@& Int) → Int\n | ofNat m, ofNat n => ofNat (m / n)\n | ofNat m, -[n+1] => -ofNat (m / succ n)\n | -[_+1], 0 => 0\n | -[m+1], ofNat (succ n) => -[m / succ n +1]\n | -[m+1], -[n+1] => ofNat (succ (m / succ n))", "start": [ 129, 1 ], "end": [ 140, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod", "code": "@[extern \"lean_int_emod\"]\ndef emod : (@& Int) → (@& Int) → Int\n | ofNat m, n => ofNat (m % natAbs n)\n | -[m+1], n => subNatNat (natAbs n) (succ (m % natAbs n))", "start": [ 142, 1 ], "end": [ 150, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_ediv", "code": "@[simp, norm_cast] theorem ofNat_ediv (m n : Nat) : (↑(m / n) : Int) = ↑m / ↑n", "start": [ 161, 1 ], "end": [ 161, 86 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_div", "code": "theorem ofNat_div (m n : Nat) : ↑(m / n) = div ↑m ↑n", "start": [ 163, 1 ], "end": [ 163, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_fdiv", "code": "theorem ofNat_fdiv : ∀ m n : Nat, ↑(m / n) = fdiv ↑m ↑n", "start": [ 165, 1 ], "end": [ 167, 21 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod", "code": "def bmod (x : Int) (m : Nat) : Int :=\n let r := x % m\n if r < (m + 1) / 2 then\n r\n else\n r - m", "start": [ 179, 1 ], "end": [ 192, 10 ], "kind": "commanddeclaration" }, { "full_name": "Int.bdiv", "code": "def bdiv (x : Int) (m : Nat) : Int :=\n if m = 0 then\n 0\n else\n let q := x / m\n let r := x % m\n if r < (m + 1) / 2 then\n q\n else\n q + 1", "start": [ 194, 1 ], "end": [ 207, 12 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/Lawful/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/SimpLemmas.lean", ".lake/packages/lean4/src/lean/Init/Meta.lean" ]
[ { "full_name": "monadLift_self", "code": "@[simp] theorem monadLift_self {m : Type u → Type v} (x : m α) : monadLift x = x", "start": [ 12, 1 ], "end": [ 13, 6 ], "kind": "commanddeclaration" }, { "full_name": "LawfulFunctor", "code": "class LawfulFunctor (f : Type u → Type v) [Functor f] : Prop where\n map_const : (Functor.mapConst : α → f β → f α) = Functor.map ∘ const β\n id_map (x : f α) : id <$> x = x\n comp_map (g : α → β) (h : β → γ) (x : f α) : (h ∘ g) <$> x = h <$> g <$> x", "start": [ 15, 1 ], "end": [ 27, 77 ], "kind": "commanddeclaration" }, { "full_name": "id_map'", "code": "@[simp] theorem id_map' [Functor m] [LawfulFunctor m] (x : m α) : (fun a => a) <$> x = x", "start": [ 33, 1 ], "end": [ 34, 11 ], "kind": "commanddeclaration" }, { "full_name": "LawfulApplicative", "code": "class LawfulApplicative (f : Type u → Type v) [Applicative f] extends LawfulFunctor f : Prop where\n seqLeft_eq (x : f α) (y : f β) : x <* y = const β <$> x <*> y\n seqRight_eq (x : f α) (y : f β) : x *> y = const α id <$> x <*> y\n pure_seq (g : α → β) (x : f α) : pure g <*> x = g <$> x\n map_pure (g : α → β) (x : α) : g <$> (pure x : f α) = pure (g x)\n seq_pure {α β : Type u} (g : f (α → β)) (x : α) : g <*> pure x = (fun h => h x) <$> g\n seq_assoc {α β γ : Type u} (x : f α) (g : f (α → β)) (h : f (β → γ)) : h <*> (g <*> x) = ((@comp α β γ) <$> h) <*> g <*> x\n comp_map g h x := (by\n repeat rw [← pure_seq]\n simp [seq_assoc, map_pure, seq_pure])", "start": [ 36, 1 ], "end": [ 55, 42 ], "kind": "commanddeclaration" }, { "full_name": "pure_id_seq", "code": "@[simp] theorem pure_id_seq [Applicative f] [LawfulApplicative f] (x : f α) : pure id <*> x = x", "start": [ 61, 1 ], "end": [ 62, 18 ], "kind": "commanddeclaration" }, { "full_name": "LawfulMonad", "code": "class LawfulMonad (m : Type u → Type v) [Monad m] extends LawfulApplicative m : Prop where\n bind_pure_comp (f : α → β) (x : m α) : x >>= (fun a => pure (f a)) = f <$> x\n bind_map {α β : Type u} (f : m (α → β)) (x : m α) : f >>= (. <$> x) = f <*> x\n pure_bind (x : α) (f : α → m β) : pure x >>= f = f x\n bind_assoc (x : m α) (f : α → m β) (g : β → m γ) : x >>= f >>= g = x >>= fun x => f x >>= g\n map_pure g x := (by rw [← bind_pure_comp, pure_bind])\n seq_pure g x := (by rw [← bind_map]; simp [map_pure, bind_pure_comp])\n seq_assoc x g h := (by simp [← bind_pure_comp, ← bind_map, bind_assoc, pure_bind])", "start": [ 64, 1 ], "end": [ 83, 85 ], "kind": "commanddeclaration" }, { "full_name": "bind_pure", "code": "@[simp] theorem bind_pure [Monad m] [LawfulMonad m] (x : m α) : x >>= pure = x", "start": [ 88, 1 ], "end": [ 90, 30 ], "kind": "commanddeclaration" }, { "full_name": "map_eq_pure_bind", "code": "theorem map_eq_pure_bind [Monad m] [LawfulMonad m] (f : α → β) (x : m α) : f <$> x = x >>= fun a => pure (f a)", "start": [ 92, 1 ], "end": [ 93, 24 ], "kind": "commanddeclaration" }, { "full_name": "seq_eq_bind_map", "code": "theorem seq_eq_bind_map {α β : Type u} [Monad m] [LawfulMonad m] (f : m (α → β)) (x : m α) : f <*> x = f >>= (. <$> x)", "start": [ 95, 1 ], "end": [ 96, 18 ], "kind": "commanddeclaration" }, { "full_name": "bind_congr", "code": "theorem bind_congr [Bind m] {x : m α} {f g : α → m β} (h : ∀ a, f a = g a) : x >>= f = x >>= g", "start": [ 98, 1 ], "end": [ 99, 18 ], "kind": "commanddeclaration" }, { "full_name": "bind_pure_unit", "code": "@[simp] theorem bind_pure_unit [Monad m] [LawfulMonad m] {x : m PUnit} : (x >>= fun _ => pure ⟨⟩) = x", "start": [ 101, 1 ], "end": [ 102, 17 ], "kind": "commanddeclaration" }, { "full_name": "map_congr", "code": "theorem map_congr [Functor m] {x : m α} {f g : α → β} (h : ∀ a, f a = g a) : (f <$> x : m β) = g <$> x", "start": [ 104, 1 ], "end": [ 105, 18 ], "kind": "commanddeclaration" }, { "full_name": "seq_eq_bind", "code": "theorem seq_eq_bind {α β : Type u} [Monad m] [LawfulMonad m] (mf : m (α → β)) (x : m α) : mf <*> x = mf >>= fun f => f <$> x", "start": [ 107, 1 ], "end": [ 108, 16 ], "kind": "commanddeclaration" }, { "full_name": "seqRight_eq_bind", "code": "theorem seqRight_eq_bind [Monad m] [LawfulMonad m] (x : m α) (y : m β) : x *> y = x >>= fun _ => y", "start": [ 110, 1 ], "end": [ 112, 50 ], "kind": "commanddeclaration" }, { "full_name": "seqLeft_eq_bind", "code": "theorem seqLeft_eq_bind [Monad m] [LawfulMonad m] (x : m α) (y : m β) : x <* y = x >>= fun a => y >>= fun _ => pure a", "start": [ 114, 1 ], "end": [ 115, 60 ], "kind": "commanddeclaration" }, { "full_name": "LawfulMonad.mk'", "code": "theorem LawfulMonad.mk' (m : Type u → Type v) [Monad m]\n (id_map : ∀ {α} (x : m α), id <$> x = x)\n (pure_bind : ∀ {α β} (x : α) (f : α → m β), pure x >>= f = f x)\n (bind_assoc : ∀ {α β γ} (x : m α) (f : α → m β) (g : β → m γ),\n x >>= f >>= g = x >>= fun x => f x >>= g)\n (map_const : ∀ {α β} (x : α) (y : m β),\n Functor.mapConst x y = Function.const β x <$> y := by intros; rfl)\n (seqLeft_eq : ∀ {α β} (x : m α) (y : m β),\n x <* y = (x >>= fun a => y >>= fun _ => pure a) := by intros; rfl)\n (seqRight_eq : ∀ {α β} (x : m α) (y : m β), x *> y = (x >>= fun _ => y) := by intros; rfl)\n (bind_pure_comp : ∀ {α β} (f : α → β) (x : m α),\n x >>= (fun y => pure (f y)) = f <$> x := by intros; rfl)\n (bind_map : ∀ {α β} (f : m (α → β)) (x : m α), f >>= (. <$> x) = f <*> x := by intros; rfl)\n : LawfulMonad m", "start": [ 117, 1 ], "end": [ 145, 93 ], "kind": "commanddeclaration" }, { "full_name": "Id.map_eq", "code": "@[simp] theorem map_eq (x : Id α) (f : α → β) : f <$> x = f x", "start": [ 151, 1 ], "end": [ 151, 69 ], "kind": "commanddeclaration" }, { "full_name": "Id.bind_eq", "code": "@[simp] theorem bind_eq (x : Id α) (f : α → id β) : x >>= f = f x", "start": [ 152, 1 ], "end": [ 152, 73 ], "kind": "commanddeclaration" }, { "full_name": "Id.pure_eq", "code": "@[simp] theorem pure_eq (a : α) : (pure a : Id α) = a", "start": [ 153, 1 ], "end": [ 153, 61 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Hints.lean
[ ".lake/packages/lean4/src/lean/Init/NotationExtra.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Bool.lean
[ ".lake/packages/lean4/src/lean/Init/BinderPredicates.lean" ]
[ { "full_name": "xor", "code": "abbrev xor : Bool → Bool → Bool := bne", "start": [ 9, 1 ], "end": [ 10, 39 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not", "code": "@[inherit_doc not] protected abbrev not := not", "start": [ 15, 1 ], "end": [ 15, 47 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or", "code": "@[inherit_doc or] protected abbrev or := or", "start": [ 16, 1 ], "end": [ 16, 46 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and", "code": "@[inherit_doc and] protected abbrev and := and", "start": [ 17, 1 ], "end": [ 17, 47 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor", "code": "@[inherit_doc xor] protected abbrev xor := xor", "start": [ 18, 1 ], "end": [ 18, 47 ], "kind": "commanddeclaration" }, { "full_name": "Bool.default_bool", "code": "@[simp] theorem default_bool : default = false", "start": [ 32, 1 ], "end": [ 32, 54 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_ne_true", "code": "theorem false_ne_true : false ≠ true", "start": [ 43, 1 ], "end": [ 43, 57 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_or_eq_true", "code": "theorem eq_false_or_eq_true : (b : Bool) → b = true ∨ b = false", "start": [ 45, 1 ], "end": [ 45, 77 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_iff", "code": "theorem eq_false_iff : {b : Bool} → b = false ↔ b ≠ true", "start": [ 47, 1 ], "end": [ 47, 70 ], "kind": "commanddeclaration" }, { "full_name": "Bool.ne_false_iff", "code": "theorem ne_false_iff : {b : Bool} → b ≠ false ↔ b = true", "start": [ 49, 1 ], "end": [ 49, 70 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_iff_iff", "code": "theorem eq_iff_iff {a b : Bool} : a = b ↔ (a ↔ b)", "start": [ 51, 1 ], "end": [ 51, 73 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_eq_true", "code": "@[simp] theorem decide_eq_true {b : Bool} [Decidable (b = true)] : decide (b = true) = b", "start": [ 53, 1 ], "end": [ 53, 116 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_eq_false", "code": "@[simp] theorem decide_eq_false {b : Bool} [Decidable (b = false)] : decide (b = false) = !b", "start": [ 54, 1 ], "end": [ 54, 116 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_true_eq", "code": "@[simp] theorem decide_true_eq {b : Bool} [Decidable (true = b)] : decide (true = b) = b", "start": [ 55, 1 ], "end": [ 55, 116 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_false_eq", "code": "@[simp] theorem decide_false_eq {b : Bool} [Decidable (false = b)] : decide (false = b) = !b", "start": [ 56, 1 ], "end": [ 56, 116 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_self_left", "code": "@[simp] theorem and_self_left : ∀(a b : Bool), (a && (a && b)) = (a && b)", "start": [ 60, 1 ], "end": [ 60, 88 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_self_right", "code": "@[simp] theorem and_self_right : ∀(a b : Bool), ((a && b) && b) = (a && b)", "start": [ 61, 1 ], "end": [ 61, 88 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_and_self", "code": "@[simp] theorem not_and_self : ∀ (x : Bool), (!x && x) = false", "start": [ 63, 1 ], "end": [ 63, 76 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_not_self", "code": "@[simp] theorem and_not_self : ∀ (x : Bool), (x && !x) = false", "start": [ 64, 1 ], "end": [ 64, 76 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_true_and_eq_false_self", "code": "@[simp] theorem eq_true_and_eq_false_self : ∀(b : Bool), (b = true ∧ b = false) ↔ False", "start": [ 73, 1 ], "end": [ 73, 101 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_and_eq_true_self", "code": "@[simp] theorem eq_false_and_eq_true_self : ∀(b : Bool), (b = false ∧ b = true) ↔ False", "start": [ 74, 1 ], "end": [ 74, 101 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_comm", "code": "theorem and_comm : ∀ (x y : Bool), (x && y) = (y && x)", "start": [ 76, 1 ], "end": [ 76, 68 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_left_comm", "code": "theorem and_left_comm : ∀ (x y z : Bool), (x && (y && z)) = (y && (x && z))", "start": [ 79, 1 ], "end": [ 79, 89 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_right_comm", "code": "theorem and_right_comm : ∀ (x y z : Bool), ((x && y) && z) = ((x && z) && y)", "start": [ 80, 1 ], "end": [ 80, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_iff_left_iff_imp", "code": "@[simp] theorem and_iff_left_iff_imp : ∀(a b : Bool), ((a && b) = a) ↔ (a → b)", "start": [ 89, 1 ], "end": [ 89, 93 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_iff_right_iff_imp", "code": "@[simp] theorem and_iff_right_iff_imp : ∀(a b : Bool), ((a && b) = b) ↔ (b → a)", "start": [ 90, 1 ], "end": [ 90, 93 ], "kind": "commanddeclaration" }, { "full_name": "Bool.iff_self_and", "code": "@[simp] theorem iff_self_and : ∀(a b : Bool), (a = (a && b)) ↔ (a → b)", "start": [ 91, 1 ], "end": [ 91, 84 ], "kind": "commanddeclaration" }, { "full_name": "Bool.iff_and_self", "code": "@[simp] theorem iff_and_self : ∀(a b : Bool), (b = (a && b)) ↔ (b → a)", "start": [ 92, 1 ], "end": [ 92, 84 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_self_left", "code": "@[simp] theorem or_self_left : ∀(a b : Bool), (a || (a || b)) = (a || b)", "start": [ 96, 1 ], "end": [ 96, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_self_right", "code": "@[simp] theorem or_self_right : ∀(a b : Bool), ((a || b) || b) = (a || b)", "start": [ 97, 1 ], "end": [ 97, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_or_self", "code": "@[simp] theorem not_or_self : ∀ (x : Bool), (!x || x) = true", "start": [ 99, 1 ], "end": [ 99, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_not_self", "code": "@[simp] theorem or_not_self : ∀ (x : Bool), (x || !x) = true", "start": [ 100, 1 ], "end": [ 100, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_true_or_eq_false_self", "code": "@[simp] theorem eq_true_or_eq_false_self : ∀(b : Bool), (b = true ∨ b = false) ↔ True", "start": [ 108, 1 ], "end": [ 108, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_or_eq_true_self", "code": "@[simp] theorem eq_false_or_eq_true_self : ∀(b : Bool), (b = false ∨ b = true) ↔ True", "start": [ 109, 1 ], "end": [ 109, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_iff_left_iff_imp", "code": "@[simp] theorem or_iff_left_iff_imp : ∀(a b : Bool), ((a || b) = a) ↔ (b → a)", "start": [ 118, 1 ], "end": [ 118, 92 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_iff_right_iff_imp", "code": "@[simp] theorem or_iff_right_iff_imp : ∀(a b : Bool), ((a || b) = b) ↔ (a → b)", "start": [ 119, 1 ], "end": [ 119, 92 ], "kind": "commanddeclaration" }, { "full_name": "Bool.iff_self_or", "code": "@[simp] theorem iff_self_or : ∀(a b : Bool), (a = (a || b)) ↔ (b → a)", "start": [ 120, 1 ], "end": [ 120, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.iff_or_self", "code": "@[simp] theorem iff_or_self : ∀(a b : Bool), (b = (a || b)) ↔ (a → b)", "start": [ 121, 1 ], "end": [ 121, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_comm", "code": "theorem or_comm : ∀ (x y : Bool), (x || y) = (y || x)", "start": [ 123, 1 ], "end": [ 123, 67 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_left_comm", "code": "theorem or_left_comm : ∀ (x y z : Bool), (x || (y || z)) = (y || (x || z))", "start": [ 126, 1 ], "end": [ 126, 88 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_right_comm", "code": "theorem or_right_comm : ∀ (x y z : Bool), ((x || y) || z) = ((x || z) || y)", "start": [ 127, 1 ], "end": [ 127, 89 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_distrib_left", "code": "theorem and_or_distrib_left : ∀ (x y z : Bool), (x && (y || z)) = (x && y || x && z)", "start": [ 131, 1 ], "end": [ 131, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_distrib_right", "code": "theorem and_or_distrib_right : ∀ (x y z : Bool), ((x || y) && z) = (x && z || y && z)", "start": [ 132, 1 ], "end": [ 132, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_and_distrib_left", "code": "theorem or_and_distrib_left : ∀ (x y z : Bool), (x || y && z) = ((x || y) && (x || z))", "start": [ 134, 1 ], "end": [ 134, 101 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_and_distrib_right", "code": "theorem or_and_distrib_right : ∀ (x y z : Bool), (x && y || z) = ((x || z) && (y || z))", "start": [ 135, 1 ], "end": [ 135, 101 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_xor_distrib_left", "code": "theorem and_xor_distrib_left : ∀ (x y z : Bool), (x && xor y z) = xor (x && y) (x && z)", "start": [ 137, 1 ], "end": [ 137, 101 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_xor_distrib_right", "code": "theorem and_xor_distrib_right : ∀ (x y z : Bool), (xor x y && z) = xor (x && z) (y && z)", "start": [ 138, 1 ], "end": [ 138, 102 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_and", "code": "@[simp] theorem not_and : ∀ (x y : Bool), (!(x && y)) = (!x || !y)", "start": [ 140, 1 ], "end": [ 141, 80 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_or", "code": "@[simp] theorem not_or : ∀ (x y : Bool), (!(x || y)) = (!x && !y)", "start": [ 143, 1 ], "end": [ 144, 79 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_eq_true_iff", "code": "theorem and_eq_true_iff (x y : Bool) : (x && y) = true ↔ x = true ∧ y = true", "start": [ 146, 1 ], "end": [ 147, 30 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_eq_false_iff", "code": "theorem and_eq_false_iff : ∀ (x y : Bool), (x && y) = false ↔ x = false ∨ y = false", "start": [ 149, 1 ], "end": [ 149, 97 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_eq_false_imp", "code": "@[simp] theorem and_eq_false_imp : ∀ (x y : Bool), (x && y) = false ↔ (x = true → y = false)", "start": [ 164, 1 ], "end": [ 164, 106 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_eq_true_iff", "code": "@[simp] theorem or_eq_true_iff : ∀ (x y : Bool), (x || y) = true ↔ x = true ∨ y = true", "start": [ 166, 1 ], "end": [ 166, 100 ], "kind": "commanddeclaration" }, { "full_name": "Bool.or_eq_false_iff", "code": "@[simp] theorem or_eq_false_iff : ∀ (x y : Bool), (x || y) = false ↔ x = false ∧ y = false", "start": [ 168, 1 ], "end": [ 168, 104 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_eq_true", "code": "@[simp] theorem false_eq_true : (false = true) = False", "start": [ 172, 1 ], "end": [ 176, 66 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_eq_false", "code": "@[simp] theorem true_eq_false : (true = false) = False", "start": [ 177, 1 ], "end": [ 177, 66 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_eq", "code": "@[simp low] theorem false_eq (b : Bool) : (false = b) = (b = false)", "start": [ 182, 1 ], "end": [ 183, 19 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_eq", "code": "@[simp low] theorem true_eq (b : Bool) : (true = b) = (b = true)", "start": [ 185, 1 ], "end": [ 186, 19 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_beq", "code": "@[simp] theorem true_beq : ∀b, (true == b) = b", "start": [ 188, 1 ], "end": [ 188, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_beq", "code": "@[simp] theorem false_beq : ∀b, (false == b) = !b", "start": [ 189, 1 ], "end": [ 189, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_true", "code": "@[simp] theorem beq_true : ∀b, (b == true) = b", "start": [ 190, 1 ], "end": [ 190, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_false", "code": "@[simp] theorem beq_false : ∀b, (b == false) = !b", "start": [ 194, 1 ], "end": [ 194, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_bne", "code": "@[simp] theorem true_bne : ∀(b : Bool), (true != b) = !b", "start": [ 196, 1 ], "end": [ 196, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_bne", "code": "@[simp] theorem false_bne : ∀(b : Bool), (false != b) = b", "start": [ 197, 1 ], "end": [ 197, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_true", "code": "@[simp] theorem bne_true : ∀(b : Bool), (b != true) = !b", "start": [ 198, 1 ], "end": [ 198, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_false", "code": "@[simp] theorem bne_false : ∀(b : Bool), (b != false) = b", "start": [ 199, 1 ], "end": [ 199, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_beq_self", "code": "@[simp] theorem not_beq_self : ∀ (x : Bool), ((!x) == x) = false", "start": [ 204, 1 ], "end": [ 204, 78 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_not_self", "code": "@[simp] theorem beq_not_self : ∀ (x : Bool), (x == !x) = false", "start": [ 205, 1 ], "end": [ 205, 78 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_bne_self", "code": "@[simp] theorem not_bne_self : ∀ (x : Bool), ((!x) != x) = true", "start": [ 207, 1 ], "end": [ 207, 77 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_not_self", "code": "@[simp] theorem bne_not_self : ∀ (x : Bool), (x != !x) = true", "start": [ 208, 1 ], "end": [ 208, 77 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_self", "code": "@[simp] theorem not_eq_self : ∀(b : Bool), ((!b) = b) ↔ False", "start": [ 214, 1 ], "end": [ 214, 75 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_not_self", "code": "@[simp] theorem eq_not_self : ∀(b : Bool), (b = (!b)) ↔ False", "start": [ 215, 1 ], "end": [ 215, 75 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_self_left", "code": "@[simp] theorem beq_self_left : ∀(a b : Bool), (a == (a == b)) = b", "start": [ 217, 1 ], "end": [ 217, 81 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_self_right", "code": "@[simp] theorem beq_self_right : ∀(a b : Bool), ((a == b) == b) = a", "start": [ 218, 1 ], "end": [ 218, 81 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_self_left", "code": "@[simp] theorem bne_self_left : ∀(a b : Bool), (a != (a != b)) = b", "start": [ 219, 1 ], "end": [ 219, 81 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_self_right", "code": "@[simp] theorem bne_self_right : ∀(a b : Bool), ((a != b) != b) = a", "start": [ 220, 1 ], "end": [ 220, 81 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_bne_not", "code": "@[simp] theorem not_bne_not : ∀ (x y : Bool), ((!x) != (!y)) = (x != y)", "start": [ 222, 1 ], "end": [ 222, 85 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_assoc", "code": "@[simp] theorem bne_assoc : ∀ (x y z : Bool), ((x != y) != z) = (x != (y != z))", "start": [ 224, 1 ], "end": [ 224, 93 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_left_inj", "code": "@[simp] theorem bne_left_inj : ∀ (x y z : Bool), (x != y) = (x != z) ↔ y = z", "start": [ 227, 1 ], "end": [ 227, 91 ], "kind": "commanddeclaration" }, { "full_name": "Bool.bne_right_inj", "code": "@[simp] theorem bne_right_inj : ∀ (x y z : Bool), (x != z) = (y != z) ↔ x = y", "start": [ 228, 1 ], "end": [ 228, 91 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_not_of_ne", "code": "theorem eq_not_of_ne : ∀ {x y : Bool}, x ≠ y → x = !y", "start": [ 230, 1 ], "end": [ 230, 67 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_eq_decide_eq", "code": "theorem beq_eq_decide_eq [BEq α] [LawfulBEq α] [DecidableEq α] (a b : α) :\n (a == b) = decide (a = b)", "start": [ 234, 1 ], "end": [ 238, 23 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_eq_not", "code": "@[simp] theorem not_eq_not : ∀ {a b : Bool}, ¬a = !b ↔ a = b", "start": [ 240, 1 ], "end": [ 240, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_not_eq", "code": "@[simp] theorem not_not_eq : ∀ {a b : Bool}, ¬(!a) = b ↔ a = b", "start": [ 242, 1 ], "end": [ 242, 76 ], "kind": "commanddeclaration" }, { "full_name": "Bool.coe_iff_coe", "code": "@[simp] theorem coe_iff_coe : ∀(a b : Bool), (a ↔ b) ↔ a = b", "start": [ 244, 1 ], "end": [ 244, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.coe_true_iff_false", "code": "@[simp] theorem coe_true_iff_false : ∀(a b : Bool), (a ↔ b = false) ↔ a = (!b)", "start": [ 246, 1 ], "end": [ 246, 93 ], "kind": "commanddeclaration" }, { "full_name": "Bool.coe_false_iff_true", "code": "@[simp] theorem coe_false_iff_true : ∀(a b : Bool), (a = false ↔ b) ↔ (!a) = b", "start": [ 247, 1 ], "end": [ 247, 93 ], "kind": "commanddeclaration" }, { "full_name": "Bool.coe_false_iff_false", "code": "@[simp] theorem coe_false_iff_false : ∀(a b : Bool), (a = false ↔ b = false) ↔ (!a) = (!b)", "start": [ 248, 1 ], "end": [ 248, 104 ], "kind": "commanddeclaration" }, { "full_name": "Bool.beq_comm", "code": "theorem beq_comm {α} [BEq α] [LawfulBEq α] {a b : α} : (a == b) = (b == a)", "start": [ 252, 1 ], "end": [ 253, 65 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_xor", "code": "theorem false_xor : ∀ (x : Bool), xor false x = x", "start": [ 257, 1 ], "end": [ 257, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_false", "code": "theorem xor_false : ∀ (x : Bool), xor x false = x", "start": [ 259, 1 ], "end": [ 259, 63 ], "kind": "commanddeclaration" }, { "full_name": "Bool.true_xor", "code": "theorem true_xor : ∀ (x : Bool), xor true x = !x", "start": [ 261, 1 ], "end": [ 261, 61 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_true", "code": "theorem xor_true : ∀ (x : Bool), xor x true = !x", "start": [ 263, 1 ], "end": [ 263, 61 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_xor_self", "code": "theorem not_xor_self : ∀ (x : Bool), xor (!x) x = true", "start": [ 265, 1 ], "end": [ 265, 71 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_not_self", "code": "theorem xor_not_self : ∀ (x : Bool), xor x (!x) = true", "start": [ 267, 1 ], "end": [ 267, 71 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_xor", "code": "theorem not_xor : ∀ (x y : Bool), xor (!x) y = !(xor x y)", "start": [ 269, 1 ], "end": [ 269, 71 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_not", "code": "theorem xor_not : ∀ (x y : Bool), xor x (!y) = !(xor x y)", "start": [ 271, 1 ], "end": [ 271, 71 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_xor_not", "code": "theorem not_xor_not : ∀ (x y : Bool), xor (!x) (!y) = (xor x y)", "start": [ 273, 1 ], "end": [ 273, 79 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_self", "code": "theorem xor_self : ∀ (x : Bool), xor x x = false", "start": [ 275, 1 ], "end": [ 275, 62 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_comm", "code": "theorem xor_comm : ∀ (x y : Bool), xor x y = xor y x", "start": [ 277, 1 ], "end": [ 277, 66 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_left_comm", "code": "theorem xor_left_comm : ∀ (x y z : Bool), xor x (xor y z) = xor y (xor x z)", "start": [ 279, 1 ], "end": [ 279, 89 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_right_comm", "code": "theorem xor_right_comm : ∀ (x y z : Bool), xor (xor x y) z = xor (xor x z) y", "start": [ 281, 1 ], "end": [ 281, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_assoc", "code": "theorem xor_assoc : ∀ (x y z : Bool), xor (xor x y) z = xor x (xor y z)", "start": [ 283, 1 ], "end": [ 283, 85 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_left_inj", "code": "theorem xor_left_inj : ∀ (x y z : Bool), xor x y = xor x z ↔ y = z", "start": [ 285, 1 ], "end": [ 285, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.xor_right_inj", "code": "theorem xor_right_inj : ∀ (x y z : Bool), xor x z = xor y z ↔ x = y", "start": [ 287, 1 ], "end": [ 287, 85 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_true", "code": "@[simp] protected theorem le_true : ∀ (x : Bool), x ≤ true", "start": [ 291, 1 ], "end": [ 291, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.false_le", "code": "@[simp] protected theorem false_le : ∀ (x : Bool), false ≤ x", "start": [ 293, 1 ], "end": [ 293, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_refl", "code": "@[simp] protected theorem le_refl : ∀ (x : Bool), x ≤ x", "start": [ 295, 1 ], "end": [ 295, 69 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_irrefl", "code": "@[simp] protected theorem lt_irrefl : ∀ (x : Bool), ¬ x < x", "start": [ 297, 1 ], "end": [ 297, 73 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_trans", "code": "protected theorem le_trans : ∀ {x y z : Bool}, x ≤ y → y ≤ z → x ≤ z", "start": [ 299, 1 ], "end": [ 299, 82 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_antisymm", "code": "protected theorem le_antisymm : ∀ {x y : Bool}, x ≤ y → y ≤ x → x = y", "start": [ 301, 1 ], "end": [ 301, 83 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_total", "code": "protected theorem le_total : ∀ (x y : Bool), x ≤ y ∨ y ≤ x", "start": [ 303, 1 ], "end": [ 303, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_asymm", "code": "protected theorem lt_asymm : ∀ {x y : Bool}, x < y → ¬ y < x", "start": [ 305, 1 ], "end": [ 305, 74 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_trans", "code": "protected theorem lt_trans : ∀ {x y z : Bool}, x < y → y < z → x < z", "start": [ 307, 1 ], "end": [ 307, 82 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_iff_le_not_le", "code": "protected theorem lt_iff_le_not_le : ∀ {x y : Bool}, x < y ↔ x ≤ y ∧ ¬ y ≤ x", "start": [ 309, 1 ], "end": [ 309, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_of_le_of_lt", "code": "protected theorem lt_of_le_of_lt : ∀ {x y z : Bool}, x ≤ y → y < z → x < z", "start": [ 311, 1 ], "end": [ 311, 88 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_of_lt_of_le", "code": "protected theorem lt_of_lt_of_le : ∀ {x y z : Bool}, x < y → y ≤ z → x < z", "start": [ 313, 1 ], "end": [ 313, 88 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_of_lt", "code": "protected theorem le_of_lt : ∀ {x y : Bool}, x < y → x ≤ y", "start": [ 315, 1 ], "end": [ 315, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_of_eq", "code": "protected theorem le_of_eq : ∀ {x y : Bool}, x = y → x ≤ y", "start": [ 317, 1 ], "end": [ 317, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.ne_of_lt", "code": "protected theorem ne_of_lt : ∀ {x y : Bool}, x < y → x ≠ y", "start": [ 319, 1 ], "end": [ 319, 72 ], "kind": "commanddeclaration" }, { "full_name": "Bool.lt_of_le_of_ne", "code": "protected theorem lt_of_le_of_ne : ∀ {x y : Bool}, x ≤ y → x ≠ y → x < y", "start": [ 321, 1 ], "end": [ 321, 86 ], "kind": "commanddeclaration" }, { "full_name": "Bool.le_of_lt_or_eq", "code": "protected theorem le_of_lt_or_eq : ∀ {x y : Bool}, x < y ∨ x = y → x ≤ y", "start": [ 323, 1 ], "end": [ 323, 86 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_true_of_true_le", "code": "protected theorem eq_true_of_true_le : ∀ {x : Bool}, true ≤ x → x = true", "start": [ 325, 1 ], "end": [ 325, 86 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_of_le_false", "code": "protected theorem eq_false_of_le_false : ∀ {x : Bool}, x ≤ false → x = false", "start": [ 327, 1 ], "end": [ 327, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.max_eq_or", "code": "@[simp] protected theorem max_eq_or : max = or", "start": [ 331, 1 ], "end": [ 331, 54 ], "kind": "commanddeclaration" }, { "full_name": "Bool.min_eq_and", "code": "@[simp] protected theorem min_eq_and : min = and", "start": [ 333, 1 ], "end": [ 333, 56 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_inj", "code": "theorem not_inj : ∀ {x y : Bool}, (!x) = (!y) → x = y", "start": [ 337, 1 ], "end": [ 337, 67 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_inj_iff", "code": "theorem not_inj_iff : ∀ {x y : Bool}, (!x) = (!y) ↔ x = y", "start": [ 339, 1 ], "end": [ 339, 71 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_inj_right", "code": "theorem and_or_inj_right : ∀ {m x y : Bool}, (x && m) = (y && m) → (x || m) = (y || m) → x = y", "start": [ 341, 1 ], "end": [ 342, 9 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_inj_right_iff", "code": "theorem and_or_inj_right_iff :\n ∀ {m x y : Bool}, (x && m) = (y && m) ∧ (x || m) = (y || m) ↔ x = y", "start": [ 344, 1 ], "end": [ 345, 85 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_inj_left", "code": "theorem and_or_inj_left : ∀ {m x y : Bool}, (m && x) = (m && y) → (m || x) = (m || y) → x = y", "start": [ 347, 1 ], "end": [ 348, 9 ], "kind": "commanddeclaration" }, { "full_name": "Bool.and_or_inj_left_iff", "code": "theorem and_or_inj_left_iff :\n ∀ {m x y : Bool}, (m && x) = (m && y) ∧ (m || x) = (m || y) ↔ x = y", "start": [ 350, 1 ], "end": [ 351, 85 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat", "code": "def toNat (b:Bool) : Nat := cond b 1 0", "start": [ 355, 1 ], "end": [ 356, 39 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_false", "code": "@[simp] theorem toNat_false : false.toNat = 0", "start": [ 358, 1 ], "end": [ 358, 53 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_true", "code": "@[simp] theorem toNat_true : true.toNat = 1", "start": [ 360, 1 ], "end": [ 360, 51 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_le", "code": "theorem toNat_le (c : Bool) : c.toNat ≤ 1", "start": [ 362, 1 ], "end": [ 363, 22 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_le_one", "code": "@[deprecated toNat_le (since := \"2024-02-23\")]\nabbrev toNat_le_one := toNat_le", "start": [ 365, 1 ], "end": [ 366, 32 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_lt", "code": "theorem toNat_lt (b : Bool) : b.toNat < 2", "start": [ 368, 1 ], "end": [ 369, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_eq_zero", "code": "@[simp] theorem toNat_eq_zero (b : Bool) : b.toNat = 0 ↔ b = false", "start": [ 371, 1 ], "end": [ 372, 19 ], "kind": "commanddeclaration" }, { "full_name": "Bool.toNat_eq_one", "code": "@[simp] theorem toNat_eq_one (b : Bool) : b.toNat = 1 ↔ b = true", "start": [ 373, 1 ], "end": [ 374, 19 ], "kind": "commanddeclaration" }, { "full_name": "Bool.if_true_left", "code": "@[simp] theorem if_true_left (p : Prop) [h : Decidable p] (f : Bool) :\n (ite p true f) = (p || f)", "start": [ 378, 1 ], "end": [ 379, 67 ], "kind": "commanddeclaration" }, { "full_name": "Bool.if_false_left", "code": "@[simp] theorem if_false_left (p : Prop) [h : Decidable p] (f : Bool) :\n (ite p false f) = (!p && f)", "start": [ 381, 1 ], "end": [ 382, 69 ], "kind": "commanddeclaration" }, { "full_name": "Bool.if_true_right", "code": "@[simp] theorem if_true_right (p : Prop) [h : Decidable p] (t : Bool) :\n (ite p t true) = (!(p : Bool) || t)", "start": [ 384, 1 ], "end": [ 385, 77 ], "kind": "commanddeclaration" }, { "full_name": "Bool.if_false_right", "code": "@[simp] theorem if_false_right (p : Prop) [h : Decidable p] (t : Bool) :\n (ite p t false) = (p && t)", "start": [ 387, 1 ], "end": [ 388, 68 ], "kind": "commanddeclaration" }, { "full_name": "Bool.ite_eq_true_distrib", "code": "@[simp] theorem ite_eq_true_distrib (p : Prop) [h : Decidable p] (t f : Bool) :\n (ite p t f = true) = ite p (t = true) (f = true)", "start": [ 390, 1 ], "end": [ 392, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.ite_eq_false_distrib", "code": "@[simp] theorem ite_eq_false_distrib (p : Prop) [h : Decidable p] (t f : Bool) :\n (ite p t f = false) = ite p (t = false) (f = false)", "start": [ 394, 1 ], "end": [ 396, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_ite_eq_true_eq_true", "code": "@[simp]\ntheorem not_ite_eq_true_eq_true (p : Prop) [h : Decidable p] (b c : Bool) :\n ¬(ite p (b = true) (c = true)) ↔ (ite p (b = false) (c = false))", "start": [ 411, 1 ], "end": [ 414, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_ite_eq_false_eq_false", "code": "@[simp]\ntheorem not_ite_eq_false_eq_false (p : Prop) [h : Decidable p] (b c : Bool) :\n ¬(ite p (b = false) (c = false)) ↔ (ite p (b = true) (c = true))", "start": [ 416, 1 ], "end": [ 419, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_ite_eq_true_eq_false", "code": "@[simp]\ntheorem not_ite_eq_true_eq_false (p : Prop) [h : Decidable p] (b c : Bool) :\n ¬(ite p (b = true) (c = false)) ↔ (ite p (b = false) (c = true))", "start": [ 421, 1 ], "end": [ 424, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.not_ite_eq_false_eq_true", "code": "@[simp]\ntheorem not_ite_eq_false_eq_true (p : Prop) [h : Decidable p] (b c : Bool) :\n ¬(ite p (b = false) (c = true)) ↔ (ite p (b = true) (c = false))", "start": [ 426, 1 ], "end": [ 429, 33 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_false_imp_eq_true", "code": "@[simp] theorem eq_false_imp_eq_true : ∀(b:Bool), (b = false → b = true) ↔ (b = true)", "start": [ 435, 1 ], "end": [ 435, 99 ], "kind": "commanddeclaration" }, { "full_name": "Bool.eq_true_imp_eq_false", "code": "@[simp] theorem eq_true_imp_eq_false : ∀(b:Bool), (b = true → b = false) ↔ (b = false)", "start": [ 441, 1 ], "end": [ 441, 100 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_eq_ite", "code": "theorem cond_eq_ite {α} (b : Bool) (t e : α) : cond b t e = if b then t else e", "start": [ 446, 1 ], "end": [ 447, 19 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_eq_if", "code": "theorem cond_eq_if : (bif b then x else y) = (if b then x else y)", "start": [ 449, 1 ], "end": [ 449, 87 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_not", "code": "@[simp] theorem cond_not (b : Bool) (t e : α) : cond (!b) t e = cond b e t", "start": [ 451, 1 ], "end": [ 452, 18 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_self", "code": "@[simp] theorem cond_self (c : Bool) (t : α) : cond c t t = t", "start": [ 454, 1 ], "end": [ 454, 84 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_decide", "code": "theorem cond_decide {α} (p : Prop) [Decidable p] (t e : α) :\n cond (decide p) t e = if p then t else e", "start": [ 469, 1 ], "end": [ 471, 21 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_eq_ite_iff", "code": "@[simp] theorem cond_eq_ite_iff (a : Bool) (p : Prop) [h : Decidable p] (x y u v : α) :\n (cond a x y = ite p u v) ↔ ite a x y = ite p u v", "start": [ 473, 1 ], "end": [ 475, 26 ], "kind": "commanddeclaration" }, { "full_name": "Bool.ite_eq_cond_iff", "code": "@[simp] theorem ite_eq_cond_iff (p : Prop) [h : Decidable p] (a : Bool) (x y u v : α) :\n (ite p x y = cond a u v) ↔ ite p x y = ite a u v", "start": [ 477, 1 ], "end": [ 479, 26 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_eq_true_distrib", "code": "@[simp] theorem cond_eq_true_distrib : ∀(c t f : Bool),\n (cond c t f = true) = ite (c = true) (t = true) (f = true)", "start": [ 481, 1 ], "end": [ 483, 9 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_eq_false_distrib", "code": "@[simp] theorem cond_eq_false_distrib : ∀(c t f : Bool),\n (cond c t f = false) = ite (c = true) (t = false) (f = false)", "start": [ 485, 1 ], "end": [ 486, 79 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_true", "code": "protected theorem cond_true {α : Type u} {a b : α} : cond true a b = a", "start": [ 488, 1 ], "end": [ 488, 91 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_false", "code": "protected theorem cond_false {α : Type u} {a b : α} : cond false a b = b", "start": [ 489, 1 ], "end": [ 489, 91 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_true_left", "code": "@[simp] theorem cond_true_left : ∀(c f : Bool), cond c true f = ( c || f)", "start": [ 491, 1 ], "end": [ 491, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_false_left", "code": "@[simp] theorem cond_false_left : ∀(c f : Bool), cond c false f = (!c && f)", "start": [ 492, 1 ], "end": [ 492, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_true_right", "code": "@[simp] theorem cond_true_right : ∀(c t : Bool), cond c t true = (!c || t)", "start": [ 493, 1 ], "end": [ 493, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_false_right", "code": "@[simp] theorem cond_false_right : ∀(c t : Bool), cond c t false = ( c && t)", "start": [ 494, 1 ], "end": [ 494, 90 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_true_same", "code": "@[simp] theorem cond_true_same : ∀(c b : Bool), cond c c b = (c || b)", "start": [ 496, 1 ], "end": [ 496, 84 ], "kind": "commanddeclaration" }, { "full_name": "Bool.cond_false_same", "code": "@[simp] theorem cond_false_same : ∀(c b : Bool), cond c b c = (c && b)", "start": [ 497, 1 ], "end": [ 497, 84 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_coe", "code": "protected theorem decide_coe (b : Bool) [Decidable (b = true)] : decide (b = true) = b", "start": [ 501, 1 ], "end": [ 501, 105 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_and", "code": "@[simp] theorem decide_and (p q : Prop) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q] :\n decide (p ∧ q) = (p && q)", "start": [ 503, 1 ], "end": [ 505, 34 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_or", "code": "@[simp] theorem decide_or (p q : Prop) [dpq : Decidable (p ∨ q)] [dp : Decidable p] [dq : Decidable q] :\n decide (p ∨ q) = (p || q)", "start": [ 507, 1 ], "end": [ 509, 34 ], "kind": "commanddeclaration" }, { "full_name": "Bool.decide_iff_dist", "code": "@[simp] theorem decide_iff_dist (p q : Prop) [dpq : Decidable (p ↔ q)] [dp : Decidable p] [dq : Decidable q] :\n decide (p ↔ q) = (decide p == decide q)", "start": [ 511, 1 ], "end": [ 513, 34 ], "kind": "commanddeclaration" }, { "full_name": "false_eq_decide_iff", "code": "@[simp] theorem false_eq_decide_iff {p : Prop} [h : Decidable p] : false = decide p ↔ ¬p", "start": [ 521, 1 ], "end": [ 522, 33 ], "kind": "commanddeclaration" }, { "full_name": "true_eq_decide_iff", "code": "@[simp] theorem true_eq_decide_iff {p : Prop} [h : Decidable p] : true = decide p ↔ p", "start": [ 524, 1 ], "end": [ 525, 33 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/List/Control.lean
[ ".lake/packages/lean4/src/lean/Init/Data/List/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean" ]
[ { "full_name": "List.mapM", "code": "@[inline]\ndef mapM {m : Type u → Type v} [Monad m] {α : Type w} {β : Type u} (f : α → m β) (as : List α) : m (List β) :=\n let rec @[specialize] loop\n | [], bs => pure bs.reverse\n | a :: as, bs => do loop as ((← f a)::bs)\n loop as []", "start": [ 43, 1 ], "end": [ 55, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.mapA", "code": "@[specialize]\ndef mapA {m : Type u → Type v} [Applicative m] {α : Type w} {β : Type u} (f : α → m β) : List α → m (List β)\n | [] => pure []\n | a::as => List.cons <$> f a <*> mapA f as", "start": [ 57, 1 ], "end": [ 71, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.forM", "code": "@[specialize]\nprotected def forM {m : Type u → Type v} [Monad m] {α : Type w} (as : List α) (f : α → m PUnit) : m PUnit :=\n match as with\n | [] => pure ⟨⟩\n | a :: as => do f a; List.forM as f", "start": [ 73, 1 ], "end": [ 83, 38 ], "kind": "commanddeclaration" }, { "full_name": "List.forA", "code": "@[specialize]\ndef forA {m : Type u → Type v} [Applicative m] {α : Type w} (as : List α) (f : α → m PUnit) : m PUnit :=\n match as with\n | [] => pure ⟨⟩\n | a :: as => f a *> forA as f", "start": [ 85, 1 ], "end": [ 97, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.filterAuxM", "code": "@[specialize]\ndef filterAuxM {m : Type → Type v} [Monad m] {α : Type} (f : α → m Bool) : List α → List α → m (List α)\n | [], acc => pure acc\n | h :: t, acc => do\n let b ← f h\n filterAuxM f t (cond b (h :: acc) acc)", "start": [ 99, 1 ], "end": [ 104, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.filterM", "code": "@[inline]\ndef filterM {m : Type → Type v} [Monad m] {α : Type} (p : α → m Bool) (as : List α) : m (List α) := do\n let as ← filterAuxM p as []\n pure as.reverse", "start": [ 106, 1 ], "end": [ 113, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.filterRevM", "code": "@[inline]\ndef filterRevM {m : Type → Type v} [Monad m] {α : Type} (p : α → m Bool) (as : List α) : m (List α) :=\n filterAuxM p as.reverse []", "start": [ 115, 1 ], "end": [ 121, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMapM", "code": "@[inline]\ndef filterMapM {m : Type u → Type v} [Monad m] {α β : Type u} (f : α → m (Option β)) (as : List α) : m (List β) :=\n let rec @[specialize] loop\n | [], bs => pure bs\n | a :: as, bs => do\n match (← f a) with\n | none => loop as bs\n | some b => loop as (b::bs)\n loop as.reverse []", "start": [ 123, 1 ], "end": [ 135, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.foldlM", "code": "@[specialize]\nprotected def foldlM {m : Type u → Type v} [Monad m] {s : Type u} {α : Type w} : (f : s → α → m s) → (init : s) → List α → m s\n | _, s, [] => pure s\n | f, s, a :: as => do\n let s' ← f s a\n List.foldlM f s' as", "start": [ 137, 1 ], "end": [ 152, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.foldlM_nil", "code": "@[simp] theorem foldlM_nil [Monad m] (f : β → α → m β) (b) : [].foldlM f b = pure b", "start": [ 154, 1 ], "end": [ 154, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.foldlM_cons", "code": "@[simp] theorem foldlM_cons [Monad m] (f : β → α → m β) (b) (a) (l : List α) :\n (a :: l).foldlM f b = f b a >>= l.foldlM f", "start": [ 155, 1 ], "end": [ 157, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.foldrM", "code": "@[inline]\ndef foldrM {m : Type u → Type v} [Monad m] {s : Type u} {α : Type w} (f : α → s → m s) (init : s) (l : List α) : m s :=\n l.reverse.foldlM (fun s a => f a s) init", "start": [ 159, 1 ], "end": [ 171, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.foldrM_nil", "code": "@[simp] theorem foldrM_nil [Monad m] (f : α → β → m β) (b) : [].foldrM f b = pure b", "start": [ 173, 1 ], "end": [ 173, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.firstM", "code": "@[specialize]\ndef firstM {m : Type u → Type v} [Alternative m] {α : Type w} {β : Type u} (f : α → m β) : List α → m β\n | [] => failure\n | a::as => f a <|> firstM f as", "start": [ 175, 1 ], "end": [ 184, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.anyM", "code": "@[specialize]\ndef anyM {m : Type → Type u} [Monad m] {α : Type v} (f : α → m Bool) : List α → m Bool\n | [] => pure false\n | a::as => do\n match (← f a) with\n | true => pure true\n | false => anyM f as", "start": [ 186, 1 ], "end": [ 192, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.allM", "code": "@[specialize]\ndef allM {m : Type → Type u} [Monad m] {α : Type v} (f : α → m Bool) : List α → m Bool\n | [] => pure true\n | a::as => do\n match (← f a) with\n | true => allM f as\n | false => pure false", "start": [ 194, 1 ], "end": [ 200, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.findM?", "code": "@[specialize]\ndef findM? {m : Type → Type u} [Monad m] {α : Type} (p : α → m Bool) : List α → m (Option α)\n | [] => pure none\n | a::as => do\n match (← p a) with\n | true => pure (some a)\n | false => findM? p as", "start": [ 202, 1 ], "end": [ 208, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.findSomeM?", "code": "@[specialize]\ndef findSomeM? {m : Type u → Type v} [Monad m] {α : Type w} {β : Type u} (f : α → m (Option β)) : List α → m (Option β)\n | [] => pure none\n | a::as => do\n match (← f a) with\n | some b => pure (some b)\n | none => findSomeM? f as", "start": [ 210, 1 ], "end": [ 216, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.forIn", "code": "@[inline] protected def forIn {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : List α) (init : β) (f : α → β → m (ForInStep β)) : m β :=\n let rec @[specialize] loop\n | [], b => pure b\n | a::as, b => do\n match (← f a b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop as b\n loop as init", "start": [ 218, 1 ], "end": [ 225, 15 ], "kind": "commanddeclaration" }, { "full_name": "List.forIn_nil", "code": "@[simp] theorem forIn_nil [Monad m] (f : α → β → m (ForInStep β)) (b : β) : forIn [] b f = pure b", "start": [ 230, 1 ], "end": [ 231, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.forIn_cons", "code": "@[simp] theorem forIn_cons [Monad m] (f : α → β → m (ForInStep β)) (a : α) (as : List α) (b : β)\n : forIn (a::as) b f = f a b >>= fun | ForInStep.done b => pure b | ForInStep.yield b => forIn as b f", "start": [ 233, 1 ], "end": [ 235, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.forIn'", "code": "@[inline] protected def forIn' {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : List α) (init : β) (f : (a : α) → a ∈ as → β → m (ForInStep β)) : m β :=\n let rec @[specialize] loop : (as' : List α) → (b : β) → Exists (fun bs => bs ++ as' = as) → m β\n | [], b, _ => pure b\n | a::as', b, h => do\n have : a ∈ as := by\n have ⟨bs, h⟩ := h\n subst h\n exact mem_append_of_mem_right _ (Mem.head ..)\n match (← f a this b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b =>\n have : Exists (fun bs => bs ++ as' = as) := have ⟨bs, h⟩ := h; ⟨bs ++ [a], by rw [← h, append_cons bs a as']⟩\n loop as' b this\n loop as init ⟨[], rfl⟩", "start": [ 237, 1 ], "end": [ 250, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.forIn'_eq_forIn", "code": "@[simp] theorem forIn'_eq_forIn {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : List α) (init : β) (f : α → β → m (ForInStep β)) : forIn' as init (fun a _ b => f a b) = forIn as init f", "start": [ 255, 1 ], "end": [ 262, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.forM_nil", "code": "@[simp] theorem forM_nil [Monad m] (f : α → m PUnit) : forM [] f = pure ⟨⟩", "start": [ 267, 1 ], "end": [ 268, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.forM_cons", "code": "@[simp] theorem forM_cons [Monad m] (f : α → m PUnit) (a : α) (as : List α) : forM (a::as) f = f a >>= fun _ => forM as f", "start": [ 269, 1 ], "end": [ 270, 6 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean" ]
[ { "full_name": "List.get!", "code": "def get! [Inhabited α] : (as : List α) → (i : Nat) → α\n | a::_, 0 => a\n | _::as, n+1 => get! as n\n | _, _ => panic! \"invalid index\"", "start": [ 19, 1 ], "end": [ 28, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_nil", "code": "theorem get!_nil [Inhabited α] (n : Nat) : [].get! n = (default : α)", "start": [ 30, 1 ], "end": [ 30, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_cons_succ", "code": "theorem get!_cons_succ [Inhabited α] (l : List α) (a : α) (n : Nat) :\n (a::l).get! (n+1) = get! l n", "start": [ 31, 1 ], "end": [ 32, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_cons_zero", "code": "theorem get!_cons_zero [Inhabited α] (l : List α) (a : α) : (a::l).get! 0 = a", "start": [ 33, 1 ], "end": [ 33, 85 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast!", "code": "def getLast! [Inhabited α] : List α → α\n | [] => panic! \"empty list\"\n | a::as => getLast (a::as) (fun h => List.noConfusion h)", "start": [ 37, 1 ], "end": [ 45, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.head!", "code": "def head! [Inhabited α] : List α → α\n | [] => panic! \"empty list\"\n | a::_ => a", "start": [ 51, 1 ], "end": [ 59, 14 ], "kind": "commanddeclaration" }, { "full_name": "List.tail!", "code": "def tail! : List α → List α\n | [] => panic! \"empty list\"\n | _::as => as", "start": [ 63, 1 ], "end": [ 71, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.tail!_cons", "code": "@[simp] theorem tail!_cons : @tail! α (a::l) = l", "start": [ 73, 1 ], "end": [ 73, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.partitionM", "code": "@[inline] def partitionM [Monad m] (p : α → m Bool) (l : List α) : m (List α × List α) :=\n go l #[] #[]\nwhere\n \n @[specialize] go : List α → Array α → Array α → m (List α × List α)\n | [], acc₁, acc₂ => pure (acc₁.toList, acc₂.toList)\n | x :: xs, acc₁, acc₂ => do\n if ← p x then\n go xs (acc₁.push x) acc₂\n else\n go xs acc₁ (acc₂.push x)", "start": [ 77, 1 ], "end": [ 103, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.partitionMap", "code": "@[inline] def partitionMap (f : α → β ⊕ γ) (l : List α) : List β × List γ := go l #[] #[] where\n \n @[specialize] go : List α → Array β → Array γ → List β × List γ\n | [], acc₁, acc₂ => (acc₁.toList, acc₂.toList)\n | x :: xs, acc₁, acc₂ =>\n match f x with\n | .inl a => go xs (acc₁.push a) acc₂\n | .inr b => go xs acc₁ (acc₂.push b)", "start": [ 107, 1 ], "end": [ 124, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.mapMonoMImp", "code": "@[specialize] private unsafe def mapMonoMImp [Monad m] (as : List α) (f : α → m α) : m (List α) := do\n match as with\n | [] => return as\n | b :: bs =>\n let b' ← f b\n let bs' ← mapMonoMImp bs f\n if ptrEq b' b && ptrEq bs' bs then\n return as\n else\n return b' :: bs'", "start": [ 133, 1 ], "end": [ 142, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.mapMonoM", "code": "@[implemented_by mapMonoMImp] def mapMonoM [Monad m] (as : List α) (f : α → m α) : m (List α) :=\n match as with\n | [] => return []\n | a :: as => return (← f a) :: (← mapMonoM as f)", "start": [ 144, 1 ], "end": [ 151, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.mapMono", "code": "def mapMono (as : List α) (f : α → α) : List α :=\n Id.run <| as.mapMonoM f", "start": [ 153, 1 ], "end": [ 154, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_append_left", "code": "theorem getElem_append_left (as bs : List α) (h : i < as.length) {h'} : (as ++ bs)[i] = as[i]", "start": [ 158, 1 ], "end": [ 164, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_append_right", "code": "theorem getElem_append_right (as bs : List α) (h : ¬ i < as.length) {h' h''} : (as ++ bs)[i]'h' = bs[i - as.length]'h''", "start": [ 166, 1 ], "end": [ 171, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.get_last", "code": "theorem get_last {as : List α} {i : Fin (length (as ++ [a]))} (h : ¬ i.1 < as.length) : (as ++ [a] : List _).get i = a", "start": [ 173, 1 ], "end": [ 181, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.sizeOf_lt_of_mem", "code": "theorem sizeOf_lt_of_mem [SizeOf α] {as : List α} (h : a ∈ as) : sizeOf a < sizeOf as", "start": [ 183, 1 ], "end": [ 186, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.append_cancel_left", "code": "theorem append_cancel_left {as bs cs : List α} (h : as ++ bs = as ++ cs) : bs = cs", "start": [ 201, 1 ], "end": [ 206, 15 ], "kind": "commanddeclaration" }, { "full_name": "List.append_cancel_right", "code": "theorem append_cancel_right {as bs cs : List α} (h : as ++ bs = cs ++ bs) : as = cs", "start": [ 208, 1 ], "end": [ 213, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.append_cancel_left_eq", "code": "@[simp] theorem append_cancel_left_eq (as bs cs : List α) : (as ++ bs = as ++ cs) = (bs = cs)", "start": [ 215, 1 ], "end": [ 218, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.append_cancel_right_eq", "code": "@[simp] theorem append_cancel_right_eq (as bs cs : List α) : (as ++ bs = cs ++ bs) = (as = cs)", "start": [ 220, 1 ], "end": [ 223, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.sizeOf_get", "code": "@[simp] theorem sizeOf_get [SizeOf α] (as : List α) (i : Fin as.length) : sizeOf (as.get i) < sizeOf as", "start": [ 225, 1 ], "end": [ 231, 15 ], "kind": "commanddeclaration" }, { "full_name": "List.le_antisymm", "code": "theorem le_antisymm [LT α] [s : Antisymm (¬ · < · : α → α → Prop)] {as bs : List α} (h₁ : as ≤ bs) (h₂ : bs ≤ as) : as = bs", "start": [ 233, 1 ], "end": [ 247, 24 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Classical.lean", ".lake/packages/lean4/src/lean/Init/Ext.lean", ".lake/packages/lean4/src/lean/Init/Data/Option/Instances.lean" ]
[ { "full_name": "Option.mem_iff", "code": "theorem mem_iff {a : α} {b : Option α} : a ∈ b ↔ b = a", "start": [ 13, 1 ], "end": [ 13, 63 ], "kind": "commanddeclaration" }, { "full_name": "Option.some_ne_none", "code": "theorem some_ne_none (x : α) : some x ≠ none", "start": [ 15, 1 ], "end": [ 15, 54 ], "kind": "commanddeclaration" }, { "full_name": "Option.forall", "code": "protected theorem «forall» {p : Option α → Prop} : (∀ x, p x) ↔ p none ∧ ∀ x, p (some x)", "start": [ 17, 1 ], "end": [ 18, 70 ], "kind": "commanddeclaration" }, { "full_name": "Option.exists", "code": "protected theorem «exists» {p : Option α → Prop} :\n (∃ x, p x) ↔ p none ∨ ∃ x, p (some x)", "start": [ 20, 1 ], "end": [ 23, 53 ], "kind": "commanddeclaration" }, { "full_name": "Option.get_mem", "code": "theorem get_mem : ∀ {o : Option α} (h : isSome o), o.get h ∈ o", "start": [ 25, 1 ], "end": [ 26, 21 ], "kind": "commanddeclaration" }, { "full_name": "Option.get_of_mem", "code": "theorem get_of_mem : ∀ {o : Option α} (h : isSome o), a ∈ o → o.get h = a", "start": [ 28, 1 ], "end": [ 29, 21 ], "kind": "commanddeclaration" }, { "full_name": "Option.not_mem_none", "code": "theorem not_mem_none (a : α) : a ∉ (none : Option α)", "start": [ 31, 1 ], "end": [ 31, 62 ], "kind": "commanddeclaration" }, { "full_name": "Option.some_get", "code": "@[simp] theorem some_get : ∀ {x : Option α} (h : isSome x), some (x.get h) = x", "start": [ 33, 1 ], "end": [ 34, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.get_some", "code": "@[simp] theorem get_some (x : α) (h : isSome (some x)) : (some x).get h = x", "start": [ 36, 1 ], "end": [ 36, 83 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD_of_ne_none", "code": "theorem getD_of_ne_none {x : Option α} (hx : x ≠ none) (y : α) : some (x.getD y) = x", "start": [ 38, 1 ], "end": [ 39, 43 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD_eq_iff", "code": "theorem getD_eq_iff {o : Option α} {a b} : o.getD a = b ↔ (o = some b ∨ o = none ∧ a = b)", "start": [ 41, 1 ], "end": [ 42, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.mem_unique", "code": "theorem mem_unique {o : Option α} {a b : α} (ha : a ∈ o) (hb : b ∈ o) : a = b", "start": [ 44, 1 ], "end": [ 45, 22 ], "kind": "commanddeclaration" }, { "full_name": "Option.ext", "code": "@[ext] theorem ext : ∀ {o₁ o₂ : Option α}, (∀ a, a ∈ o₁ ↔ a ∈ o₂) → o₁ = o₂", "start": [ 47, 1 ], "end": [ 50, 32 ], "kind": "commanddeclaration" }, { "full_name": "Option.eq_none_iff_forall_not_mem", "code": "theorem eq_none_iff_forall_not_mem : o = none ↔ ∀ a, a ∉ o", "start": [ 52, 1 ], "end": [ 53, 77 ], "kind": "commanddeclaration" }, { "full_name": "Option.isSome_none", "code": "@[simp] theorem isSome_none : @isSome α none = false", "start": [ 55, 1 ], "end": [ 55, 60 ], "kind": "commanddeclaration" }, { "full_name": "Option.isSome_some", "code": "@[simp] theorem isSome_some : isSome (some a) = true", "start": [ 57, 1 ], "end": [ 57, 60 ], "kind": "commanddeclaration" }, { "full_name": "Option.isSome_iff_exists", "code": "theorem isSome_iff_exists : isSome x ↔ ∃ a, x = some a", "start": [ 59, 1 ], "end": [ 59, 87 ], "kind": "commanddeclaration" }, { "full_name": "Option.isNone_none", "code": "@[simp] theorem isNone_none : @isNone α none = true", "start": [ 61, 1 ], "end": [ 61, 59 ], "kind": "commanddeclaration" }, { "full_name": "Option.isNone_some", "code": "@[simp] theorem isNone_some : isNone (some a) = false", "start": [ 63, 1 ], "end": [ 63, 61 ], "kind": "commanddeclaration" }, { "full_name": "Option.not_isSome", "code": "@[simp] theorem not_isSome : isSome a = false ↔ a.isNone = true", "start": [ 65, 1 ], "end": [ 66, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.eq_some_iff_get_eq", "code": "theorem eq_some_iff_get_eq : o = some a ↔ ∃ h : o.isSome, o.get h = a", "start": [ 68, 1 ], "end": [ 69, 26 ], "kind": "commanddeclaration" }, { "full_name": "Option.eq_some_of_isSome", "code": "theorem eq_some_of_isSome : ∀ {o : Option α} (h : o.isSome), o = some (o.get h)", "start": [ 71, 1 ], "end": [ 72, 21 ], "kind": "commanddeclaration" }, { "full_name": "Option.not_isSome_iff_eq_none", "code": "theorem not_isSome_iff_eq_none : ¬o.isSome ↔ o = none", "start": [ 74, 1 ], "end": [ 75, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.ne_none_iff_isSome", "code": "theorem ne_none_iff_isSome : o ≠ none ↔ o.isSome", "start": [ 77, 1 ], "end": [ 77, 72 ], "kind": "commanddeclaration" }, { "full_name": "Option.ne_none_iff_exists", "code": "theorem ne_none_iff_exists : o ≠ none ↔ ∃ x, some x = o", "start": [ 79, 1 ], "end": [ 79, 79 ], "kind": "commanddeclaration" }, { "full_name": "Option.ne_none_iff_exists'", "code": "theorem ne_none_iff_exists' : o ≠ none ↔ ∃ x, o = some x", "start": [ 81, 1 ], "end": [ 82, 60 ], "kind": "commanddeclaration" }, { "full_name": "Option.bex_ne_none", "code": "theorem bex_ne_none {p : Option α → Prop} : (∃ x, ∃ (_ : x ≠ none), p x) ↔ ∃ x, p (some x)", "start": [ 84, 1 ], "end": [ 86, 49 ], "kind": "commanddeclaration" }, { "full_name": "Option.ball_ne_none", "code": "theorem ball_ne_none {p : Option α → Prop} : (∀ x (_ : x ≠ none), p x) ↔ ∀ x, p (some x)", "start": [ 88, 1 ], "end": [ 93, 18 ], "kind": "commanddeclaration" }, { "full_name": "Option.pure_def", "code": "@[simp] theorem pure_def : pure = @some α", "start": [ 95, 1 ], "end": [ 95, 49 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_eq_bind", "code": "@[simp] theorem bind_eq_bind : bind = @Option.bind α β", "start": [ 97, 1 ], "end": [ 97, 62 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_some", "code": "@[simp] theorem bind_some (x : Option α) : x.bind some = x", "start": [ 99, 1 ], "end": [ 99, 81 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_none", "code": "@[simp] theorem bind_none (x : Option α) : x.bind (fun _ => none (α := β)) = none", "start": [ 101, 1 ], "end": [ 102, 18 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_eq_some", "code": "theorem bind_eq_some : x.bind f = some b ↔ ∃ a, x = some a ∧ f a = some b", "start": [ 104, 1 ], "end": [ 105, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_eq_none", "code": "@[simp] theorem bind_eq_none {o : Option α} {f : α → Option β} :\n o.bind f = none ↔ ∀ a, o = some a → f a = none", "start": [ 107, 1 ], "end": [ 108, 74 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_eq_none'", "code": "theorem bind_eq_none' {o : Option α} {f : α → Option β} :\n o.bind f = none ↔ ∀ b a, a ∈ o → b ∉ f a", "start": [ 110, 1 ], "end": [ 112, 85 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_comm", "code": "theorem bind_comm {f : α → β → Option γ} (a : Option α) (b : Option β) :\n (a.bind fun x => b.bind (f x)) = b.bind fun y => a.bind fun x => f x y", "start": [ 114, 1 ], "end": [ 116, 30 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_assoc", "code": "theorem bind_assoc (x : Option α) (f : α → Option β) (g : β → Option γ) :\n (x.bind f).bind g = x.bind fun y => (f y).bind g", "start": [ 118, 1 ], "end": [ 119, 75 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_eq_some", "code": "theorem join_eq_some : x.join = some a ↔ x = some (some a)", "start": [ 121, 1 ], "end": [ 122, 22 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_ne_none", "code": "theorem join_ne_none : x.join ≠ none ↔ ∃ z, x = some (some z)", "start": [ 124, 1 ], "end": [ 125, 58 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_ne_none'", "code": "theorem join_ne_none' : ¬x.join = none ↔ ∃ z, x = some (some z)", "start": [ 127, 1 ], "end": [ 128, 15 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_eq_none", "code": "theorem join_eq_none : o.join = none ↔ o = none ∨ o = some none", "start": [ 130, 1 ], "end": [ 131, 61 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_id_eq_join", "code": "theorem bind_id_eq_join {x : Option (Option α)} : x.bind id = x.join", "start": [ 133, 1 ], "end": [ 133, 76 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_map", "code": "@[simp] theorem map_eq_map : Functor.map f = Option.map f", "start": [ 135, 1 ], "end": [ 135, 65 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_none", "code": "theorem map_none : f <$> none = none", "start": [ 137, 1 ], "end": [ 137, 44 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_some", "code": "theorem map_some : f <$> some a = some (f a)", "start": [ 139, 1 ], "end": [ 139, 52 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_some'", "code": "@[simp] theorem map_eq_some' : x.map f = some b ↔ ∃ a, x = some a ∧ f a = b", "start": [ 141, 1 ], "end": [ 141, 99 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_some", "code": "theorem map_eq_some : f <$> x = some b ↔ ∃ a, x = some a ∧ f a = b", "start": [ 143, 1 ], "end": [ 143, 83 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_none'", "code": "@[simp] theorem map_eq_none' : x.map f = none ↔ x = none", "start": [ 145, 1 ], "end": [ 146, 65 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_none", "code": "theorem map_eq_none : f <$> x = none ↔ x = none", "start": [ 148, 1 ], "end": [ 148, 64 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_eq_bind", "code": "theorem map_eq_bind {x : Option α} : x.map f = x.bind (some ∘ f)", "start": [ 150, 1 ], "end": [ 151, 33 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_congr", "code": "theorem map_congr {x : Option α} (h : ∀ a, a ∈ x → f a = g a) : x.map f = x.map g", "start": [ 153, 1 ], "end": [ 154, 59 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_id'", "code": "@[simp] theorem map_id' : Option.map (@id α) = id", "start": [ 156, 1 ], "end": [ 156, 60 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_id''", "code": "@[simp] theorem map_id'' {x : Option α} : (x.map fun a => a) = x", "start": [ 157, 1 ], "end": [ 157, 86 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_map", "code": "@[simp] theorem map_map (h : β → γ) (g : α → β) (x : Option α) :\n (x.map g).map h = x.map (h ∘ g)", "start": [ 159, 1 ], "end": [ 161, 52 ], "kind": "commanddeclaration" }, { "full_name": "Option.comp_map", "code": "theorem comp_map (h : β → γ) (g : α → β) (x : Option α) : x.map (h ∘ g) = (x.map g).map h", "start": [ 163, 1 ], "end": [ 164, 20 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_comp_map", "code": "@[simp] theorem map_comp_map (f : α → β) (g : β → γ) :\n Option.map g ∘ Option.map f = Option.map (g ∘ f)", "start": [ 166, 1 ], "end": [ 167, 74 ], "kind": "commanddeclaration" }, { "full_name": "Option.mem_map_of_mem", "code": "theorem mem_map_of_mem (g : α → β) (h : a ∈ x) : g a ∈ Option.map g x", "start": [ 169, 1 ], "end": [ 169, 95 ], "kind": "commanddeclaration" }, { "full_name": "Option.bind_map_comm", "code": "theorem bind_map_comm {α β} {x : Option (Option α)} {f : α → β} :\n x.bind (Option.map f) = (x.map (Option.map f)).bind id", "start": [ 171, 1 ], "end": [ 172, 82 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_map_eq_map_join", "code": "theorem join_map_eq_map_join {f : α → β} {x : Option (Option α)} :\n (x.map (Option.map f)).join = x.join.map f", "start": [ 174, 1 ], "end": [ 175, 70 ], "kind": "commanddeclaration" }, { "full_name": "Option.join_join", "code": "theorem join_join {x : Option (Option (Option α))} : x.join.join = (x.map join).join", "start": [ 177, 1 ], "end": [ 178, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.mem_of_mem_join", "code": "theorem mem_of_mem_join {a : α} {x : Option (Option α)} (h : a ∈ x.join) : some a ∈ x", "start": [ 180, 1 ], "end": [ 181, 28 ], "kind": "commanddeclaration" }, { "full_name": "Option.some_orElse", "code": "@[simp] theorem some_orElse (a : α) (x : Option α) : (some a <|> x) = some a", "start": [ 183, 1 ], "end": [ 183, 84 ], "kind": "commanddeclaration" }, { "full_name": "Option.none_orElse", "code": "@[simp] theorem none_orElse (x : Option α) : (none <|> x) = x", "start": [ 185, 1 ], "end": [ 185, 69 ], "kind": "commanddeclaration" }, { "full_name": "Option.orElse_none", "code": "@[simp] theorem orElse_none (x : Option α) : (x <|> none) = x", "start": [ 187, 1 ], "end": [ 187, 84 ], "kind": "commanddeclaration" }, { "full_name": "Option.map_orElse", "code": "theorem map_orElse {x y : Option α} : (x <|> y).map f = (x.map f <|> y.map f)", "start": [ 189, 1 ], "end": [ 190, 19 ], "kind": "commanddeclaration" }, { "full_name": "Option.guard_eq_some", "code": "@[simp] theorem guard_eq_some [DecidablePred p] : guard p a = some b ↔ a = b ∧ p a", "start": [ 192, 1 ], "end": [ 193, 75 ], "kind": "commanddeclaration" }, { "full_name": "Option.liftOrGet_eq_or_eq", "code": "theorem liftOrGet_eq_or_eq {f : α → α → α} (h : ∀ a b, f a b = a ∨ f a b = b) :\n ∀ o₁ o₂, liftOrGet f o₁ o₂ = o₁ ∨ liftOrGet f o₁ o₂ = o₂", "start": [ 195, 1 ], "end": [ 200, 79 ], "kind": "commanddeclaration" }, { "full_name": "Option.liftOrGet_none_left", "code": "@[simp] theorem liftOrGet_none_left {f} {b : Option α} : liftOrGet f none b = b", "start": [ 202, 1 ], "end": [ 203, 18 ], "kind": "commanddeclaration" }, { "full_name": "Option.liftOrGet_none_right", "code": "@[simp] theorem liftOrGet_none_right {f} {a : Option α} : liftOrGet f a none = a", "start": [ 205, 1 ], "end": [ 206, 18 ], "kind": "commanddeclaration" }, { "full_name": "Option.liftOrGet_some_some", "code": "@[simp] theorem liftOrGet_some_some {f} {a b : α} :\n liftOrGet f (some a) (some b) = f a b", "start": [ 208, 1 ], "end": [ 209, 47 ], "kind": "commanddeclaration" }, { "full_name": "Option.elim_none", "code": "@[simp] theorem elim_none (x : β) (f : α → β) : none.elim x f = x", "start": [ 211, 1 ], "end": [ 211, 73 ], "kind": "commanddeclaration" }, { "full_name": "Option.elim_some", "code": "@[simp] theorem elim_some (x : β) (f : α → β) (a : α) : (some a).elim x f = f a", "start": [ 213, 1 ], "end": [ 213, 87 ], "kind": "commanddeclaration" }, { "full_name": "Option.getD_map", "code": "@[simp] theorem getD_map (f : α → β) (x : α) (o : Option α) :\n (o.map f).getD (f x) = f (getD o x)", "start": [ 215, 1 ], "end": [ 216, 60 ], "kind": "commanddeclaration" }, { "full_name": "Option.choice", "code": "noncomputable def choice (α : Type _) : Option α :=\n if h : Nonempty α then some (Classical.choice h) else none", "start": [ 222, 1 ], "end": [ 224, 61 ], "kind": "commanddeclaration" }, { "full_name": "Option.choice_eq", "code": "theorem choice_eq {α : Type _} [Subsingleton α] (a : α) : choice α = some a", "start": [ 226, 1 ], "end": [ 229, 32 ], "kind": "commanddeclaration" }, { "full_name": "Option.choice_isSome_iff_nonempty", "code": "theorem choice_isSome_iff_nonempty {α : Type _} : (choice α).isSome ↔ Nonempty α", "start": [ 231, 1 ], "end": [ 232, 88 ], "kind": "commanddeclaration" }, { "full_name": "Option.toList_some", "code": "@[simp] theorem toList_some (a : α) : (a : Option α).toList = [a]", "start": [ 236, 1 ], "end": [ 236, 73 ], "kind": "commanddeclaration" }, { "full_name": "Option.toList_none", "code": "@[simp] theorem toList_none (α : Type _) : (none : Option α).toList = []", "start": [ 238, 1 ], "end": [ 238, 80 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Gcd.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Dvd.lean", ".lake/packages/lean4/src/lean/Init/RCases.lean", ".lake/packages/lean4/src/lean/Init/NotationExtra.lean" ]
[ { "full_name": "Nat.gcd", "code": "@[extern \"lean_nat_gcd\"]\ndef gcd (m n : @& Nat) : Nat :=\n if m = 0 then\n n\n else\n gcd (n % m) m\n termination_by m\n decreasing_by simp_wf; apply mod_lt _ (zero_lt_of_ne_zero _); assumption", "start": [ 13, 1 ], "end": [ 38, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_zero_left", "code": "@[simp] theorem gcd_zero_left (y : Nat) : gcd 0 y = y", "start": [ 40, 1 ], "end": [ 41, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_succ", "code": "theorem gcd_succ (x y : Nat) : gcd (succ x) y = gcd (y % succ x) (succ x)", "start": [ 43, 1 ], "end": [ 44, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_add_one", "code": "theorem gcd_add_one (x y : Nat) : gcd (x + 1) y = gcd (y % (x + 1)) (x + 1)", "start": [ 46, 1 ], "end": [ 47, 16 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_one_left", "code": "@[simp] theorem gcd_one_left (n : Nat) : gcd 1 n = 1", "start": [ 49, 1 ], "end": [ 51, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_zero_right", "code": "@[simp] theorem gcd_zero_right (n : Nat) : gcd n 0 = n", "start": [ 53, 1 ], "end": [ 59, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_self", "code": "@[simp] theorem gcd_self (n : Nat) : gcd n n = n", "start": [ 64, 1 ], "end": [ 65, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_rec", "code": "theorem gcd_rec (m n : Nat) : gcd m n = gcd (n % m) m", "start": [ 68, 1 ], "end": [ 71, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd.induction", "code": "@[elab_as_elim] theorem gcd.induction {P : Nat → Nat → Prop} (m n : Nat)\n (H0 : ∀n, P 0 n) (H1 : ∀ m n, 0 < m → P (n % m) m → P m n) : P m n", "start": [ 73, 1 ], "end": [ 79, 6 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd", "code": "theorem gcd_dvd (m n : Nat) : (gcd m n ∣ m) ∧ (gcd m n ∣ n)", "start": [ 81, 1 ], "end": [ 84, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_left", "code": "theorem gcd_dvd_left (m n : Nat) : gcd m n ∣ m", "start": [ 86, 1 ], "end": [ 86, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_right", "code": "theorem gcd_dvd_right (m n : Nat) : gcd m n ∣ n", "start": [ 88, 1 ], "end": [ 88, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_le_left", "code": "theorem gcd_le_left (n) (h : 0 < m) : gcd m n ≤ m", "start": [ 90, 1 ], "end": [ 90, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_le_right", "code": "theorem gcd_le_right (n) (h : 0 < n) : gcd m n ≤ n", "start": [ 92, 1 ], "end": [ 92, 87 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_gcd", "code": "theorem dvd_gcd : k ∣ m → k ∣ n → k ∣ gcd m n", "start": [ 94, 1 ], "end": [ 97, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_gcd_iff", "code": "theorem dvd_gcd_iff : k ∣ gcd m n ↔ k ∣ m ∧ k ∣ n", "start": [ 99, 1 ], "end": [ 101, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_comm", "code": "theorem gcd_comm (m n : Nat) : gcd m n = gcd n m", "start": [ 103, 1 ], "end": [ 106, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_left_iff_dvd", "code": "theorem gcd_eq_left_iff_dvd : m ∣ n ↔ gcd m n = m", "start": [ 109, 1 ], "end": [ 111, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_right_iff_dvd", "code": "theorem gcd_eq_right_iff_dvd : m ∣ n ↔ gcd n m = m", "start": [ 113, 1 ], "end": [ 114, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_assoc", "code": "theorem gcd_assoc (m n k : Nat) : gcd (gcd m n) k = gcd m (gcd n k)", "start": [ 116, 1 ], "end": [ 125, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_one_right", "code": "@[simp] theorem gcd_one_right (n : Nat) : gcd n 1 = 1", "start": [ 127, 1 ], "end": [ 127, 95 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_left", "code": "theorem gcd_mul_left (m n k : Nat) : gcd (m * n) (m * k) = m * gcd n k", "start": [ 129, 1 ], "end": [ 132, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_right", "code": "theorem gcd_mul_right (m n k : Nat) : gcd (m * n) (k * n) = gcd m k * n", "start": [ 134, 1 ], "end": [ 135, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_pos_of_pos_left", "code": "theorem gcd_pos_of_pos_left {m : Nat} (n : Nat) (mpos : 0 < m) : 0 < gcd m n", "start": [ 137, 1 ], "end": [ 138, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_pos_of_pos_right", "code": "theorem gcd_pos_of_pos_right (m : Nat) {n : Nat} (npos : 0 < n) : 0 < gcd m n", "start": [ 140, 1 ], "end": [ 141, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_gcd_pos_of_pos_left", "code": "theorem div_gcd_pos_of_pos_left (b : Nat) (h : 0 < a) : 0 < a / a.gcd b", "start": [ 143, 1 ], "end": [ 144, 97 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_gcd_pos_of_pos_right", "code": "theorem div_gcd_pos_of_pos_right (a : Nat) (h : 0 < b) : 0 < b / a.gcd b", "start": [ 146, 1 ], "end": [ 147, 99 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_gcd_eq_zero_left", "code": "theorem eq_zero_of_gcd_eq_zero_left {m n : Nat} (H : gcd m n = 0) : m = 0", "start": [ 149, 1 ], "end": [ 152, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_gcd_eq_zero_right", "code": "theorem eq_zero_of_gcd_eq_zero_right {m n : Nat} (H : gcd m n = 0) : n = 0", "start": [ 154, 1 ], "end": [ 156, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_ne_zero_left", "code": "theorem gcd_ne_zero_left : m ≠ 0 → gcd m n ≠ 0", "start": [ 158, 1 ], "end": [ 158, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_ne_zero_right", "code": "theorem gcd_ne_zero_right : n ≠ 0 → gcd m n ≠ 0", "start": [ 160, 1 ], "end": [ 160, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_div", "code": "theorem gcd_div {m n k : Nat} (H1 : k ∣ m) (H2 : k ∣ n) :\n gcd (m / k) (n / k) = gcd m n / k", "start": [ 162, 1 ], "end": [ 169, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_of_dvd_left", "code": "theorem gcd_dvd_gcd_of_dvd_left {m k : Nat} (n : Nat) (H : m ∣ k) : gcd m n ∣ gcd k n", "start": [ 171, 1 ], "end": [ 172, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_of_dvd_right", "code": "theorem gcd_dvd_gcd_of_dvd_right {m k : Nat} (n : Nat) (H : m ∣ k) : gcd n m ∣ gcd n k", "start": [ 174, 1 ], "end": [ 175, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_mul_left", "code": "theorem gcd_dvd_gcd_mul_left (m n k : Nat) : gcd m n ∣ gcd (k * m) n", "start": [ 177, 1 ], "end": [ 178, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_mul_right", "code": "theorem gcd_dvd_gcd_mul_right (m n k : Nat) : gcd m n ∣ gcd (m * k) n", "start": [ 180, 1 ], "end": [ 181, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_mul_left_right", "code": "theorem gcd_dvd_gcd_mul_left_right (m n k : Nat) : gcd m n ∣ gcd m (k * n)", "start": [ 183, 1 ], "end": [ 184, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_dvd_gcd_mul_right_right", "code": "theorem gcd_dvd_gcd_mul_right_right (m n k : Nat) : gcd m n ∣ gcd m (n * k)", "start": [ 186, 1 ], "end": [ 187, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_left", "code": "theorem gcd_eq_left {m n : Nat} (H : m ∣ n) : gcd m n = m", "start": [ 189, 1 ], "end": [ 190, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_right", "code": "theorem gcd_eq_right {m n : Nat} (H : n ∣ m) : gcd m n = n", "start": [ 192, 1 ], "end": [ 193, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_left_left", "code": "@[simp] theorem gcd_mul_left_left (m n : Nat) : gcd (m * n) n = n", "start": [ 195, 1 ], "end": [ 196, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_left_right", "code": "@[simp] theorem gcd_mul_left_right (m n : Nat) : gcd n (m * n) = n", "start": [ 198, 1 ], "end": [ 199, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_right_left", "code": "@[simp] theorem gcd_mul_right_left (m n : Nat) : gcd (n * m) n = n", "start": [ 201, 1 ], "end": [ 202, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_right_right", "code": "@[simp] theorem gcd_mul_right_right (m n : Nat) : gcd n (n * m) = n", "start": [ 204, 1 ], "end": [ 205, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_gcd_self_right_left", "code": "@[simp] theorem gcd_gcd_self_right_left (m n : Nat) : gcd m (gcd m n) = gcd m n", "start": [ 207, 1 ], "end": [ 208, 85 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_gcd_self_right_right", "code": "@[simp] theorem gcd_gcd_self_right_right (m n : Nat) : gcd m (gcd n m) = gcd n m", "start": [ 210, 1 ], "end": [ 211, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_gcd_self_left_right", "code": "@[simp] theorem gcd_gcd_self_left_right (m n : Nat) : gcd (gcd n m) m = gcd n m", "start": [ 213, 1 ], "end": [ 214, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_gcd_self_left_left", "code": "@[simp] theorem gcd_gcd_self_left_left (m n : Nat) : gcd (gcd m n) m = gcd m n", "start": [ 216, 1 ], "end": [ 217, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_add_mul_self", "code": "theorem gcd_add_mul_self (m n k : Nat) : gcd m (n + k * m) = gcd m n", "start": [ 219, 1 ], "end": [ 220, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_zero_iff", "code": "theorem gcd_eq_zero_iff {i j : Nat} : gcd i j = 0 ↔ i = 0 ∧ j = 0", "start": [ 222, 1 ], "end": [ 224, 25 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_eq_iff", "code": "theorem gcd_eq_iff (a b : Nat) :\n gcd a b = g ↔ g ∣ a ∧ g ∣ b ∧ (∀ c, c ∣ a → c ∣ b → c ∣ g)", "start": [ 226, 1 ], "end": [ 237, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.prod_dvd_and_dvd_of_dvd_prod", "code": "def prod_dvd_and_dvd_of_dvd_prod {k m n : Nat} (H : k ∣ m * n) :\n {d : {m' // m' ∣ m} × {n' // n' ∣ n} // k = d.1.val * d.2.val} :=\n if h0 : gcd k m = 0 then\n ⟨⟨⟨0, eq_zero_of_gcd_eq_zero_right h0 ▸ Nat.dvd_refl 0⟩,\n ⟨n, Nat.dvd_refl n⟩⟩,\n eq_zero_of_gcd_eq_zero_left h0 ▸ (Nat.zero_mul n).symm⟩\n else by\n have hd : gcd k m * (k / gcd k m) = k := Nat.mul_div_cancel' (gcd_dvd_left k m)\n refine ⟨⟨⟨gcd k m, gcd_dvd_right k m⟩, ⟨k / gcd k m, ?_⟩⟩, hd.symm⟩\n apply Nat.dvd_of_mul_dvd_mul_left (Nat.pos_of_ne_zero h0)\n rw [hd, ← gcd_mul_right]\n exact Nat.dvd_gcd (Nat.dvd_mul_right _ _) H", "start": [ 239, 1 ], "end": [ 251, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.gcd_mul_dvd_mul_gcd", "code": "theorem gcd_mul_dvd_mul_gcd (k m n : Nat) : gcd k (m * n) ∣ gcd k m * gcd k n", "start": [ 253, 1 ], "end": [ 260, 62 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Int/DivMod.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Dvd.lean", ".lake/packages/lean4/src/lean/Init/RCases.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Order.lean" ]
[ { "full_name": "Int.dvd_def", "code": "protected theorem dvd_def (a b : Int) : (a ∣ b) = Exists (fun c => b = a * c)", "start": [ 26, 1 ], "end": [ 26, 85 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_zero", "code": "protected theorem dvd_zero (n : Int) : n ∣ 0", "start": [ 28, 1 ], "end": [ 28, 75 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_refl", "code": "protected theorem dvd_refl (n : Int) : n ∣ n", "start": [ 30, 1 ], "end": [ 30, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.one_dvd", "code": "protected theorem one_dvd (n : Int) : 1 ∣ n", "start": [ 32, 1 ], "end": [ 32, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_trans", "code": "protected theorem dvd_trans : ∀ {a b c : Int}, a ∣ b → b ∣ c → a ∣ c", "start": [ 34, 1 ], "end": [ 35, 80 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_dvd", "code": "@[norm_cast] theorem ofNat_dvd {m n : Nat} : (↑m : Int) ∣ ↑n ↔ m ∣ n", "start": [ 37, 1 ], "end": [ 45, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_antisymm", "code": "theorem dvd_antisymm {a b : Int} (H1 : 0 ≤ a) (H2 : 0 ≤ b) : a ∣ b → b ∣ a → a = b", "start": [ 47, 1 ], "end": [ 50, 25 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_dvd", "code": "@[simp] protected theorem zero_dvd {n : Int} : 0 ∣ n ↔ n = 0", "start": [ 52, 1 ], "end": [ 54, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_mul_right", "code": "protected theorem dvd_mul_right (a b : Int) : a ∣ a * b", "start": [ 56, 1 ], "end": [ 56, 68 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_mul_left", "code": "protected theorem dvd_mul_left (a b : Int) : b ∣ a * b", "start": [ 58, 1 ], "end": [ 58, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_dvd", "code": "protected theorem neg_dvd {a b : Int} : -a ∣ b ↔ a ∣ b", "start": [ 60, 1 ], "end": [ 62, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_neg", "code": "protected theorem dvd_neg {a b : Int} : a ∣ -b ↔ a ∣ b", "start": [ 64, 1 ], "end": [ 66, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_dvd_natAbs", "code": "@[simp] theorem natAbs_dvd_natAbs {a b : Int} : natAbs a ∣ natAbs b ↔ a ∣ b", "start": [ 68, 1 ], "end": [ 73, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_dvd_left", "code": "theorem ofNat_dvd_left {n : Nat} {z : Int} : (↑n : Int) ∣ z ↔ n ∣ z.natAbs", "start": [ 75, 1 ], "end": [ 76, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_add", "code": "protected theorem dvd_add : ∀ {a b c : Int}, a ∣ b → a ∣ c → a ∣ b + c", "start": [ 78, 1 ], "end": [ 79, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_sub", "code": "protected theorem dvd_sub : ∀ {a b c : Int}, a ∣ b → a ∣ c → a ∣ b - c", "start": [ 81, 1 ], "end": [ 82, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_add_left", "code": "protected theorem dvd_add_left {a b c : Int} (H : a ∣ c) : a ∣ b + c ↔ a ∣ b", "start": [ 84, 1 ], "end": [ 85, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_add_right", "code": "protected theorem dvd_add_right {a b c : Int} (H : a ∣ b) : a ∣ b + c ↔ a ∣ c", "start": [ 87, 1 ], "end": [ 88, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_iff_dvd_of_dvd_sub", "code": "protected theorem dvd_iff_dvd_of_dvd_sub {a b c : Int} (H : a ∣ b - c) : a ∣ b ↔ a ∣ c", "start": [ 90, 1 ], "end": [ 92, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_iff_dvd_of_dvd_add", "code": "protected theorem dvd_iff_dvd_of_dvd_add {a b c : Int} (H : a ∣ b + c) : a ∣ b ↔ a ∣ c", "start": [ 94, 1 ], "end": [ 95, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_dvd", "code": "theorem le_of_dvd {a b : Int} (bpos : 0 < b) (H : a ∣ b) : a ≤ b", "start": [ 97, 1 ], "end": [ 100, 97 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_dvd", "code": "theorem natAbs_dvd {a b : Int} : (a.natAbs : Int) ∣ b ↔ a ∣ b", "start": [ 102, 1 ], "end": [ 105, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_natAbs", "code": "theorem dvd_natAbs {a b : Int} : a ∣ b.natAbs ↔ a ∣ b", "start": [ 107, 1 ], "end": [ 110, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_dvd_self", "code": "theorem natAbs_dvd_self {a : Int} : (a.natAbs : Int) ∣ a", "start": [ 112, 1 ], "end": [ 114, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_natAbs_self", "code": "theorem dvd_natAbs_self {a : Int} : a ∣ (a.natAbs : Int)", "start": [ 116, 1 ], "end": [ 118, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_dvd_right", "code": "theorem ofNat_dvd_right {n : Nat} {z : Int} : z ∣ (↑n : Int) ↔ z.natAbs ∣ n", "start": [ 120, 1 ], "end": [ 121, 41 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_one_of_dvd_one", "code": "theorem eq_one_of_dvd_one {a : Int} (H : 0 ≤ a) (H' : a ∣ 1) : a = 1", "start": [ 123, 1 ], "end": [ 125, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_one_of_mul_eq_one_right", "code": "theorem eq_one_of_mul_eq_one_right {a b : Int} (H : 0 ≤ a) (H' : a * b = 1) : a = 1", "start": [ 127, 1 ], "end": [ 128, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_one_of_mul_eq_one_left", "code": "theorem eq_one_of_mul_eq_one_left {a b : Int} (H : 0 ≤ b) (H' : a * b = 1) : b = 1", "start": [ 130, 1 ], "end": [ 131, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_ediv", "code": "@[simp] theorem zero_ediv : ∀ b : Int, 0 / b = 0", "start": [ 135, 1 ], "end": [ 137, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_zero", "code": "@[simp] protected theorem ediv_zero : ∀ a : Int, a / 0 = 0", "start": [ 139, 1 ], "end": [ 141, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_div", "code": "@[simp] protected theorem zero_div : ∀ b : Int, div 0 b = 0", "start": [ 143, 1 ], "end": [ 145, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_zero", "code": "@[simp] protected theorem div_zero : ∀ a : Int, div a 0 = 0", "start": [ 148, 1 ], "end": [ 150, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_fdiv", "code": "@[simp] theorem zero_fdiv (b : Int) : fdiv 0 b = 0", "start": [ 152, 1 ], "end": [ 152, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_zero", "code": "@[simp] protected theorem fdiv_zero : ∀ a : Int, fdiv a 0 = 0", "start": [ 155, 1 ], "end": [ 158, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_ediv", "code": "theorem div_eq_ediv : ∀ {a b : Int}, 0 ≤ a → 0 ≤ b → a.div b = a / b", "start": [ 162, 1 ], "end": [ 164, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_eq_ediv", "code": "theorem fdiv_eq_ediv : ∀ (a : Int) {b : Int}, 0 ≤ b → fdiv a b = a / b", "start": [ 166, 1 ], "end": [ 168, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_eq_div", "code": "theorem fdiv_eq_div {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : fdiv a b = div a b", "start": [ 170, 1 ], "end": [ 171, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_emod", "code": "@[simp] theorem zero_emod (b : Int) : 0 % b = 0", "start": [ 175, 1 ], "end": [ 175, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_zero", "code": "@[simp] theorem emod_zero : ∀ a : Int, a % 0 = a", "start": [ 177, 1 ], "end": [ 179, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_mod", "code": "@[simp] theorem zero_mod (b : Int) : mod 0 b = 0", "start": [ 181, 1 ], "end": [ 181, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_zero", "code": "@[simp] theorem mod_zero : ∀ a : Int, mod a 0 = a", "start": [ 183, 1 ], "end": [ 185, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.zero_fmod", "code": "@[simp] theorem zero_fmod (b : Int) : fmod 0 b = 0", "start": [ 187, 1 ], "end": [ 187, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_zero", "code": "@[simp] theorem fmod_zero : ∀ a : Int, fmod a 0 = a", "start": [ 189, 1 ], "end": [ 192, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_emod", "code": "@[simp, norm_cast] theorem ofNat_emod (m n : Nat) : (↑(m % n) : Int) = m % n", "start": [ 196, 1 ], "end": [ 196, 84 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_ediv", "code": "theorem emod_add_ediv : ∀ a b : Int, a % b + b * (a / b) = a", "start": [ 201, 1 ], "end": [ 213, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_ediv'", "code": "theorem emod_add_ediv' (a b : Int) : a % b + a / b * b = a", "start": [ 215, 1 ], "end": [ 216, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_add_emod", "code": "theorem ediv_add_emod (a b : Int) : b * (a / b) + a % b = a", "start": [ 218, 1 ], "end": [ 219, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_add_emod'", "code": "theorem ediv_add_emod' (a b : Int) : a / b * b + a % b = a", "start": [ 221, 1 ], "end": [ 222, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_def", "code": "theorem emod_def (a b : Int) : a % b = a - b * (a / b)", "start": [ 224, 1 ], "end": [ 225, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_add_div", "code": "theorem mod_add_div : ∀ a b : Int, mod a b + b * (a.div b) = a", "start": [ 227, 1 ], "end": [ 242, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_add_mod", "code": "theorem div_add_mod (a b : Int) : b * a.div b + mod a b = a", "start": [ 244, 1 ], "end": [ 245, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_add_div'", "code": "theorem mod_add_div' (m k : Int) : mod m k + m.div k * k = m", "start": [ 247, 1 ], "end": [ 248, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_add_mod'", "code": "theorem div_add_mod' (m k : Int) : m.div k * k + mod m k = m", "start": [ 250, 1 ], "end": [ 251, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_def", "code": "theorem mod_def (a b : Int) : mod a b = a - b * a.div b", "start": [ 253, 1 ], "end": [ 254, 51 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_add_fdiv", "code": "theorem fmod_add_fdiv : ∀ a b : Int, a.fmod b + b * a.fdiv b = a", "start": [ 256, 1 ], "end": [ 271, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_add_fmod", "code": "theorem fdiv_add_fmod (a b : Int) : b * a.fdiv b + a.fmod b = a", "start": [ 273, 1 ], "end": [ 274, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_def", "code": "theorem fmod_def (a b : Int) : a.fmod b = a - b * a.fdiv b", "start": [ 276, 1 ], "end": [ 277, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_eq_emod", "code": "theorem fmod_eq_emod (a : Int) {b : Int} (hb : 0 ≤ b) : fmod a b = a % b", "start": [ 281, 1 ], "end": [ 282, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_eq_emod", "code": "theorem mod_eq_emod {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : mod a b = a % b", "start": [ 284, 1 ], "end": [ 285, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_eq_mod", "code": "theorem fmod_eq_mod {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : fmod a b = mod a b", "start": [ 287, 1 ], "end": [ 288, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_neg", "code": "@[simp] protected theorem ediv_neg : ∀ a b : Int, a / (-b) = -(a / b)", "start": [ 292, 1 ], "end": [ 295, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_neg'", "code": "theorem ediv_neg' {a b : Int} (Ha : a < 0) (Hb : 0 < b) : a / b < 0", "start": [ 297, 1 ], "end": [ 299, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_def", "code": "protected theorem div_def (a b : Int) : a / b = Int.ediv a b", "start": [ 301, 1 ], "end": [ 301, 68 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_ediv", "code": "theorem negSucc_ediv (m : Nat) {b : Int} (H : 0 < b) : -[m+1] / b = -(div m b + 1)", "start": [ 303, 1 ], "end": [ 305, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_nonneg", "code": "theorem ediv_nonneg {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a / b", "start": [ 307, 1 ], "end": [ 309, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_nonpos", "code": "theorem ediv_nonpos {a b : Int} (Ha : 0 ≤ a) (Hb : b ≤ 0) : a / b ≤ 0", "start": [ 311, 1 ], "end": [ 312, 97 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_mul_ediv_right", "code": "theorem add_mul_ediv_right (a b : Int) {c : Int} (H : c ≠ 0) : (a + b * c) / c = a / c + b", "start": [ 314, 1 ], "end": [ 342, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_ediv_of_dvd_right", "code": "theorem add_ediv_of_dvd_right {a b c : Int} (H : c ∣ b) : (a + b) / c = a / c + b / c", "start": [ 344, 1 ], "end": [ 348, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_ediv_of_dvd_left", "code": "theorem add_ediv_of_dvd_left {a b c : Int} (H : c ∣ a) : (a + b) / c = a / c + b / c", "start": [ 350, 1 ], "end": [ 351, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_cancel", "code": "@[simp] theorem mul_ediv_cancel (a : Int) {b : Int} (H : b ≠ 0) : (a * b) / b = a", "start": [ 353, 1 ], "end": [ 355, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_cancel_left", "code": "@[simp] theorem mul_ediv_cancel_left (b : Int) (H : a ≠ 0) : (a * b) / a = b", "start": [ 357, 1 ], "end": [ 358, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_nonneg_iff_of_pos", "code": "theorem div_nonneg_iff_of_pos {a b : Int} (h : 0 < b) : a / b ≥ 0 ↔ a ≥ 0", "start": [ 360, 1 ], "end": [ 365, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_zero_of_lt", "code": "theorem ediv_eq_zero_of_lt {a b : Int} (H1 : 0 ≤ a) (H2 : a < b) : a / b = 0", "start": [ 367, 1 ], "end": [ 369, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_mul_ediv_left", "code": "theorem add_mul_ediv_left (a : Int) {b : Int}\n (c : Int) (H : b ≠ 0) : (a + b * c) / b = a / b + c", "start": [ 371, 1 ], "end": [ 373, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_mul_of_pos", "code": "@[simp] theorem mul_ediv_mul_of_pos {a : Int}\n (b c : Int) (H : 0 < a) : (a * b) / (a * c) = b / c", "start": [ 375, 1 ], "end": [ 397, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_mul_of_pos_left", "code": "@[simp] theorem mul_ediv_mul_of_pos_left\n (a : Int) {b : Int} (c : Int) (H : 0 < b) : (a * b) / (c * b) = a / c", "start": [ 399, 1 ], "end": [ 401, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_of_eq_mul_right", "code": "protected theorem ediv_eq_of_eq_mul_right {a b c : Int}\n (H1 : b ≠ 0) (H2 : a = b * c) : a / b = c", "start": [ 403, 1 ], "end": [ 404, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_ediv_of_mul_eq_right", "code": "protected theorem eq_ediv_of_mul_eq_right {a b c : Int}\n (H1 : a ≠ 0) (H2 : a * b = c) : b = c / a", "start": [ 406, 1 ], "end": [ 408, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_of_eq_mul_left", "code": "protected theorem ediv_eq_of_eq_mul_left {a b c : Int}\n (H1 : b ≠ 0) (H2 : a = c * b) : a / b = c", "start": [ 410, 1 ], "end": [ 412, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_def'", "code": "theorem mod_def' (m n : Int) : m % n = emod m n", "start": [ 416, 1 ], "end": [ 416, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.negSucc_emod", "code": "theorem negSucc_emod (m : Nat) {b : Int} (bpos : 0 < b) : -[m+1] % b = b - 1 - m % b", "start": [ 418, 1 ], "end": [ 421, 23 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_negSucc", "code": "theorem emod_negSucc (m : Nat) (n : Int) :\n (Int.negSucc m) % n = Int.subNatNat (Int.natAbs n) (Nat.succ (m % Int.natAbs n))", "start": [ 423, 1 ], "end": [ 424, 90 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mod_ofNat", "code": "theorem ofNat_mod_ofNat (m n : Nat) : (m % n : Int) = ↑(m % n)", "start": [ 426, 1 ], "end": [ 426, 70 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_nonneg", "code": "theorem emod_nonneg : ∀ (a : Int) {b : Int}, b ≠ 0 → 0 ≤ a % b", "start": [ 428, 1 ], "end": [ 430, 88 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_lt_of_pos", "code": "theorem emod_lt_of_pos (a : Int) {b : Int} (H : 0 < b) : a % b < b", "start": [ 432, 1 ], "end": [ 435, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_self_le", "code": "theorem mul_ediv_self_le {x k : Int} (h : k ≠ 0) : k * (x / k) ≤ x", "start": [ 437, 1 ], "end": [ 440, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_mul_ediv_self_add", "code": "theorem lt_mul_ediv_self_add {x k : Int} (h : 0 < k) : x < k * (x / k) + k", "start": [ 442, 1 ], "end": [ 445, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_mul_emod_self", "code": "@[simp] theorem add_mul_emod_self {a b c : Int} : (a + b * c) % c = a % c", "start": [ 447, 1 ], "end": [ 452, 68 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_mul_emod_self_left", "code": "@[simp] theorem add_mul_emod_self_left (a b c : Int) : (a + b * c) % b = a % b", "start": [ 454, 1 ], "end": [ 455, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod_self", "code": "@[simp] theorem add_emod_self {a b : Int} : (a + b) % b = a % b", "start": [ 457, 1 ], "end": [ 458, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod_self_left", "code": "@[simp] theorem add_emod_self_left {a b : Int} : (a + b) % a = b % a", "start": [ 460, 1 ], "end": [ 461, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_emod", "code": "theorem neg_emod {a b : Int} : -a % b = (b - a) % b", "start": [ 463, 1 ], "end": [ 464, 33 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_neg", "code": "@[simp] theorem emod_neg (a b : Int) : a % -b = a % b", "start": [ 466, 1 ], "end": [ 467, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_emod", "code": "@[simp] theorem emod_add_emod (m n k : Int) : (m % n + k) % n = (m + k) % n", "start": [ 469, 1 ], "end": [ 471, 50 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod_emod", "code": "@[simp] theorem add_emod_emod (m n k : Int) : (m + n % k) % k = (m + n) % k", "start": [ 473, 1 ], "end": [ 474, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod", "code": "theorem add_emod (a b n : Int) : (a + b) % n = (a % n + b % n) % n", "start": [ 476, 1 ], "end": [ 477, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod_eq_add_emod_right", "code": "theorem add_emod_eq_add_emod_right {m n k : Int} (i : Int)\n (H : m % n = k % n) : (m + i) % n = (k + i) % n", "start": [ 479, 1 ], "end": [ 481, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_cancel_right", "code": "theorem emod_add_cancel_right {m n k : Int} (i) : (m + i) % n = (k + i) % n ↔ m % n = k % n", "start": [ 483, 1 ], "end": [ 487, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_emod_left", "code": "@[simp] theorem mul_emod_left (a b : Int) : (a * b) % b = 0", "start": [ 489, 1 ], "end": [ 490, 68 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_emod_right", "code": "@[simp] theorem mul_emod_right (a b : Int) : (a * b) % a = 0", "start": [ 492, 1 ], "end": [ 493, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_emod", "code": "theorem mul_emod (a b n : Int) : (a * b) % n = (a % n) * (b % n) % n", "start": [ 495, 1 ], "end": [ 499, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_self", "code": "@[local simp] theorem emod_self {a : Int} : a % a = 0", "start": [ 501, 1 ], "end": [ 502, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_emod_of_dvd", "code": "@[simp] theorem emod_emod_of_dvd (n : Int) {m k : Int}\n (h : m ∣ k) : (n % k) % m = n % m", "start": [ 504, 1 ], "end": [ 508, 62 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_emod", "code": "@[simp] theorem emod_emod (a b : Int) : (a % b) % b = a % b", "start": [ 510, 1 ], "end": [ 511, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_emod", "code": "theorem sub_emod (a b n : Int) : (a - b) % n = (a % n - b % n) % n", "start": [ 513, 1 ], "end": [ 515, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_eq_of_lt", "code": "theorem emod_eq_of_lt {a b : Int} (H1 : 0 ≤ a) (H2 : a < b) : a % b = a", "start": [ 517, 1 ], "end": [ 520, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_self_add_one", "code": "@[simp] theorem emod_self_add_one {x : Int} (h : 0 ≤ x) : x % (x + 1) = x", "start": [ 522, 1 ], "end": [ 523, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_cancel_of_emod_eq_zero", "code": "theorem mul_ediv_cancel_of_emod_eq_zero {a b : Int} (H : a % b = 0) : b * (a / b) = a", "start": [ 527, 1 ], "end": [ 528, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_mul_cancel_of_emod_eq_zero", "code": "theorem ediv_mul_cancel_of_emod_eq_zero {a b : Int} (H : a % b = 0) : a / b * b = a", "start": [ 530, 1 ], "end": [ 531, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_two_eq", "code": "theorem emod_two_eq (x : Int) : x % 2 = 0 ∨ x % 2 = 1", "start": [ 533, 1 ], "end": [ 538, 20 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_emod_eq_add_emod_left", "code": "theorem add_emod_eq_add_emod_left {m n k : Int} (i : Int)\n (H : m % n = k % n) : (i + m) % n = (i + k) % n", "start": [ 540, 1 ], "end": [ 542, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_cancel_left", "code": "theorem emod_add_cancel_left {m n k i : Int} : (i + m) % n = (i + k) % n ↔ m % n = k % n", "start": [ 544, 1 ], "end": [ 545, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_sub_cancel_right", "code": "theorem emod_sub_cancel_right {m n k : Int} (i) : (m - i) % n = (k - i) % n ↔ m % n = k % n", "start": [ 547, 1 ], "end": [ 548, 26 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_eq_emod_iff_emod_sub_eq_zero", "code": "theorem emod_eq_emod_iff_emod_sub_eq_zero {m n k : Int} : m % n = k % n ↔ (m - k) % n = 0", "start": [ 550, 1 ], "end": [ 551, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_emod_unique", "code": "protected theorem ediv_emod_unique {a b r q : Int} (h : 0 < b) :\n a / b = q ∧ a % b = r ↔ r + b * q = a ∧ 0 ≤ r ∧ r < b", "start": [ 553, 1 ], "end": [ 562, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_emod_mul_of_pos", "code": "@[simp] theorem mul_emod_mul_of_pos\n {a : Int} (b c : Int) (H : 0 < a) : (a * b) % (a * c) = a * (b % c)", "start": [ 564, 1 ], "end": [ 566, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_ediv_add_one_mul_self", "code": "theorem lt_ediv_add_one_mul_self (a : Int) {b : Int} (H : 0 < b) : a < (a / b + 1) * b", "start": [ 568, 1 ], "end": [ 570, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_div_le_natAbs", "code": "theorem natAbs_div_le_natAbs (a b : Int) : natAbs (a / b) ≤ natAbs a", "start": [ 572, 1 ], "end": [ 580, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_le_self", "code": "theorem ediv_le_self {a : Int} (b : Int) (Ha : 0 ≤ a) : a / b ≤ a", "start": [ 582, 1 ], "end": [ 584, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_of_emod_eq_zero", "code": "theorem dvd_of_emod_eq_zero {a b : Int} (H : b % a = 0) : a ∣ b", "start": [ 586, 1 ], "end": [ 587, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_emod_sub_self", "code": "theorem dvd_emod_sub_self {x : Int} {m : Nat} : (m : Int) ∣ x % m - x", "start": [ 589, 1 ], "end": [ 591, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_eq_zero_of_dvd", "code": "theorem emod_eq_zero_of_dvd : ∀ {a b : Int}, a ∣ b → b % a = 0", "start": [ 593, 1 ], "end": [ 594, 40 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_iff_emod_eq_zero", "code": "theorem dvd_iff_emod_eq_zero (a b : Int) : a ∣ b ↔ b % a = 0", "start": [ 596, 1 ], "end": [ 597, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.decidableDvd", "code": "instance decidableDvd : DecidableRel (α := Int) (· ∣ ·) := fun _ _ =>\n decidable_of_decidable_of_iff (dvd_iff_emod_eq_zero ..).symm", "start": [ 599, 1 ], "end": [ 600, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_pos_of_not_dvd", "code": "theorem emod_pos_of_not_dvd {a b : Int} (h : ¬ a ∣ b) : a = 0 ∨ 0 < b % a", "start": [ 602, 1 ], "end": [ 606, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_assoc", "code": "protected theorem mul_ediv_assoc (a : Int) : ∀ {b c : Int}, c ∣ b → (a * b) / c = a * (b / c)", "start": [ 608, 1 ], "end": [ 611, 91 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_assoc'", "code": "protected theorem mul_ediv_assoc' (b : Int) {a c : Int}\n (h : c ∣ a) : (a * b) / c = a / c * b", "start": [ 613, 1 ], "end": [ 615, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_ediv_of_dvd", "code": "theorem neg_ediv_of_dvd : ∀ {a b : Int}, b ∣ a → (-a) / b = -(a / b)", "start": [ 617, 1 ], "end": [ 621, 96 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_ediv_of_dvd", "code": "theorem sub_ediv_of_dvd (a : Int) {b c : Int}\n (hcb : c ∣ b) : (a - b) / c = a / c - b / c", "start": [ 623, 1 ], "end": [ 626, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_one", "code": "@[simp] theorem ediv_one : ∀ a : Int, a / 1 = a", "start": [ 628, 1 ], "end": [ 630, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_one", "code": "@[simp] theorem emod_one (a : Int) : a % 1 = 0", "start": [ 632, 1 ], "end": [ 633, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_self", "code": "@[simp] protected theorem ediv_self {a : Int} (H : a ≠ 0) : a / a = 1", "start": [ 635, 1 ], "end": [ 636, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_sub_cancel", "code": "@[simp]\ntheorem emod_sub_cancel (x y : Int): (x - y)%y = x%y", "start": [ 638, 1 ], "end": [ 643, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_sub_of_emod_eq", "code": "theorem dvd_sub_of_emod_eq {a b c : Int} (h : a % b = c) : b ∣ a - c", "start": [ 645, 1 ], "end": [ 650, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_mul_cancel", "code": "protected theorem ediv_mul_cancel {a b : Int} (H : b ∣ a) : a / b * b = a", "start": [ 652, 1 ], "end": [ 653, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_ediv_cancel'", "code": "protected theorem mul_ediv_cancel' {a b : Int} (H : a ∣ b) : a * (b / a) = b", "start": [ 655, 1 ], "end": [ 656, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_mul_of_ediv_eq_right", "code": "protected theorem eq_mul_of_ediv_eq_right {a b c : Int}\n (H1 : b ∣ a) (H2 : a / b = c) : a = b * c", "start": [ 658, 1 ], "end": [ 659, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_iff_eq_mul_right", "code": "protected theorem ediv_eq_iff_eq_mul_right {a b c : Int}\n (H : b ≠ 0) (H' : b ∣ a) : a / b = c ↔ a = b * c", "start": [ 661, 1 ], "end": [ 663, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_iff_eq_mul_left", "code": "protected theorem ediv_eq_iff_eq_mul_left {a b c : Int}\n (H : b ≠ 0) (H' : b ∣ a) : a / b = c ↔ a = c * b", "start": [ 665, 1 ], "end": [ 667, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_mul_of_ediv_eq_left", "code": "protected theorem eq_mul_of_ediv_eq_left {a b c : Int}\n (H1 : b ∣ a) (H2 : a / b = c) : a = c * b", "start": [ 669, 1 ], "end": [ 671, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_zero_of_ediv_eq_zero", "code": "protected theorem eq_zero_of_ediv_eq_zero {d n : Int} (h : d ∣ n) (H : n / d = 0) : n = 0", "start": [ 673, 1 ], "end": [ 674, 49 ], "kind": "commanddeclaration" }, { "full_name": "Int.sub_ediv_of_dvd_sub", "code": "theorem sub_ediv_of_dvd_sub {a b c : Int}\n (hcab : c ∣ a - b) : (a - b) / c = a / c - b / c", "start": [ 676, 1 ], "end": [ 678, 93 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_left_inj", "code": "@[simp] protected theorem ediv_left_inj {a b d : Int}\n (hda : d ∣ a) (hdb : d ∣ b) : a / d = b / d ↔ a = b", "start": [ 680, 1 ], "end": [ 683, 65 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_sign", "code": "theorem ediv_sign : ∀ a b, a / sign b = a * sign b", "start": [ 685, 1 ], "end": [ 688, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_mul_le", "code": "protected theorem ediv_mul_le (a : Int) {b : Int} (H : b ≠ 0) : a / b * b ≤ a", "start": [ 692, 1 ], "end": [ 693, 82 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_mul_le_mul_left", "code": "theorem le_of_mul_le_mul_left {a b c : Int} (w : a * b ≤ a * c) (h : 0 < a) : b ≤ c", "start": [ 695, 1 ], "end": [ 700, 31 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_of_mul_le_mul_right", "code": "theorem le_of_mul_le_mul_right {a b c : Int} (w : b * a ≤ c * a) (h : 0 < a) : b ≤ c", "start": [ 702, 1 ], "end": [ 704, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_le_of_le_mul", "code": "protected theorem ediv_le_of_le_mul {a b c : Int} (H : 0 < c) (H' : a ≤ b * c) : a / c ≤ b", "start": [ 706, 1 ], "end": [ 707, 82 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_lt_of_lt_ediv", "code": "protected theorem mul_lt_of_lt_ediv {a b c : Int} (H : 0 < c) (H3 : a < b / c) : a * c < b", "start": [ 709, 1 ], "end": [ 710, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_le_of_le_ediv", "code": "protected theorem mul_le_of_le_ediv {a b c : Int} (H1 : 0 < c) (H2 : a ≤ b / c) : a * c ≤ b", "start": [ 712, 1 ], "end": [ 714, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_lt_of_lt_mul", "code": "protected theorem ediv_lt_of_lt_mul {a b c : Int} (H : 0 < c) (H' : a < b * c) : a / c < b", "start": [ 716, 1 ], "end": [ 717, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_mul_lt_mul_left", "code": "theorem lt_of_mul_lt_mul_left {a b c : Int} (w : a * b < a * c) (h : 0 ≤ a) : b < c", "start": [ 719, 1 ], "end": [ 727, 70 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_of_mul_lt_mul_right", "code": "theorem lt_of_mul_lt_mul_right {a b c : Int} (w : b * a < c * a) (h : 0 ≤ a) : b < c", "start": [ 729, 1 ], "end": [ 731, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_ediv_of_mul_le", "code": "protected theorem le_ediv_of_mul_le {a b c : Int} (H1 : 0 < c) (H2 : a * c ≤ b) : a ≤ b / c", "start": [ 733, 1 ], "end": [ 735, 101 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_ediv_iff_mul_le", "code": "protected theorem le_ediv_iff_mul_le {a b c : Int} (H : 0 < c) : a ≤ b / c ↔ a * c ≤ b", "start": [ 737, 1 ], "end": [ 738, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_le_ediv", "code": "protected theorem ediv_le_ediv {a b c : Int} (H : 0 < c) (H' : a ≤ b) : a / c ≤ b / c", "start": [ 740, 1 ], "end": [ 741, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_mul_of_ediv_lt", "code": "protected theorem lt_mul_of_ediv_lt {a b c : Int} (H1 : 0 < c) (H2 : a / c < b) : a < b * c", "start": [ 743, 1 ], "end": [ 744, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_lt_iff_lt_mul", "code": "protected theorem ediv_lt_iff_lt_mul {a b c : Int} (H : 0 < c) : a / c < b ↔ a < b * c", "start": [ 746, 1 ], "end": [ 747, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_mul_of_ediv_le", "code": "protected theorem le_mul_of_ediv_le {a b c : Int} (H1 : 0 ≤ b) (H2 : b ∣ a) (H3 : a / b ≤ c) :\n a ≤ c * b", "start": [ 749, 1 ], "end": [ 751, 76 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_ediv_of_mul_lt", "code": "protected theorem lt_ediv_of_mul_lt {a b c : Int} (H1 : 0 ≤ b) (H2 : b ∣ c) (H3 : a * b < c) :\n a < c / b", "start": [ 753, 1 ], "end": [ 755, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_ediv_iff_mul_lt", "code": "protected theorem lt_ediv_iff_mul_lt {a b : Int} (c : Int) (H : 0 < c) (H' : c ∣ b) :\n a < b / c ↔ a * c < b", "start": [ 757, 1 ], "end": [ 759, 71 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_pos_of_pos_of_dvd", "code": "theorem ediv_pos_of_pos_of_dvd {a b : Int} (H1 : 0 < a) (H2 : 0 ≤ b) (H3 : b ∣ a) : 0 < a / b", "start": [ 761, 1 ], "end": [ 762, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.ediv_eq_ediv_of_mul_eq_mul", "code": "theorem ediv_eq_ediv_of_mul_eq_mul {a b c d : Int}\n (H2 : d ∣ c) (H3 : b ≠ 0) (H4 : d ≠ 0) (H5 : a * d = b * c) : a / b = c / d", "start": [ 764, 1 ], "end": [ 767, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_one", "code": "@[simp] protected theorem div_one : ∀ a : Int, a.div 1 = a", "start": [ 771, 1 ], "end": [ 773, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_neg", "code": "@[simp] protected theorem div_neg : ∀ a b : Int, a.div (-b) = -(a.div b)", "start": [ 776, 1 ], "end": [ 779, 56 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_div", "code": "@[simp] protected theorem neg_div : ∀ a b : Int, (-a).div b = -(a.div b)", "start": [ 782, 1 ], "end": [ 785, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.neg_div_neg", "code": "protected theorem neg_div_neg (a b : Int) : (-a).div (-b) = a.div b", "start": [ 787, 1 ], "end": [ 788, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_nonneg", "code": "protected theorem div_nonneg {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a.div b", "start": [ 790, 1 ], "end": [ 792, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_nonpos", "code": "protected theorem div_nonpos {a b : Int} (Ha : 0 ≤ a) (Hb : b ≤ 0) : a.div b ≤ 0", "start": [ 794, 1 ], "end": [ 795, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_zero_of_lt", "code": "theorem div_eq_zero_of_lt {a b : Int} (H1 : 0 ≤ a) (H2 : a < b) : a.div b = 0", "start": [ 797, 1 ], "end": [ 799, 87 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_cancel", "code": "@[simp] protected theorem mul_div_cancel (a : Int) {b : Int} (H : b ≠ 0) : (a * b).div b = a", "start": [ 801, 1 ], "end": [ 812, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_cancel_left", "code": "@[simp] protected theorem mul_div_cancel_left (b : Int) (H : a ≠ 0) : (a * b).div a = b", "start": [ 814, 1 ], "end": [ 815, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_self", "code": "@[simp] protected theorem div_self {a : Int} (H : a ≠ 0) : a.div a = 1", "start": [ 817, 1 ], "end": [ 818, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_cancel_of_mod_eq_zero", "code": "theorem mul_div_cancel_of_mod_eq_zero {a b : Int} (H : a.mod b = 0) : b * (a.div b) = a", "start": [ 820, 1 ], "end": [ 821, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_mul_cancel_of_mod_eq_zero", "code": "theorem div_mul_cancel_of_mod_eq_zero {a b : Int} (H : a.mod b = 0) : a.div b * b = a", "start": [ 823, 1 ], "end": [ 824, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_of_mod_eq_zero", "code": "theorem dvd_of_mod_eq_zero {a b : Int} (H : mod b a = 0) : a ∣ b", "start": [ 826, 1 ], "end": [ 827, 52 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_assoc", "code": "protected theorem mul_div_assoc (a : Int) : ∀ {b c : Int}, c ∣ b → (a * b).div c = a * (b.div c)", "start": [ 829, 1 ], "end": [ 832, 89 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_assoc'", "code": "protected theorem mul_div_assoc' (b : Int) {a c : Int} (h : c ∣ a) :\n (a * b).div c = a.div c * b", "start": [ 834, 1 ], "end": [ 836, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_dvd_div", "code": "theorem div_dvd_div : ∀ {a b c : Int}, a ∣ b → b ∣ c → b.div a ∣ c.div a", "start": [ 838, 1 ], "end": [ 843, 30 ], "kind": "commanddeclaration" }, { "full_name": "Int.natAbs_div", "code": "@[simp] theorem natAbs_div (a b : Int) : natAbs (a.div b) = (natAbs a).div (natAbs b)", "start": [ 845, 1 ], "end": [ 850, 95 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_of_eq_mul_right", "code": "protected theorem div_eq_of_eq_mul_right {a b c : Int}\n (H1 : b ≠ 0) (H2 : a = b * c) : a.div b = c", "start": [ 852, 1 ], "end": [ 853, 92 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_div_of_mul_eq_right", "code": "protected theorem eq_div_of_mul_eq_right {a b c : Int}\n (H1 : a ≠ 0) (H2 : a * b = c) : b = c.div a", "start": [ 855, 1 ], "end": [ 857, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_mod", "code": "theorem ofNat_mod (m n : Nat) : (↑(m % n) : Int) = mod m n", "start": [ 861, 1 ], "end": [ 861, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_one", "code": "@[simp] theorem mod_one (a : Int) : mod a 1 = 0", "start": [ 863, 1 ], "end": [ 864, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_eq_of_lt", "code": "theorem mod_eq_of_lt {a b : Int} (H1 : 0 ≤ a) (H2 : a < b) : mod a b = a", "start": [ 866, 1 ], "end": [ 867, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_lt_of_pos", "code": "theorem mod_lt_of_pos (a : Int) {b : Int} (H : 0 < b) : mod a b < b", "start": [ 869, 1 ], "end": [ 873, 78 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_nonneg", "code": "theorem mod_nonneg : ∀ {a : Int} (b : Int), 0 ≤ a → 0 ≤ mod a b", "start": [ 875, 1 ], "end": [ 876, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_neg", "code": "@[simp] theorem mod_neg (a b : Int) : mod a (-b) = mod a b", "start": [ 878, 1 ], "end": [ 879, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_mod_left", "code": "@[simp] theorem mul_mod_left (a b : Int) : (a * b).mod b = 0", "start": [ 881, 1 ], "end": [ 883, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_mod_right", "code": "@[simp] theorem mul_mod_right (a b : Int) : (a * b).mod a = 0", "start": [ 885, 1 ], "end": [ 886, 34 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_eq_zero_of_dvd", "code": "theorem mod_eq_zero_of_dvd : ∀ {a b : Int}, a ∣ b → mod b a = 0", "start": [ 888, 1 ], "end": [ 889, 39 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_iff_mod_eq_zero", "code": "theorem dvd_iff_mod_eq_zero (a b : Int) : a ∣ b ↔ mod b a = 0", "start": [ 891, 1 ], "end": [ 892, 43 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_mul_cancel", "code": "protected theorem div_mul_cancel {a b : Int} (H : b ∣ a) : a.div b * b = a", "start": [ 894, 1 ], "end": [ 895, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_div_cancel'", "code": "protected theorem mul_div_cancel' {a b : Int} (H : a ∣ b) : a * b.div a = b", "start": [ 897, 1 ], "end": [ 898, 42 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_mul_of_div_eq_right", "code": "protected theorem eq_mul_of_div_eq_right {a b c : Int}\n (H1 : b ∣ a) (H2 : a.div b = c) : a = b * c", "start": [ 900, 1 ], "end": [ 901, 88 ], "kind": "commanddeclaration" }, { "full_name": "Int.mod_self", "code": "@[simp] theorem mod_self {a : Int} : a.mod a = 0", "start": [ 903, 1 ], "end": [ 904, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_div_add_one_mul_self", "code": "theorem lt_div_add_one_mul_self (a : Int) {b : Int} (H : 0 < b) : a < (a.div b + 1) * b", "start": [ 906, 1 ], "end": [ 908, 72 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_iff_eq_mul_right", "code": "protected theorem div_eq_iff_eq_mul_right {a b c : Int}\n (H : b ≠ 0) (H' : b ∣ a) : a.div b = c ↔ a = b * c", "start": [ 910, 1 ], "end": [ 912, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_iff_eq_mul_left", "code": "protected theorem div_eq_iff_eq_mul_left {a b c : Int}\n (H : b ≠ 0) (H' : b ∣ a) : a.div b = c ↔ a = c * b", "start": [ 914, 1 ], "end": [ 916, 60 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_mul_of_div_eq_left", "code": "protected theorem eq_mul_of_div_eq_left {a b c : Int}\n (H1 : b ∣ a) (H2 : a.div b = c) : a = c * b", "start": [ 918, 1 ], "end": [ 920, 54 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_of_eq_mul_left", "code": "protected theorem div_eq_of_eq_mul_left {a b c : Int}\n (H1 : b ≠ 0) (H2 : a = c * b) : a.div b = c", "start": [ 922, 1 ], "end": [ 924, 59 ], "kind": "commanddeclaration" }, { "full_name": "Int.eq_zero_of_div_eq_zero", "code": "protected theorem eq_zero_of_div_eq_zero {d n : Int} (h : d ∣ n) (H : n.div d = 0) : n = 0", "start": [ 926, 1 ], "end": [ 927, 48 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_left_inj", "code": "@[simp] protected theorem div_left_inj {a b d : Int}\n (hda : d ∣ a) (hdb : d ∣ b) : a.div d = b.div d ↔ a = b", "start": [ 929, 1 ], "end": [ 932, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_sign", "code": "theorem div_sign : ∀ a b, a.div (sign b) = a * sign b", "start": [ 934, 1 ], "end": [ 937, 58 ], "kind": "commanddeclaration" }, { "full_name": "Int.sign_eq_div_abs", "code": "protected theorem sign_eq_div_abs (a : Int) : sign a = a.div (natAbs a)", "start": [ 939, 1 ], "end": [ 942, 37 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_nonneg", "code": "theorem fdiv_nonneg {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a.fdiv b", "start": [ 946, 1 ], "end": [ 948, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_nonpos", "code": "theorem fdiv_nonpos : ∀ {a b : Int}, 0 ≤ a → b ≤ 0 → a.fdiv b ≤ 0", "start": [ 951, 1 ], "end": [ 952, 81 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_neg'", "code": "theorem fdiv_neg' : ∀ {a b : Int}, a < 0 → 0 < b → a.fdiv b < 0", "start": [ 954, 1 ], "end": [ 955, 46 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_one", "code": "@[simp] theorem fdiv_one : ∀ a : Int, a.fdiv 1 = a", "start": [ 957, 1 ], "end": [ 960, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_fdiv_cancel", "code": "@[simp] theorem mul_fdiv_cancel (a : Int) {b : Int} (H : b ≠ 0) : fdiv (a * b) b = a", "start": [ 962, 1 ], "end": [ 971, 27 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_fdiv_cancel_left", "code": "@[simp] theorem mul_fdiv_cancel_left (b : Int) (H : a ≠ 0) : fdiv (a * b) a = b", "start": [ 973, 1 ], "end": [ 974, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_self", "code": "@[simp] protected theorem fdiv_self {a : Int} (H : a ≠ 0) : a.fdiv a = 1", "start": [ 976, 1 ], "end": [ 977, 61 ], "kind": "commanddeclaration" }, { "full_name": "Int.lt_fdiv_add_one_mul_self", "code": "theorem lt_fdiv_add_one_mul_self (a : Int) {b : Int} (H : 0 < b) : a < (a.fdiv b + 1) * b", "start": [ 979, 1 ], "end": [ 980, 69 ], "kind": "commanddeclaration" }, { "full_name": "Int.ofNat_fmod", "code": "theorem ofNat_fmod (m n : Nat) : ↑(m % n) = fmod m n", "start": [ 984, 1 ], "end": [ 985, 47 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_one", "code": "@[simp] theorem fmod_one (a : Int) : a.fmod 1 = 0", "start": [ 987, 1 ], "end": [ 988, 45 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_eq_of_lt", "code": "theorem fmod_eq_of_lt {a b : Int} (H1 : 0 ≤ a) (H2 : a < b) : a.fmod b = a", "start": [ 990, 1 ], "end": [ 991, 79 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_nonneg", "code": "theorem fmod_nonneg {a b : Int} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a.fmod b", "start": [ 993, 1 ], "end": [ 994, 38 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_nonneg'", "code": "theorem fmod_nonneg' (a : Int) {b : Int} (hb : 0 < b) : 0 ≤ a.fmod b", "start": [ 996, 1 ], "end": [ 997, 74 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_lt_of_pos", "code": "theorem fmod_lt_of_pos (a : Int) {b : Int} (H : 0 < b) : a.fmod b < b", "start": [ 999, 1 ], "end": [ 1000, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_fmod_left", "code": "@[simp] theorem mul_fmod_left (a b : Int) : (a * b).fmod b = 0", "start": [ 1002, 1 ], "end": [ 1004, 75 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_fmod_right", "code": "@[simp] theorem mul_fmod_right (a b : Int) : (a * b).fmod a = 0", "start": [ 1006, 1 ], "end": [ 1007, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.fmod_self", "code": "@[simp] theorem fmod_self {a : Int} : a.fmod a = 0", "start": [ 1009, 1 ], "end": [ 1010, 55 ], "kind": "commanddeclaration" }, { "full_name": "Int.div_eq_ediv_of_dvd", "code": "theorem div_eq_ediv_of_dvd {a b : Int} (h : b ∣ a) : a.div b = a / b", "start": [ 1014, 1 ], "end": [ 1017, 77 ], "kind": "commanddeclaration" }, { "full_name": "Int.fdiv_eq_ediv_of_dvd", "code": "theorem fdiv_eq_ediv_of_dvd : ∀ {a b : Int}, b ∣ a → a.fdiv b = a / b", "start": [ 1019, 1 ], "end": [ 1023, 64 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_emod", "code": "@[simp] theorem bmod_emod : bmod x m % m = x % m", "start": [ 1027, 1 ], "end": [ 1029, 32 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_bmod_congr", "code": "@[simp]\ntheorem emod_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n) n = Int.bmod x n", "start": [ 1031, 1 ], "end": [ 1033, 29 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_def", "code": "theorem bmod_def (x : Int) (m : Nat) : bmod x m =\n if (x % m) < (m + 1) / 2 then\n x % m\n else\n (x % m) - m", "start": [ 1035, 1 ], "end": [ 1040, 6 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_pos", "code": "theorem bmod_pos (x : Int) (m : Nat) (p : x % m < (m + 1) / 2) : bmod x m = x % m", "start": [ 1042, 1 ], "end": [ 1043, 21 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_neg", "code": "theorem bmod_neg (x : Int) (m : Nat) (p : x % m ≥ (m + 1) / 2) : bmod x m = (x % m) - m", "start": [ 1045, 1 ], "end": [ 1046, 36 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_one_is_zero", "code": "@[simp]\ntheorem bmod_one_is_zero (x : Int) : Int.bmod x 1 = 0", "start": [ 1048, 1 ], "end": [ 1050, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_add_cancel", "code": "@[simp]\ntheorem bmod_add_cancel (x : Int) (n : Nat) : Int.bmod (x + n) n = Int.bmod x n", "start": [ 1052, 1 ], "end": [ 1054, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_add_mul_cancel", "code": "@[simp]\ntheorem bmod_add_mul_cancel (x : Int) (n : Nat) (k : Int) : Int.bmod (x + n * k) n = Int.bmod x n", "start": [ 1056, 1 ], "end": [ 1058, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_sub_cancel", "code": "@[simp]\ntheorem bmod_sub_cancel (x : Int) (n : Nat) : Int.bmod (x - n) n = Int.bmod x n", "start": [ 1060, 1 ], "end": [ 1062, 18 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_add_bmod_congr", "code": "@[simp]\ntheorem emod_add_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n + y) n = Int.bmod (x + y) n", "start": [ 1064, 1 ], "end": [ 1067, 66 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_mul_bmod_congr", "code": "@[simp]\ntheorem emod_mul_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n * y) n = Int.bmod (x * y) n", "start": [ 1069, 1 ], "end": [ 1072, 73 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_add_bmod_congr", "code": "@[simp]\ntheorem bmod_add_bmod_congr : Int.bmod (Int.bmod x n + y) n = Int.bmod (x + y) n", "start": [ 1074, 1 ], "end": [ 1082, 9 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_bmod_bmod", "code": "@[simp] theorem add_bmod_bmod : Int.bmod (x + Int.bmod y n) n = Int.bmod (x + y) n", "start": [ 1084, 1 ], "end": [ 1085, 63 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_mul_bmod", "code": "@[simp]\ntheorem bmod_mul_bmod : Int.bmod (Int.bmod x n * y) n = Int.bmod (x * y) n", "start": [ 1087, 1 ], "end": [ 1095, 9 ], "kind": "commanddeclaration" }, { "full_name": "Int.mul_bmod_bmod", "code": "@[simp] theorem mul_bmod_bmod : Int.bmod (x * Int.bmod y n) n = Int.bmod (x * y) n", "start": [ 1097, 1 ], "end": [ 1098, 53 ], "kind": "commanddeclaration" }, { "full_name": "Int.add_bmod", "code": "theorem add_bmod (a b : Int) (n : Nat) : (a + b).bmod n = (a.bmod n + b.bmod n).bmod n", "start": [ 1100, 1 ], "end": [ 1101, 7 ], "kind": "commanddeclaration" }, { "full_name": "Int.emod_bmod", "code": "theorem emod_bmod {x : Int} {m : Nat} : bmod (x % m) m = bmod x m", "start": [ 1103, 1 ], "end": [ 1104, 14 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_bmod", "code": "@[simp] theorem bmod_bmod : bmod (bmod x m) m = bmod x m", "start": [ 1106, 1 ], "end": [ 1108, 6 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_zero", "code": "@[simp] theorem bmod_zero : Int.bmod 0 m = 0", "start": [ 1110, 1 ], "end": [ 1123, 21 ], "kind": "commanddeclaration" }, { "full_name": "Int.dvd_bmod_sub_self", "code": "theorem dvd_bmod_sub_self {x : Int} {m : Nat} : (m : Int) ∣ bmod x m - x", "start": [ 1125, 1 ], "end": [ 1130, 57 ], "kind": "commanddeclaration" }, { "full_name": "Int.le_bmod", "code": "theorem le_bmod {x : Int} {m : Nat} (h : 0 < m) : - (m/2) ≤ Int.bmod x m", "start": [ 1132, 1 ], "end": [ 1163, 44 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_lt", "code": "theorem bmod_lt {x : Int} {m : Nat} (h : 0 < m) : bmod x m < (m + 1) / 2", "start": [ 1165, 1 ], "end": [ 1173, 35 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_le", "code": "theorem bmod_le {x : Int} {m : Nat} (h : 0 < m) : bmod x m ≤ (m - 1) / 2", "start": [ 1175, 1 ], "end": [ 1186, 16 ], "kind": "commanddeclaration" }, { "full_name": "Int.bmod_natAbs_plus_one", "code": "theorem bmod_natAbs_plus_one (x : Int) (w : 1 < x.natAbs) : bmod x (x.natAbs + 1) = - x.sign", "start": [ 1189, 1 ], "end": [ 1229, 35 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Option/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/List/BasicAux.lean", ".lake/packages/lean4/src/lean/Init/Data/List/Control.lean", ".lake/packages/lean4/src/lean/Init/Data/Bool.lean", ".lake/packages/lean4/src/lean/Init/Hints.lean", ".lake/packages/lean4/src/lean/Init/Control/Lawful/Basic.lean", ".lake/packages/lean4/src/lean/Init/PropLemmas.lean" ]
[ { "full_name": "List.cons_ne_nil", "code": "theorem cons_ne_nil (a : α) (l : List α) : a :: l ≠ []", "start": [ 71, 1 ], "end": [ 71, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_ne_self", "code": "@[simp]\ntheorem cons_ne_self (a : α) (l : List α) : a :: l ≠ l", "start": [ 73, 1 ], "end": [ 74, 100 ], "kind": "commanddeclaration" }, { "full_name": "List.head_eq_of_cons_eq", "code": "theorem head_eq_of_cons_eq (H : h₁ :: t₁ = h₂ :: t₂) : h₁ = h₂", "start": [ 76, 1 ], "end": [ 76, 81 ], "kind": "commanddeclaration" }, { "full_name": "List.tail_eq_of_cons_eq", "code": "theorem tail_eq_of_cons_eq (H : h₁ :: t₁ = h₂ :: t₂) : t₁ = t₂", "start": [ 78, 1 ], "end": [ 78, 81 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_inj_right", "code": "theorem cons_inj_right (a : α) {l l' : List α} : a :: l = a :: l' ↔ l = l'", "start": [ 80, 1 ], "end": [ 81, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_inj", "code": "@[deprecated (since := \"2024-06-15\")] abbrev cons_inj := @cons_inj_right", "start": [ 83, 1 ], "end": [ 83, 73 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_eq_cons", "code": "theorem cons_eq_cons {a b : α} {l l' : List α} : a :: l = b :: l' ↔ a = b ∧ l = l'", "start": [ 85, 1 ], "end": [ 86, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_cons_of_ne_nil", "code": "theorem exists_cons_of_ne_nil : ∀ {l : List α}, l ≠ [] → ∃ b L, l = b :: L", "start": [ 88, 1 ], "end": [ 89, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_nil_of_length_eq_zero", "code": "theorem eq_nil_of_length_eq_zero (_ : length l = 0) : l = []", "start": [ 93, 1 ], "end": [ 93, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_nil_of_length_eq_add_one", "code": "theorem ne_nil_of_length_eq_add_one (_ : length l = n + 1) : l ≠ []", "start": [ 95, 1 ], "end": [ 95, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_nil_of_length_eq_succ", "code": "@[deprecated ne_nil_of_length_eq_add_one (since := \"2024-06-16\")]\nabbrev ne_nil_of_length_eq_succ := @ne_nil_of_length_eq_add_one", "start": [ 97, 1 ], "end": [ 98, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.length_eq_zero", "code": "@[simp] theorem length_eq_zero : length l = 0 ↔ l = []", "start": [ 100, 1 ], "end": [ 101, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.length_pos_of_mem", "code": "theorem length_pos_of_mem {a : α} : ∀ {l : List α}, a ∈ l → 0 < length l", "start": [ 103, 1 ], "end": [ 104, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_mem_of_length_pos", "code": "theorem exists_mem_of_length_pos : ∀ {l : List α}, 0 < length l → ∃ a, a ∈ l", "start": [ 106, 1 ], "end": [ 107, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.length_pos_iff_exists_mem", "code": "theorem length_pos_iff_exists_mem {l : List α} : 0 < length l ↔ ∃ a, a ∈ l", "start": [ 109, 1 ], "end": [ 110, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_cons_of_length_pos", "code": "theorem exists_cons_of_length_pos : ∀ {l : List α}, 0 < l.length → ∃ h t, l = h :: t", "start": [ 112, 1 ], "end": [ 113, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.length_pos_iff_exists_cons", "code": "theorem length_pos_iff_exists_cons :\n ∀ {l : List α}, 0 < l.length ↔ ∃ h t, l = h :: t", "start": [ 115, 1 ], "end": [ 117, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_cons_of_length_eq_add_one", "code": "theorem exists_cons_of_length_eq_add_one :\n ∀ {l : List α}, l.length = n + 1 → ∃ h t, l = h :: t", "start": [ 119, 1 ], "end": [ 121, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.length_pos", "code": "theorem length_pos {l : List α} : 0 < length l ↔ l ≠ []", "start": [ 123, 1 ], "end": [ 124, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.length_eq_one", "code": "theorem length_eq_one {l : List α} : length l = 1 ↔ ∃ a, l = [a]", "start": [ 126, 1 ], "end": [ 127, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_zero", "code": "@[simp] theorem get_cons_zero : get (a::l) (0 : Fin (l.length + 1)) = a", "start": [ 131, 1 ], "end": [ 131, 79 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_succ", "code": "@[simp] theorem get_cons_succ {as : List α} {h : i + 1 < (a :: as).length} :\n (a :: as).get ⟨i+1, h⟩ = as.get ⟨i, Nat.lt_of_succ_lt_succ h⟩", "start": [ 133, 1 ], "end": [ 134, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_succ'", "code": "@[simp] theorem get_cons_succ' {as : List α} {i : Fin as.length} :\n (a :: as).get i.succ = as.get i", "start": [ 136, 1 ], "end": [ 137, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_len_le", "code": "theorem get?_len_le : ∀ {l : List α} {n}, length l ≤ n → l.get? n = none", "start": [ 139, 1 ], "end": [ 141, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_eq_get", "code": "theorem get?_eq_get : ∀ {l : List α} {n} (h : n < l.length), l.get? n = some (get l ⟨n, h⟩)", "start": [ 143, 1 ], "end": [ 145, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_eq_some", "code": "theorem get?_eq_some : l.get? n = some a ↔ ∃ h, get l ⟨n, h⟩ = a", "start": [ 147, 1 ], "end": [ 151, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_eq_none", "code": "theorem get?_eq_none : l.get? n = none ↔ length l ≤ n", "start": [ 153, 1 ], "end": [ 154, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_eq_getElem?", "code": "@[simp] theorem get?_eq_getElem? (l : List α) (i : Nat) : l.get? i = l[i]?", "start": [ 156, 1 ], "end": [ 159, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.get_eq_getElem", "code": "@[simp] theorem get_eq_getElem (l : List α) (i : Fin l.length) : l.get i = l[i.1]'i.2", "start": [ 161, 1 ], "end": [ 161, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_nil", "code": "@[simp] theorem getElem?_nil {n : Nat} : ([] : List α)[n]? = none", "start": [ 163, 1 ], "end": [ 163, 73 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_cons_zero", "code": "@[simp] theorem getElem?_cons_zero {l : List α} : (a::l)[0]? = some a", "start": [ 165, 1 ], "end": [ 167, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_cons_succ", "code": "@[simp] theorem getElem?_cons_succ {l : List α} : (a::l)[n+1]? = l[n]?", "start": [ 169, 1 ], "end": [ 171, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_len_le", "code": "theorem getElem?_len_le : ∀ {l : List α} {n}, length l ≤ n → l[n]? = none", "start": [ 173, 1 ], "end": [ 176, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_eq_getElem", "code": "@[simp] theorem getElem?_eq_getElem {l : List α} {n} (h : n < l.length) : l[n]? = some l[n]", "start": [ 178, 1 ], "end": [ 179, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_eq_some", "code": "theorem getElem?_eq_some {l : List α} : l[n]? = some a ↔ ∃ h : n < l.length, l[n] = a", "start": [ 181, 1 ], "end": [ 182, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_eq_none_iff", "code": "@[simp] theorem getElem?_eq_none_iff : l[n]? = none ↔ length l ≤ n", "start": [ 184, 1 ], "end": [ 185, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_eq_none", "code": "theorem getElem?_eq_none (h : length l ≤ n) : l[n]? = none", "start": [ 187, 1 ], "end": [ 187, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem!_nil", "code": "@[simp] theorem getElem!_nil [Inhabited α] {n : Nat} : ([] : List α)[n]! = default", "start": [ 189, 1 ], "end": [ 189, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem!_cons_zero", "code": "@[simp] theorem getElem!_cons_zero [Inhabited α] {l : List α} : (a::l)[0]! = a", "start": [ 191, 1 ], "end": [ 192, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem!_cons_succ", "code": "@[simp] theorem getElem!_cons_succ [Inhabited α] {l : List α} : (a::l)[n+1]! = l[n]!", "start": [ 194, 1 ], "end": [ 197, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_cons_one", "code": "@[simp] theorem get_cons_cons_one : (a₁ :: a₂ :: as).get (1 : Fin (as.length + 2)) = a₂", "start": [ 199, 1 ], "end": [ 199, 95 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_len_le", "code": "theorem get!_len_le [Inhabited α] : ∀ {l : List α} {n}, length l ≤ n → l.get! n = (default : α)", "start": [ 201, 1 ], "end": [ 203, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_zero", "code": "theorem get?_zero (l : List α) : l.get? 0 = l.head?", "start": [ 205, 1 ], "end": [ 205, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_of_eq", "code": "theorem getElem_of_eq {l l' : List α} (h : l = l') {i : Nat} (w : i < l.length) :\n l[i] = l'[i]'(h ▸ w)", "start": [ 207, 1 ], "end": [ 214, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.get_of_eq", "code": "theorem get_of_eq {l l' : List α} (h : l = l') (i : Fin l.length) :\n get l i = get l' ⟨i, h ▸ i.2⟩", "start": [ 216, 1 ], "end": [ 223, 53 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_singleton", "code": "@[simp] theorem getElem_singleton (a : α) (h : i < 1) : [a][i] = a", "start": [ 225, 1 ], "end": [ 227, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.get_singleton", "code": "@[deprecated getElem_singleton (since := \"2024-06-12\")]\ntheorem get_singleton (a : α) (n : Fin 1) : get [a] n = a", "start": [ 229, 1 ], "end": [ 230, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_zero", "code": "theorem getElem_zero {l : List α} (h : 0 < l.length) : l[0] = l.head (length_pos.mp h)", "start": [ 232, 1 ], "end": [ 234, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.get_mk_zero", "code": "theorem get_mk_zero : ∀ {l : List α} (h : 0 < l.length), l.get ⟨0, h⟩ = l.head (length_pos.mp h)", "start": [ 236, 1 ], "end": [ 237, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem!_of_getElem?", "code": "theorem getElem!_of_getElem? [Inhabited α] : ∀ {l : List α} {n : Nat}, l[n]? = some a → l[n]! = a", "start": [ 239, 1 ], "end": [ 244, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_of_get?", "code": "theorem get!_of_get? [Inhabited α] : ∀ {l : List α} {n}, get? l n = some a → get! l n = a", "start": [ 246, 1 ], "end": [ 248, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.get!_eq_getD", "code": "@[simp] theorem get!_eq_getD [Inhabited α] : ∀ (l : List α) n, l.get! n = l.getD n default", "start": [ 250, 1 ], "end": [ 253, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.ext_getElem?", "code": "@[ext] theorem ext_getElem? {l₁ l₂ : List α} (h : ∀ n : Nat, l₁[n]? = l₂[n]?) : l₁ = l₂", "start": [ 255, 1 ], "end": [ 256, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.ext_getElem", "code": "theorem ext_getElem {l₁ l₂ : List α} (hl : length l₁ = length l₂)\n (h : ∀ (n : Nat) (h₁ : n < l₁.length) (h₂ : n < l₂.length), l₁[n]'h₁ = l₂[n]'h₂) : l₁ = l₂", "start": [ 258, 1 ], "end": [ 265, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.ext_get", "code": "theorem ext_get {l₁ l₂ : List α} (hl : length l₁ = length l₂)\n (h : ∀ n h₁ h₂, get l₁ ⟨n, h₁⟩ = get l₂ ⟨n, h₂⟩) : l₁ = l₂", "start": [ 267, 1 ], "end": [ 269, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_concat_length", "code": "@[simp] theorem getElem_concat_length : ∀ (l : List α) (a : α) (i) (_ : i = l.length) (w), (l ++ [a])[i]'w = a", "start": [ 271, 1 ], "end": [ 273, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_concat_length", "code": "theorem getElem?_concat_length (l : List α) (a : α) : (l ++ [a])[l.length]? = some a", "start": [ 275, 1 ], "end": [ 276, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_concat_length", "code": "@[deprecated getElem?_concat_length (since := \"2024-06-12\")]\ntheorem get?_concat_length (l : List α) (a : α) : (l ++ [a]).get? l.length = some a", "start": [ 278, 1 ], "end": [ 279, 95 ], "kind": "commanddeclaration" }, { "full_name": "List.not_mem_nil", "code": "@[simp] theorem not_mem_nil (a : α) : ¬ a ∈ []", "start": [ 283, 1 ], "end": [ 283, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_cons", "code": "@[simp] theorem mem_cons : a ∈ (b :: l) ↔ a = b ∨ a ∈ l", "start": [ 285, 1 ], "end": [ 287, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_cons_self", "code": "theorem mem_cons_self (a : α) (l : List α) : a ∈ a :: l", "start": [ 289, 1 ], "end": [ 289, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_cons_of_mem", "code": "theorem mem_cons_of_mem (y : α) {a : α} {l : List α} : a ∈ l → a ∈ y :: l", "start": [ 291, 1 ], "end": [ 291, 85 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_mem_of_ne_nil", "code": "theorem exists_mem_of_ne_nil (l : List α) (h : l ≠ []) : ∃ x, x ∈ l", "start": [ 293, 1 ], "end": [ 294, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_nil_iff_forall_not_mem", "code": "theorem eq_nil_iff_forall_not_mem {l : List α} : l = [] ↔ ∀ a, a ∉ l", "start": [ 296, 1 ], "end": [ 297, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_of_mem_singleton", "code": "theorem eq_of_mem_singleton : a ∈ [b] → a = b", "start": [ 299, 1 ], "end": [ 300, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_singleton", "code": "@[simp 1100] theorem mem_singleton {a b : α} : a ∈ [b] ↔ a = b", "start": [ 302, 1 ], "end": [ 303, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.forall_mem_cons", "code": "theorem forall_mem_cons {p : α → Prop} {a : α} {l : List α} :\n (∀ x, x ∈ a :: l → p x) ↔ p a ∧ ∀ x, x ∈ l → p x", "start": [ 305, 1 ], "end": [ 308, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_mem_nil", "code": "theorem exists_mem_nil (p : α → Prop) : ¬ (∃ x, ∃ _ : x ∈ @nil α, p x)", "start": [ 310, 1 ], "end": [ 310, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.forall_mem_nil", "code": "theorem forall_mem_nil (p : α → Prop) : ∀ (x) (_ : x ∈ @nil α), p x", "start": [ 312, 1 ], "end": [ 312, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_mem_cons", "code": "theorem exists_mem_cons {p : α → Prop} {a : α} {l : List α} :\n (∃ x, ∃ _ : x ∈ a :: l, p x) ↔ p a ∨ ∃ x, ∃ _ : x ∈ l, p x", "start": [ 314, 1 ], "end": [ 315, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.forall_mem_singleton", "code": "theorem forall_mem_singleton {p : α → Prop} {a : α} : (∀ (x) (_ : x ∈ [a]), p x) ↔ p a", "start": [ 317, 1 ], "end": [ 318, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_nil_iff", "code": "theorem mem_nil_iff (a : α) : a ∈ ([] : List α) ↔ False", "start": [ 320, 1 ], "end": [ 320, 67 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_singleton_self", "code": "theorem mem_singleton_self (a : α) : a ∈ [a]", "start": [ 322, 1 ], "end": [ 322, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_of_mem_cons_of_mem", "code": "theorem mem_of_mem_cons_of_mem : ∀ {a b : α} {l : List α}, a ∈ b :: l → b ∈ l → a ∈ l", "start": [ 324, 1 ], "end": [ 325, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_or_ne_mem_of_mem", "code": "theorem eq_or_ne_mem_of_mem {a b : α} {l : List α} (h' : a ∈ b :: l) : a = b ∨ (a ≠ b ∧ a ∈ l)", "start": [ 327, 1 ], "end": [ 328, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_nil_of_mem", "code": "theorem ne_nil_of_mem {a : α} {l : List α} (h : a ∈ l) : l ≠ []", "start": [ 330, 1 ], "end": [ 330, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_iff", "code": "theorem elem_iff [BEq α] [LawfulBEq α] {a : α} {as : List α} :\n elem a as = true ↔ a ∈ as", "start": [ 332, 1 ], "end": [ 333, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_eq_mem", "code": "@[simp] theorem elem_eq_mem [BEq α] [LawfulBEq α] (a : α) (as : List α) :\n elem a as = decide (a ∈ as)", "start": [ 335, 1 ], "end": [ 336, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_of_ne_of_mem", "code": "theorem mem_of_ne_of_mem {a y : α} {l : List α} (h₁ : a ≠ y) (h₂ : a ∈ y :: l) : a ∈ l", "start": [ 338, 1 ], "end": [ 339, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_of_not_mem_cons", "code": "theorem ne_of_not_mem_cons {a b : α} {l : List α} : a ∉ b::l → a ≠ b", "start": [ 341, 1 ], "end": [ 341, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.not_mem_of_not_mem_cons", "code": "theorem not_mem_of_not_mem_cons {a b : α} {l : List α} : a ∉ b::l → a ∉ l", "start": [ 343, 1 ], "end": [ 343, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.not_mem_cons_of_ne_of_not_mem", "code": "theorem not_mem_cons_of_ne_of_not_mem {a y : α} {l : List α} : a ≠ y → a ∉ l → a ∉ y::l", "start": [ 345, 1 ], "end": [ 346, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_and_not_mem_of_not_mem_cons", "code": "theorem ne_and_not_mem_of_not_mem_cons {a y : α} {l : List α} : a ∉ y::l → a ≠ y ∧ a ∉ l", "start": [ 348, 1 ], "end": [ 349, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_of_mem", "code": "theorem getElem_of_mem : ∀ {a} {l : List α}, a ∈ l → ∃ (n : Nat) (h : n < l.length), l[n]'h = a", "start": [ 351, 1 ], "end": [ 353, 92 ], "kind": "commanddeclaration" }, { "full_name": "List.get_of_mem", "code": "theorem get_of_mem {a} {l : List α} (h : a ∈ l) : ∃ n, get l n = a", "start": [ 355, 1 ], "end": [ 357, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_mem", "code": "theorem getElem_mem : ∀ (l : List α) n (h : n < l.length), l[n]'h ∈ l", "start": [ 359, 1 ], "end": [ 361, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.get_mem", "code": "theorem get_mem : ∀ (l : List α) n h, get l ⟨n, h⟩ ∈ l", "start": [ 363, 1 ], "end": [ 365, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_iff_getElem", "code": "theorem mem_iff_getElem {a} {l : List α} : a ∈ l ↔ ∃ (n : Nat) (h : n < l.length), l[n]'h = a", "start": [ 367, 1 ], "end": [ 368, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_iff_get", "code": "theorem mem_iff_get {a} {l : List α} : a ∈ l ↔ ∃ n, get l n = a", "start": [ 370, 1 ], "end": [ 371, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_of_mem", "code": "theorem getElem?_of_mem {a} {l : List α} (h : a ∈ l) : ∃ n : Nat, l[n]? = some a", "start": [ 373, 1 ], "end": [ 374, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_of_mem", "code": "theorem get?_of_mem {a} {l : List α} (h : a ∈ l) : ∃ n, l.get? n = some a", "start": [ 376, 1 ], "end": [ 377, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_mem", "code": "theorem getElem?_mem {l : List α} {n : Nat} {a : α} (e : l[n]? = some a) : a ∈ l", "start": [ 379, 1 ], "end": [ 380, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_mem", "code": "theorem get?_mem {l : List α} {n a} (e : l.get? n = some a) : a ∈ l", "start": [ 382, 1 ], "end": [ 383, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_iff_getElem?", "code": "theorem mem_iff_getElem? {a} {l : List α} : a ∈ l ↔ ∃ n : Nat, l[n]? = some a", "start": [ 385, 1 ], "end": [ 386, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_iff_get?", "code": "theorem mem_iff_get? {a} {l : List α} : a ∈ l ↔ ∃ n, l.get? n = some a", "start": [ 388, 1 ], "end": [ 389, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.decide_mem_cons", "code": "@[simp] theorem decide_mem_cons [BEq α] [LawfulBEq α] {l : List α} :\n decide (y ∈ a :: l) = (y == a || decide (y ∈ l))", "start": [ 391, 1 ], "end": [ 393, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.any_eq", "code": "theorem any_eq {l : List α} : l.any p = decide (∃ x, x ∈ l ∧ p x)", "start": [ 397, 1 ], "end": [ 397, 97 ], "kind": "commanddeclaration" }, { "full_name": "List.all_eq", "code": "theorem all_eq {l : List α} : l.all p = decide (∀ x, x ∈ l → p x)", "start": [ 399, 1 ], "end": [ 399, 98 ], "kind": "commanddeclaration" }, { "full_name": "List.any_eq_true", "code": "@[simp] theorem any_eq_true {l : List α} : l.any p ↔ ∃ x, x ∈ l ∧ p x", "start": [ 401, 1 ], "end": [ 401, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.all_eq_true", "code": "@[simp] theorem all_eq_true {l : List α} : l.all p ↔ ∀ x, x ∈ l → p x", "start": [ 403, 1 ], "end": [ 403, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.set_nil", "code": "@[simp] theorem set_nil (n : Nat) (a : α) : [].set n a = []", "start": [ 408, 1 ], "end": [ 408, 67 ], "kind": "commanddeclaration" }, { "full_name": "List.set_cons_zero", "code": "@[simp] theorem set_cons_zero (x : α) (xs : List α) (a : α) :\n (x :: xs).set 0 a = a :: xs", "start": [ 409, 1 ], "end": [ 410, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.set_cons_succ", "code": "@[simp] theorem set_cons_succ (x : α) (xs : List α) (n : Nat) (a : α) :\n (x :: xs).set (n + 1) a = x :: xs.set n a", "start": [ 411, 1 ], "end": [ 412, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_set_eq", "code": "@[simp] theorem getElem_set_eq {l : List α} {i : Nat} {a : α} (h : i < (l.set i a).length) :\n (l.set i a)[i] = a", "start": [ 414, 1 ], "end": [ 421, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.get_set_eq", "code": "@[deprecated getElem_set_eq (since := \"2024-06-12\")]\ntheorem get_set_eq {l : List α} {i : Nat} {a : α} (h : i < (l.set i a).length) :\n (l.set i a).get ⟨i, h⟩ = a", "start": [ 423, 1 ], "end": [ 426, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_set_eq", "code": "@[simp] theorem getElem?_set_eq {l : List α} {i : Nat} {a : α} (h : i < (l.set i a).length) :\n (l.set i a)[i]? = some a", "start": [ 428, 1 ], "end": [ 430, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_set_ne", "code": "@[simp] theorem getElem_set_ne {l : List α} {i j : Nat} (h : i ≠ j) {a : α}\n (hj : j < (l.set i a).length) :\n (l.set i a)[j] = l[j]'(by simp at hj; exact hj)", "start": [ 432, 1 ], "end": [ 442, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.get_set_ne", "code": "@[deprecated getElem_set_ne (since := \"2024-06-12\")]\ntheorem get_set_ne {l : List α} {i j : Nat} (h : i ≠ j) {a : α}\n (hj : j < (l.set i a).length) :\n (l.set i a).get ⟨j, hj⟩ = l.get ⟨j, by simp at hj; exact hj⟩", "start": [ 444, 1 ], "end": [ 448, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_set_ne", "code": "@[simp] theorem getElem?_set_ne {l : List α} {i j : Nat} (h : i ≠ j) {a : α} :\n (l.set i a)[j]? = l[j]?", "start": [ 450, 1 ], "end": [ 455, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_set", "code": "theorem getElem_set {l : List α} {m n} {a} (h) :\n (set l m a)[n]'h = if m = n then a else l[n]'(length_set .. ▸ h)", "start": [ 457, 1 ], "end": [ 462, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.get_set", "code": "@[deprecated getElem_set (since := \"2024-06-12\")]\ntheorem get_set {l : List α} {m n} {a : α} (h) :\n (set l m a).get ⟨n, h⟩ = if m = n then a else l.get ⟨n, length_set .. ▸ h⟩", "start": [ 464, 1 ], "end": [ 467, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_set", "code": "theorem getElem?_set {l : List α} {i j : Nat} {a : α} :\n (l.set i a)[j]? = if i = j then if i < l.length then some a else none else l[j]?", "start": [ 469, 1 ], "end": [ 478, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.set_eq_of_length_le", "code": "theorem set_eq_of_length_le {l : List α} {n : Nat} (h : l.length ≤ n) {a : α} :\n l.set n a = l", "start": [ 480, 1 ], "end": [ 489, 38 ], "kind": "commanddeclaration" }, { "full_name": "List.set_eq_nil", "code": "@[simp] theorem set_eq_nil (l : List α) (n : Nat) (a : α) : l.set n a = [] ↔ l = []", "start": [ 491, 1 ], "end": [ 492, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.set_comm", "code": "theorem set_comm (a b : α) : ∀ {n m : Nat} (l : List α), n ≠ m →\n (l.set n a).set m b = (l.set m b).set n a", "start": [ 494, 1 ], "end": [ 500, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.set_set", "code": "@[simp]\ntheorem set_set (a b : α) : ∀ (l : List α) (n : Nat), (l.set n a).set n b = l.set n b", "start": [ 502, 1 ], "end": [ 506, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_set", "code": "theorem mem_set (l : List α) (n : Nat) (h : n < l.length) (a : α) :\n a ∈ l.set n a", "start": [ 508, 1 ], "end": [ 511, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_or_eq_of_mem_set", "code": "theorem mem_or_eq_of_mem_set : ∀ {l : List α} {n : Nat} {a b : α}, a ∈ l.set n b → a ∈ l ∨ a = b", "start": [ 513, 1 ], "end": [ 516, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.lt_irrefl'", "code": "theorem lt_irrefl' [LT α] (lt_irrefl : ∀ x : α, ¬x < x) (l : List α) : ¬l < l", "start": [ 522, 1 ], "end": [ 527, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.lt_trans'", "code": "theorem lt_trans' [LT α] [DecidableRel (@LT.lt α _)]\n (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z)\n (le_trans : ∀ {x y z : α}, ¬x < y → ¬y < z → ¬x < z)\n {l₁ l₂ l₃ : List α} (h₁ : l₁ < l₂) (h₂ : l₂ < l₃) : l₁ < l₃", "start": [ 529, 1 ], "end": [ 545, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.lt_antisymm'", "code": "theorem lt_antisymm' [LT α]\n (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y)\n {l₁ l₂ : List α} (h₁ : ¬l₁ < l₂) (h₂ : ¬l₂ < l₁) : l₁ = l₂", "start": [ 547, 1 ], "end": [ 561, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.foldlM_reverse", "code": "@[simp] theorem foldlM_reverse [Monad m] (l : List α) (f : β → α → m β) (b) :\n l.reverse.foldlM f b = l.foldrM (fun x y => f y x) b", "start": [ 565, 1 ], "end": [ 566, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.foldlM_append", "code": "@[simp] theorem foldlM_append [Monad m] [LawfulMonad m] (f : β → α → m β) (b) (l l' : List α) :\n (l ++ l').foldlM f b = l.foldlM f b >>= l'.foldlM f", "start": [ 568, 1 ], "end": [ 570, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.foldrM_cons", "code": "@[simp] theorem foldrM_cons [Monad m] [LawfulMonad m] (a : α) (l) (f : α → β → m β) (b) :\n (a :: l).foldrM f b = l.foldrM f b >>= f a", "start": [ 572, 1 ], "end": [ 575, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_eq_foldlM", "code": "theorem foldl_eq_foldlM (f : β → α → β) (b) (l : List α) :\n l.foldl f b = l.foldlM (m := Id) f b", "start": [ 577, 1 ], "end": [ 579, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_eq_foldrM", "code": "theorem foldr_eq_foldrM (f : α → β → β) (b) (l : List α) :\n l.foldr f b = l.foldrM (m := Id) f b", "start": [ 581, 1 ], "end": [ 583, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.foldrM_append", "code": "@[simp] theorem foldrM_append [Monad m] [LawfulMonad m] (f : α → β → m β) (b) (l l' : List α) :\n (l ++ l').foldrM f b = l'.foldrM f b >>= l.foldrM f", "start": [ 587, 1 ], "end": [ 589, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_append", "code": "@[simp] theorem foldl_append {β : Type _} (f : β → α → β) (b) (l l' : List α) :\n (l ++ l').foldl f b = l'.foldl f (l.foldl f b)", "start": [ 591, 1 ], "end": [ 592, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_append", "code": "@[simp] theorem foldr_append (f : α → β → β) (b) (l l' : List α) :\n (l ++ l').foldr f b = l.foldr f (l'.foldr f b)", "start": [ 594, 1 ], "end": [ 595, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_self_append", "code": "@[simp] theorem foldr_self_append (l : List α) : l.foldr cons l' = l ++ l'", "start": [ 597, 1 ], "end": [ 598, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_self", "code": "theorem foldr_self (l : List α) : l.foldr cons [] = l", "start": [ 600, 1 ], "end": [ 600, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_map", "code": "theorem foldl_map (f : β₁ → β₂) (g : α → β₂ → α) (l : List β₁) (init : α) :\n (l.map f).foldl g init = l.foldl (fun x y => g x (f y)) init", "start": [ 602, 1 ], "end": [ 604, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_map", "code": "theorem foldr_map (f : α₁ → α₂) (g : α₂ → β → β) (l : List α₁) (init : β) :\n (l.map f).foldr g init = l.foldr (fun x y => g (f x) y) init", "start": [ 606, 1 ], "end": [ 608, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_map'", "code": "theorem foldl_map' {α β : Type u} (g : α → β) (f : α → α → α) (f' : β → β → β) (a : α) (l : List α)\n (h : ∀ x y, f' (g x) (g y) = g (f x y)) :\n (l.map g).foldl f' (g a) = g (l.foldl f a)", "start": [ 610, 1 ], "end": [ 615, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_map'", "code": "theorem foldr_map' {α β : Type u} (g : α → β) (f : α → α → α) (f' : β → β → β) (a : α) (l : List α)\n (h : ∀ x y, f' (g x) (g y) = g (f x y)) :\n (l.map g).foldr f' (g a) = g (l.foldr f a)", "start": [ 617, 1 ], "end": [ 622, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.getD_eq_getElem?", "code": "@[simp] theorem getD_eq_getElem? (l) (n) (a : α) : getD l n a = (l[n]?).getD a", "start": [ 626, 1 ], "end": [ 627, 14 ], "kind": "commanddeclaration" }, { "full_name": "List.getD_eq_get?", "code": "@[deprecated getD_eq_getElem? (since := \"2024-06-12\")]\ntheorem getD_eq_get? : ∀ l n (a : α), getD l n a = (get? l n).getD a", "start": [ 629, 1 ], "end": [ 630, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_eq_get", "code": "theorem getLast_eq_get : ∀ (l : List α) (h : l ≠ []),\n getLast l h = l.get ⟨l.length - 1, by\n match l with\n | [] => contradiction\n | a :: l => exact Nat.le_refl _⟩", "start": [ 634, 1 ], "end": [ 641, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_cons'", "code": "theorem getLast_cons' {a : α} {l : List α} : ∀ (h₁ : a :: l ≠ nil) (h₂ : l ≠ nil),\n getLast (a :: l) h₁ = getLast l h₂", "start": [ 643, 1 ], "end": [ 645, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_eq_getLastD", "code": "theorem getLast_eq_getLastD (a l h) : @getLast α (a::l) h = getLastD l a", "start": [ 647, 1 ], "end": [ 648, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_eq_getLast?", "code": "theorem getLastD_eq_getLast? (a l) : @getLastD α l a = (getLast? l).getD a", "start": [ 650, 1 ], "end": [ 651, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_singleton", "code": "@[simp] theorem getLast_singleton (a h) : @getLast α [a] h = a", "start": [ 653, 1 ], "end": [ 653, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast!_cons", "code": "theorem getLast!_cons [Inhabited α] : @getLast! α _ (a::l) = getLastD l a", "start": [ 655, 1 ], "end": [ 656, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_mem", "code": "theorem getLast_mem : ∀ {l : List α} (h : l ≠ []), getLast l h ∈ l", "start": [ 658, 1 ], "end": [ 661, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_mem_cons", "code": "theorem getLastD_mem_cons : ∀ (l : List α) (a : α), getLastD l a ∈ a::l", "start": [ 663, 1 ], "end": [ 665, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_cons_length", "code": "theorem getElem_cons_length (x : α) (xs : List α) (n : Nat) (h : n = xs.length) :\n (x :: xs)[n]'(by simp [h]) = (x :: xs).getLast (cons_ne_nil x xs)", "start": [ 667, 1 ], "end": [ 669, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_length", "code": "@[deprecated getElem_cons_length (since := \"2024-06-12\")]\ntheorem get_cons_length (x : α) (xs : List α) (n : Nat) (h : n = xs.length) :\n (x :: xs).get ⟨n, by simp [h]⟩ = (x :: xs).getLast (cons_ne_nil x xs)", "start": [ 671, 1 ], "end": [ 674, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_cons", "code": "theorem getLast?_cons : @getLast? α (a::l) = getLastD l a", "start": [ 678, 1 ], "end": [ 679, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_singleton", "code": "@[simp] theorem getLast?_singleton (a : α) : getLast? [a] = a", "start": [ 681, 1 ], "end": [ 681, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_eq_getLast", "code": "theorem getLast?_eq_getLast : ∀ l h, @getLast? α l = some (getLast l h)", "start": [ 683, 1 ], "end": [ 685, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_eq_get?", "code": "theorem getLast?_eq_get? : ∀ (l : List α), getLast? l = l.get? (l.length - 1)", "start": [ 687, 1 ], "end": [ 689, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_concat", "code": "@[simp] theorem getLast?_concat (l : List α) : getLast? (l ++ [a]) = some a", "start": [ 691, 1 ], "end": [ 692, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_concat", "code": "@[simp] theorem getLastD_concat (a b l) : @getLastD α (l ++ [b]) a = b", "start": [ 694, 1 ], "end": [ 695, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.head!_of_head?", "code": "theorem head!_of_head? [Inhabited α] : ∀ {l : List α}, head? l = some a → head! l = a", "start": [ 701, 1 ], "end": [ 702, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.head?_eq_head", "code": "theorem head?_eq_head : ∀ l h, @head? α l = some (head l h)", "start": [ 704, 1 ], "end": [ 705, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.tailD_eq_tail?", "code": "@[simp] theorem tailD_eq_tail? (l l' : List α) : tailD l l' = (tail? l).getD l'", "start": [ 709, 1 ], "end": [ 710, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.map_id", "code": "@[simp] theorem map_id (l : List α) : map id l = l", "start": [ 716, 1 ], "end": [ 716, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.map_id'", "code": "@[simp] theorem map_id' (l : List α) : map (fun a => a) l = l", "start": [ 718, 1 ], "end": [ 718, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.map_id''", "code": "theorem map_id'' {f : α → α} (h : ∀ x, f x = x) (l : List α) : map f l = l", "start": [ 720, 1 ], "end": [ 721, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.map_singleton", "code": "theorem map_singleton (f : α → β) (a : α) : map f [a] = [f a]", "start": [ 723, 1 ], "end": [ 723, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.length_map", "code": "@[simp] theorem length_map (as : List α) (f : α → β) : (as.map f).length = as.length", "start": [ 725, 1 ], "end": [ 728, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_map", "code": "@[simp] theorem getElem?_map (f : α → β) : ∀ (l : List α) (n : Nat), (map f l)[n]? = Option.map f l[n]?", "start": [ 730, 1 ], "end": [ 733, 48 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_map", "code": "@[deprecated getElem?_map (since := \"2024-06-12\")]\ntheorem get?_map (f : α → β) : ∀ l n, (map f l).get? n = (l.get? n).map f", "start": [ 735, 1 ], "end": [ 739, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_map", "code": "@[simp] theorem getElem_map (f : α → β) {l} {n : Nat} {h : n < (map f l).length} :\n (map f l)[n] = f (l[n]'(length_map l f ▸ h))", "start": [ 741, 1 ], "end": [ 743, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.get_map", "code": "@[deprecated getElem_map (since := \"2024-06-12\")]\ntheorem get_map (f : α → β) {l n} :\n get (map f l) n = f (get l ⟨n, length_map l f ▸ n.2⟩)", "start": [ 745, 1 ], "end": [ 748, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_map", "code": "@[simp] theorem mem_map {f : α → β} : ∀ {l : List α}, b ∈ l.map f ↔ ∃ a, a ∈ l ∧ f a = b", "start": [ 750, 1 ], "end": [ 752, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_of_mem_map", "code": "theorem exists_of_mem_map (h : b ∈ map f l) : ∃ a, a ∈ l ∧ f a = b", "start": [ 754, 1 ], "end": [ 754, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_map_of_mem", "code": "theorem mem_map_of_mem (f : α → β) (h : a ∈ l) : f a ∈ map f l", "start": [ 756, 1 ], "end": [ 756, 88 ], "kind": "commanddeclaration" }, { "full_name": "List.map_inj_left", "code": "@[simp] theorem map_inj_left {f g : α → β} : map f l = map g l ↔ ∀ a ∈ l, f a = g a", "start": [ 758, 1 ], "end": [ 759, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.map_congr_left", "code": "theorem map_congr_left (h : ∀ a ∈ l, f a = g a) : map f l = map g l", "start": [ 761, 1 ], "end": [ 762, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.map_inj", "code": "theorem map_inj : map f = map g ↔ f = g", "start": [ 764, 1 ], "end": [ 767, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_nil", "code": "@[simp] theorem map_eq_nil {f : α → β} {l : List α} : map f l = [] ↔ l = []", "start": [ 769, 1 ], "end": [ 770, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_nil_of_map_eq_nil", "code": "theorem eq_nil_of_map_eq_nil {f : α → β} {l : List α} (h : map f l = []) : l = []", "start": [ 772, 1 ], "end": [ 773, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_cons", "code": "theorem map_eq_cons {f : α → β} {l : List α} :\n map f l = b :: l₂ ↔ l.head?.map f = some b ∧ l.tail?.map (map f) = some l₂", "start": [ 775, 1 ], "end": [ 777, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_cons'", "code": "theorem map_eq_cons' {f : α → β} {l : List α} :\n map f l = b :: l₂ ↔ ∃ a l₁, l = a :: l₁ ∧ f a = b ∧ map f l₁ = l₂", "start": [ 779, 1 ], "end": [ 789, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_foldr", "code": "theorem map_eq_foldr (f : α → β) (l : List α) : map f l = foldr (fun a bs => f a :: bs) [] l", "start": [ 791, 1 ], "end": [ 792, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.set_map", "code": "@[simp] theorem set_map {f : α → β} {l : List α} {n : Nat} {a : α} :\n (map f l).set n (f a) = map f (l.set n a)", "start": [ 794, 1 ], "end": [ 798, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.head_map", "code": "@[simp] theorem head_map (f : α → β) (l : List α) (w) :\n head (map f l) w = f (head l (by simpa using w))", "start": [ 800, 1 ], "end": [ 804, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.head?_map", "code": "@[simp] theorem head?_map (f : α → β) (l : List α) : head? (map f l) = (head? l).map f", "start": [ 806, 1 ], "end": [ 807, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.headD_map", "code": "@[simp] theorem headD_map (f : α → β) (l : List α) (a : α) : headD (map f l) (f a) = f (headD l a)", "start": [ 809, 1 ], "end": [ 810, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.tail?_map", "code": "@[simp] theorem tail?_map (f : α → β) (l : List α) : tail? (map f l) = (tail? l).map (map f)", "start": [ 812, 1 ], "end": [ 813, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.tailD_map", "code": "@[simp] theorem tailD_map (f : α → β) (l : List α) (l' : List α) :\n tailD (map f l) (map f l') = map f (tailD l l')", "start": [ 815, 1 ], "end": [ 817, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_map", "code": "@[simp] theorem getLast_map (f : α → β) (l : List α) (h) :\n getLast (map f l) h = f (getLast l (by simpa using h))", "start": [ 819, 1 ], "end": [ 827, 9 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_map", "code": "@[simp] theorem getLast?_map (f : α → β) (l : List α) : getLast? (map f l) = (getLast? l).map f", "start": [ 829, 1 ], "end": [ 832, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.getLastD_map", "code": "@[simp] theorem getLastD_map (f : α → β) (l : List α) (a : α) : getLastD (map f l) (f a) = f (getLastD l a)", "start": [ 834, 1 ], "end": [ 837, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.map_append", "code": "@[simp] theorem map_append (f : α → β) : ∀ l₁ l₂, map f (l₁ ++ l₂) = map f l₁ ++ map f l₂", "start": [ 839, 1 ], "end": [ 840, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.map_map", "code": "@[simp] theorem map_map (g : β → γ) (f : α → β) (l : List α) :\n map g (map f l) = map (g ∘ f) l", "start": [ 842, 1 ], "end": [ 843, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.forall_mem_map_iff", "code": "theorem forall_mem_map_iff {f : α → β} {l : List α} {P : β → Prop} :\n (∀ (i) (_ : i ∈ l.map f), P i) ↔ ∀ (j) (_ : j ∈ l), P (f j)", "start": [ 845, 1 ], "end": [ 847, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_cons_of_pos", "code": "@[simp] theorem filter_cons_of_pos {p : α → Bool} {a : α} (l) (pa : p a) :\n filter p (a :: l) = a :: filter p l", "start": [ 851, 1 ], "end": [ 852, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_cons_of_neg", "code": "@[simp] theorem filter_cons_of_neg {p : α → Bool} {a : α} (l) (pa : ¬ p a) :\n filter p (a :: l) = filter p l", "start": [ 854, 1 ], "end": [ 855, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_cons", "code": "theorem filter_cons :\n (x :: xs : List α).filter p = if p x then x :: (xs.filter p) else xs.filter p", "start": [ 857, 1 ], "end": [ 859, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.length_filter_le", "code": "theorem length_filter_le (p : α → Bool) (l : List α) :\n (l.filter p).length ≤ l.length", "start": [ 861, 1 ], "end": [ 870, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_eq_self", "code": "@[simp]\ntheorem filter_eq_self {l} : filter p l = l ↔ ∀ a ∈ l, p a", "start": [ 872, 1 ], "end": [ 877, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_length_eq_length", "code": "@[simp]\ntheorem filter_length_eq_length {l} : (filter p l).length = l.length ↔ ∀ a ∈ l, p a", "start": [ 879, 1 ], "end": [ 888, 15 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_filter", "code": "theorem mem_filter : x ∈ filter p as ↔ x ∈ as ∧ p x", "start": [ 890, 1 ], "end": [ 896, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_eq_nil", "code": "theorem filter_eq_nil {l} : filter p l = [] ↔ ∀ a, a ∈ l → ¬p a", "start": [ 898, 1 ], "end": [ 899, 61 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_filter", "code": "@[simp] theorem filter_filter (q) : ∀ l, filter p (filter q l) = filter (fun a => p a ∧ q a) l", "start": [ 901, 1 ], "end": [ 903, 94 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_map", "code": "theorem filter_map (f : β → α) (l : List β) : filter p (map f l) = map f (filter (p ∘ f) l)", "start": [ 905, 1 ], "end": [ 908, 53 ], "kind": "commanddeclaration" }, { "full_name": "List.map_filter", "code": "@[deprecated filter_map (since := \"2024-06-15\")] abbrev map_filter := @filter_map", "start": [ 910, 1 ], "end": [ 910, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.map_filter_eq_foldr", "code": "theorem map_filter_eq_foldr (f : α → β) (p : α → Bool) (as : List α) :\n map f (filter p as) = foldr (fun a bs => bif p a then f a :: bs else bs) [] as", "start": [ 912, 1 ], "end": [ 918, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_append", "code": "@[simp] theorem filter_append {p : α → Bool} :\n ∀ (l₁ l₂ : List α), filter p (l₁ ++ l₂) = filter p l₁ ++ filter p l₂", "start": [ 920, 1 ], "end": [ 923, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_congr", "code": "theorem filter_congr {p q : α → Bool} :\n ∀ {l : List α}, (∀ x ∈ l, p x = q x) → filter p l = filter q l", "start": [ 925, 1 ], "end": [ 931, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_congr'", "code": "@[deprecated filter_congr (since := \"2024-06-20\")] abbrev filter_congr' := @filter_congr", "start": [ 933, 1 ], "end": [ 933, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_cons_none", "code": "@[simp] theorem filterMap_cons_none {f : α → Option β} (a : α) (l : List α) (h : f a = none) :\n filterMap f (a :: l) = filterMap f l", "start": [ 937, 1 ], "end": [ 938, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_cons_some", "code": "@[simp] theorem filterMap_cons_some (f : α → Option β) (a : α) (l : List α) {b : β} (h : f a = some b) :\n filterMap f (a :: l) = b :: filterMap f l", "start": [ 940, 1 ], "end": [ 941, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_eq_map", "code": "@[simp]\ntheorem filterMap_eq_map (f : α → β) : filterMap (some ∘ f) = map f", "start": [ 943, 1 ], "end": [ 945, 53 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_some", "code": "@[simp] theorem filterMap_some (l : List α) : filterMap some l = l", "start": [ 947, 1 ], "end": [ 948, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.map_filterMap_some_eq_filter_map_is_some", "code": "theorem map_filterMap_some_eq_filter_map_is_some (f : α → Option β) (l : List α) :\n (l.filterMap f).map some = (l.map f).filter fun b => b.isSome", "start": [ 950, 1 ], "end": [ 952, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.length_filterMap_le", "code": "theorem length_filterMap_le (f : α → Option β) (l : List α) :\n (filterMap f l).length ≤ l.length", "start": [ 954, 1 ], "end": [ 957, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_length_eq_length", "code": "@[simp]\ntheorem filterMap_length_eq_length {l} :\n (filterMap f l).length = l.length ↔ ∀ a ∈ l, (f a).isSome", "start": [ 959, 1 ], "end": [ 969, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_eq_filter", "code": "@[simp]\ntheorem filterMap_eq_filter (p : α → Bool) :\n filterMap (Option.guard (p ·)) = filter p", "start": [ 971, 1 ], "end": [ 977, 87 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_filterMap", "code": "theorem filterMap_filterMap (f : α → Option β) (g : β → Option γ) (l : List α) :\n filterMap g (filterMap f l) = filterMap (fun x => (f x).bind g) l", "start": [ 979, 1 ], "end": [ 983, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.map_filterMap", "code": "theorem map_filterMap (f : α → Option β) (g : β → γ) (l : List α) :\n map g (filterMap f l) = filterMap (fun x => (f x).map g) l", "start": [ 985, 1 ], "end": [ 987, 74 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_map", "code": "@[simp]\ntheorem filterMap_map (f : α → β) (g : β → Option γ) (l : List α) :\n filterMap g (map f l) = filterMap (g ∘ f) l", "start": [ 989, 1 ], "end": [ 992, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_filterMap", "code": "theorem filter_filterMap (f : α → Option β) (p : β → Bool) (l : List α) :\n filter p (filterMap f l) = filterMap (fun x => (f x).filter p) l", "start": [ 994, 1 ], "end": [ 997, 68 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_filter", "code": "theorem filterMap_filter (p : α → Bool) (f : α → Option β) (l : List α) :\n filterMap f (filter p l) = filterMap (fun x => if p x then f x else none) l", "start": [ 999, 1 ], "end": [ 1002, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_filterMap", "code": "@[simp] theorem mem_filterMap (f : α → Option β) (l : List α) {b : β} :\n b ∈ filterMap f l ↔ ∃ a, a ∈ l ∧ f a = some b", "start": [ 1004, 1 ], "end": [ 1006, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_append", "code": "theorem filterMap_append {α β : Type _} (l l' : List α) (f : α → Option β) :\n filterMap f (l ++ l') = filterMap f l ++ filterMap f l'", "start": [ 1008, 1 ], "end": [ 1010, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_join", "code": "@[simp] theorem filterMap_join (f : α → Option β) (L : List (List α)) :\n filterMap f (join L) = join (map (filterMap f) L)", "start": [ 1012, 1 ], "end": [ 1014, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.map_filterMap_of_inv", "code": "theorem map_filterMap_of_inv (f : α → Option β) (g : β → α) (H : ∀ x : α, (f x).map g = some x)\n (l : List α) : map g (filterMap f l) = l", "start": [ 1016, 1 ], "end": [ 1017, 96 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_append_right", "code": "theorem getElem?_append_right : ∀ {l₁ l₂ : List α} {n : Nat}, l₁.length ≤ n →\n (l₁ ++ l₂)[n]? = l₂[n - l₁.length]?", "start": [ 1021, 1 ], "end": [ 1026, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_append_right", "code": "@[deprecated getElem?_append_right (since := \"2024-06-12\")]\ntheorem get?_append_right {l₁ l₂ : List α} {n : Nat} (h : l₁.length ≤ n) :\n (l₁ ++ l₂).get? n = l₂.get? (n - l₁.length)", "start": [ 1028, 1 ], "end": [ 1031, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_append_right'", "code": "theorem getElem_append_right' {l₁ l₂ : List α} {n : Nat} (h₁ : l₁.length ≤ n) (h₂) :\n (l₁ ++ l₂)[n]'h₂ =\n l₂[n - l₁.length]'(by rw [length_append] at h₂; exact Nat.sub_lt_left_of_lt_add h₁ h₂)", "start": [ 1033, 1 ], "end": [ 1036, 100 ], "kind": "commanddeclaration" }, { "full_name": "List.get_append_right_aux", "code": "@[deprecated (since := \"2024-06-12\")]\ntheorem get_append_right_aux {l₁ l₂ : List α} {n : Nat}\n (h₁ : l₁.length ≤ n) (h₂ : n < (l₁ ++ l₂).length) : n - l₁.length < l₂.length", "start": [ 1038, 1 ], "end": [ 1042, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.get_append_right'", "code": "@[deprecated getElem_append_right' (since := \"2024-06-12\")]\ntheorem get_append_right' {l₁ l₂ : List α} {n : Nat} (h₁ : l₁.length ≤ n) (h₂) :\n (l₁ ++ l₂).get ⟨n, h₂⟩ = l₂.get ⟨n - l₁.length, get_append_right_aux h₁ h₂⟩", "start": [ 1045, 1 ], "end": [ 1048, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_of_append", "code": "theorem getElem_of_append {l : List α} (eq : l = l₁ ++ a :: l₂) (h : l₁.length = n) :\n l[n]'(eq ▸ h ▸ by simp_arith) = a", "start": [ 1050, 1 ], "end": [ 1053, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.get_of_append_proof", "code": "@[deprecated (since := \"2024-06-12\")]\ntheorem get_of_append_proof {l : List α}\n (eq : l = l₁ ++ a :: l₂) (h : l₁.length = n) : n < length l", "start": [ 1055, 1 ], "end": [ 1057, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.get_of_append", "code": "@[deprecated getElem_of_append (since := \"2024-06-12\")]\ntheorem get_of_append {l : List α} (eq : l = l₁ ++ a :: l₂) (h : l₁.length = n) :\n l.get ⟨n, get_of_append_proof eq h⟩ = a", "start": [ 1060, 1 ], "end": [ 1063, 86 ], "kind": "commanddeclaration" }, { "full_name": "List.append_of_mem", "code": "theorem append_of_mem {a : α} {l : List α} : a ∈ l → ∃ s t : List α, l = s ++ a :: t", "start": [ 1065, 1 ], "end": [ 1067, 87 ], "kind": "commanddeclaration" }, { "full_name": "List.singleton_append", "code": "@[simp 1100] theorem singleton_append : [x] ++ l = x :: l", "start": [ 1069, 1 ], "end": [ 1069, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj", "code": "theorem append_inj :\n ∀ {s₁ s₂ t₁ t₂ : List α}, s₁ ++ t₁ = s₂ ++ t₂ → length s₁ = length s₂ → s₁ = s₂ ∧ t₁ = t₂", "start": [ 1071, 1 ], "end": [ 1075, 71 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj_right", "code": "theorem append_inj_right (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length s₁ = length s₂) : t₁ = t₂", "start": [ 1077, 1 ], "end": [ 1078, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj_left", "code": "theorem append_inj_left (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length s₁ = length s₂) : s₁ = s₂", "start": [ 1080, 1 ], "end": [ 1081, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj'", "code": "theorem append_inj' (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : s₁ = s₂ ∧ t₁ = t₂", "start": [ 1083, 1 ], "end": [ 1085, 82 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj_right'", "code": "theorem append_inj_right' (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : t₁ = t₂", "start": [ 1087, 1 ], "end": [ 1088, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.append_inj_left'", "code": "theorem append_inj_left' (h : s₁ ++ t₁ = s₂ ++ t₂) (hl : length t₁ = length t₂) : s₁ = s₂", "start": [ 1090, 1 ], "end": [ 1091, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.append_right_inj", "code": "theorem append_right_inj {t₁ t₂ : List α} (s) : s ++ t₁ = s ++ t₂ ↔ t₁ = t₂", "start": [ 1093, 1 ], "end": [ 1094, 48 ], "kind": "commanddeclaration" }, { "full_name": "List.append_left_inj", "code": "theorem append_left_inj {s₁ s₂ : List α} (t) : s₁ ++ t = s₂ ++ t ↔ s₁ = s₂", "start": [ 1096, 1 ], "end": [ 1097, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq_nil", "code": "@[simp] theorem append_eq_nil : p ++ q = [] ↔ p = [] ∧ q = []", "start": [ 1099, 1 ], "end": [ 1100, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_append", "code": "@[simp] theorem getLast_append {a : α} : ∀ (l : List α) h, getLast (l ++ [a]) h = a", "start": [ 1102, 1 ], "end": [ 1105, 92 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast_concat", "code": "theorem getLast_concat : getLast (concat l a) h = a", "start": [ 1107, 1 ], "end": [ 1108, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_append", "code": "theorem getElem_append : ∀ {l₁ l₂ : List α} (n : Nat) (h : n < l₁.length),\n (l₁ ++ l₂)[n]'(length_append .. ▸ Nat.lt_add_right _ h) = l₁[n]", "start": [ 1110, 1 ], "end": [ 1113, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.get_append", "code": "@[deprecated getElem_append (since := \"2024-06-12\")]\ntheorem get_append {l₁ l₂ : List α} (n : Nat) (h : n < l₁.length) :\n (l₁ ++ l₂).get ⟨n, length_append .. ▸ Nat.lt_add_right _ h⟩ = l₁.get ⟨n, h⟩", "start": [ 1115, 1 ], "end": [ 1118, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.get_append_left", "code": "@[deprecated getElem_append_left (since := \"2024-06-12\")]\ntheorem get_append_left (as bs : List α) (h : i < as.length) {h'} : (as ++ bs).get ⟨i, h'⟩ = as.get ⟨i, h⟩", "start": [ 1120, 1 ], "end": [ 1122, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.get_append_right", "code": "@[deprecated getElem_append_right (since := \"2024-06-12\")]\ntheorem get_append_right (as bs : List α) (h : ¬ i < as.length) {h' h''} : (as ++ bs).get ⟨i, h'⟩ = bs.get ⟨i - as.length, h''⟩", "start": [ 1124, 1 ], "end": [ 1126, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_append", "code": "theorem getElem?_append {l₁ l₂ : List α} {n : Nat} (hn : n < l₁.length) :\n (l₁ ++ l₂)[n]? = l₁[n]?", "start": [ 1128, 1 ], "end": [ 1132, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_append", "code": "@[deprecated (since := \"2024-06-12\")]\ntheorem get?_append {l₁ l₂ : List α} {n : Nat} (hn : n < l₁.length) :\n (l₁ ++ l₂).get? n = l₁.get? n", "start": [ 1134, 1 ], "end": [ 1137, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq_append", "code": "theorem append_eq_append : List.append l₁ l₂ = l₁ ++ l₂", "start": [ 1139, 1 ], "end": [ 1139, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.append_ne_nil_of_ne_nil_left", "code": "theorem append_ne_nil_of_ne_nil_left (s t : List α) : s ≠ [] → s ++ t ≠ []", "start": [ 1141, 1 ], "end": [ 1141, 90 ], "kind": "commanddeclaration" }, { "full_name": "List.append_ne_nil_of_ne_nil_right", "code": "theorem append_ne_nil_of_ne_nil_right (s t : List α) : t ≠ [] → s ++ t ≠ []", "start": [ 1143, 1 ], "end": [ 1143, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.nil_eq_append", "code": "@[simp] theorem nil_eq_append : [] = a ++ b ↔ a = [] ∧ b = []", "start": [ 1145, 1 ], "end": [ 1146, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.append_ne_nil_of_left_ne_nil", "code": "theorem append_ne_nil_of_left_ne_nil (a b : List α) (h0 : a ≠ []) : a ++ b ≠ []", "start": [ 1148, 1 ], "end": [ 1148, 95 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq_cons", "code": "theorem append_eq_cons :\n a ++ b = x :: c ↔ (a = [] ∧ b = x :: c) ∨ (∃ a', a = x :: a' ∧ c = a' ++ b)", "start": [ 1150, 1 ], "end": [ 1153, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.cons_eq_append", "code": "theorem cons_eq_append :\n x :: c = a ++ b ↔ (a = [] ∧ b = x :: c) ∨ (∃ a', a = x :: a' ∧ c = a' ++ b)", "start": [ 1155, 1 ], "end": [ 1157, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.append_eq_append_iff", "code": "theorem append_eq_append_iff {a b c d : List α} :\n a ++ b = c ++ d ↔ (∃ a', c = a ++ a' ∧ b = a' ++ d) ∨ ∃ c', a = c ++ c' ∧ d = c' ++ b", "start": [ 1159, 1 ], "end": [ 1163, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append", "code": "@[simp] theorem mem_append {a : α} {s t : List α} : a ∈ s ++ t ↔ a ∈ s ∨ a ∈ t", "start": [ 1165, 1 ], "end": [ 1166, 38 ], "kind": "commanddeclaration" }, { "full_name": "List.not_mem_append", "code": "theorem not_mem_append {a : α} {s t : List α} (h₁ : a ∉ s) (h₂ : a ∉ t) : a ∉ s ++ t", "start": [ 1168, 1 ], "end": [ 1169, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append_eq", "code": "theorem mem_append_eq (a : α) (s t : List α) : (a ∈ s ++ t) = (a ∈ s ∨ a ∈ t)", "start": [ 1171, 1 ], "end": [ 1172, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append_left", "code": "theorem mem_append_left {a : α} {l₁ : List α} (l₂ : List α) (h : a ∈ l₁) : a ∈ l₁ ++ l₂", "start": [ 1174, 1 ], "end": [ 1175, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_append_right", "code": "theorem mem_append_right {a : α} (l₁ : List α) {l₂ : List α} (h : a ∈ l₂) : a ∈ l₁ ++ l₂", "start": [ 1177, 1 ], "end": [ 1178, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_iff_append", "code": "theorem mem_iff_append {a : α} {l : List α} : a ∈ l ↔ ∃ s t : List α, l = s ++ a :: t", "start": [ 1180, 1 ], "end": [ 1181, 48 ], "kind": "commanddeclaration" }, { "full_name": "List.forall_mem_append", "code": "theorem forall_mem_append {p : α → Prop} {l₁ l₂ : List α} :\n (∀ (x) (_ : x ∈ l₁ ++ l₂), p x) ↔ (∀ (x) (_ : x ∈ l₁), p x) ∧ (∀ (x) (_ : x ∈ l₂), p x)", "start": [ 1183, 1 ], "end": [ 1185, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_nil", "code": "theorem concat_nil (a : α) : concat [] a = [a]", "start": [ 1194, 1 ], "end": [ 1195, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_cons", "code": "theorem concat_cons (a b : α) (l : List α) : concat (a :: l) b = a :: concat l b", "start": [ 1196, 1 ], "end": [ 1197, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.init_eq_of_concat_eq", "code": "theorem init_eq_of_concat_eq {a b : α} {l₁ l₂ : List α} : concat l₁ a = concat l₂ b → l₁ = l₂", "start": [ 1199, 1 ], "end": [ 1202, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.last_eq_of_concat_eq", "code": "theorem last_eq_of_concat_eq {a b : α} {l₁ l₂ : List α} : concat l₁ a = concat l₂ b → a = b", "start": [ 1204, 1 ], "end": [ 1207, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_inj_left", "code": "theorem concat_inj_left {l l' : List α} (a : α) : concat l a = concat l' a ↔ l = l'", "start": [ 1209, 1 ], "end": [ 1210, 34 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_eq_concat", "code": "theorem concat_eq_concat {l l' : List α} {a b : α} : concat l a = concat l' b ↔ l = l' ∧ a = b", "start": [ 1212, 1 ], "end": [ 1213, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_ne_nil", "code": "theorem concat_ne_nil (a : α) (l : List α) : concat l a ≠ []", "start": [ 1215, 1 ], "end": [ 1215, 84 ], "kind": "commanddeclaration" }, { "full_name": "List.concat_append", "code": "theorem concat_append (a : α) (l₁ l₂ : List α) : concat l₁ a ++ l₂ = l₁ ++ a :: l₂", "start": [ 1217, 1 ], "end": [ 1217, 94 ], "kind": "commanddeclaration" }, { "full_name": "List.append_concat", "code": "theorem append_concat (a : α) (l₁ l₂ : List α) : l₁ ++ concat l₂ a = concat (l₁ ++ l₂) a", "start": [ 1219, 1 ], "end": [ 1219, 100 ], "kind": "commanddeclaration" }, { "full_name": "List.map_concat", "code": "theorem map_concat (f : α → β) (a : α) (l : List α) : map f (concat l a) = concat (map f l) (f a)", "start": [ 1221, 1 ], "end": [ 1224, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_nil_or_concat", "code": "theorem eq_nil_or_concat : ∀ l : List α, l = [] ∨ ∃ L b, l = concat L b", "start": [ 1226, 1 ], "end": [ 1230, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_join", "code": "@[simp] theorem mem_join : ∀ {L : List (List α)}, a ∈ L.join ↔ ∃ l, l ∈ L ∧ a ∈ l", "start": [ 1234, 1 ], "end": [ 1236, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_of_mem_join", "code": "theorem exists_of_mem_join : a ∈ join L → ∃ l, l ∈ L ∧ a ∈ l", "start": [ 1238, 1 ], "end": [ 1238, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_join_of_mem", "code": "theorem mem_join_of_mem (lL : l ∈ L) (al : a ∈ l) : a ∈ join L", "start": [ 1240, 1 ], "end": [ 1240, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.map_join", "code": "@[simp] theorem map_join (f : α → β) (L : List (List α)) : map f (join L) = join (map (map f) L)", "start": [ 1242, 1 ], "end": [ 1243, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.append_bind", "code": "@[simp] theorem append_bind xs ys (f : α → List β) :\n List.bind (xs ++ ys) f = List.bind xs f ++ List.bind ys f", "start": [ 1247, 1 ], "end": [ 1249, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_id", "code": "@[simp] theorem bind_id (l : List (List α)) : List.bind l id = l.join", "start": [ 1251, 1 ], "end": [ 1251, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_bind", "code": "@[simp] theorem mem_bind {f : α → List β} {b} {l : List α} : b ∈ l.bind f ↔ ∃ a, a ∈ l ∧ b ∈ f a", "start": [ 1253, 1 ], "end": [ 1255, 93 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_of_mem_bind", "code": "theorem exists_of_mem_bind {b : β} {l : List α} {f : α → List β} :\n b ∈ List.bind l f → ∃ a, a ∈ l ∧ b ∈ f a", "start": [ 1257, 1 ], "end": [ 1258, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_bind_of_mem", "code": "theorem mem_bind_of_mem {b : β} {l : List α} {f : α → List β} {a} (al : a ∈ l) (h : b ∈ f a) :\n b ∈ List.bind l f", "start": [ 1260, 1 ], "end": [ 1261, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_singleton", "code": "theorem bind_singleton (f : α → List β) (x : α) : [x].bind f = f x", "start": [ 1263, 1 ], "end": [ 1264, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_singleton'", "code": "@[simp] theorem bind_singleton' (l : List α) : (l.bind fun x => [x]) = l", "start": [ 1266, 1 ], "end": [ 1267, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_assoc", "code": "theorem bind_assoc {α β} (l : List α) (f : α → List β) (g : β → List γ) :\n (l.bind f).bind g = l.bind fun x => (f x).bind g", "start": [ 1269, 1 ], "end": [ 1271, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.map_bind", "code": "theorem map_bind (f : β → γ) (g : α → List β) :\n ∀ l : List α, (l.bind g).map f = l.bind fun a => (g a).map f", "start": [ 1273, 1 ], "end": [ 1276, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_map", "code": "theorem bind_map (f : α → β) (g : β → List γ) (l : List α) : (map f l).bind g = l.bind (fun a => g (f a))", "start": [ 1278, 1 ], "end": [ 1279, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_bind", "code": "theorem map_eq_bind {α β} (f : α → β) (l : List α) : map f l = l.bind fun x => [f x]", "start": [ 1281, 1 ], "end": [ 1283, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate_one", "code": "@[simp] theorem replicate_one : replicate 1 a = [a]", "start": [ 1287, 1 ], "end": [ 1287, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.contains_replicate", "code": "@[simp] theorem contains_replicate [BEq α] {n : Nat} {a b : α} :\n (replicate n b).contains a = (a == b && !n == 0)", "start": [ 1289, 1 ], "end": [ 1295, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.decide_mem_replicate", "code": "@[simp] theorem decide_mem_replicate [BEq α] [LawfulBEq α] {a b : α} :\n ∀ {n}, decide (b ∈ replicate n a) = ((¬ n == 0) && b == a)", "start": [ 1297, 1 ], "end": [ 1300, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_replicate", "code": "@[simp] theorem mem_replicate {a b : α} : ∀ {n}, b ∈ replicate n a ↔ n ≠ 0 ∧ b = a", "start": [ 1302, 1 ], "end": [ 1304, 69 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_of_mem_replicate", "code": "theorem eq_of_mem_replicate {a b : α} {n} (h : b ∈ replicate n a) : b = a", "start": [ 1306, 1 ], "end": [ 1306, 99 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate_succ_ne_nil", "code": "@[simp] theorem replicate_succ_ne_nil (n : Nat) (a : α) : replicate (n+1) a ≠ []", "start": [ 1308, 1 ], "end": [ 1309, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_replicate", "code": "@[simp] theorem getElem_replicate (a : α) {n : Nat} {m} (h : m < (replicate n a).length) :\n (replicate n a)[m] = a", "start": [ 1311, 1 ], "end": [ 1313, 38 ], "kind": "commanddeclaration" }, { "full_name": "List.get_replicate", "code": "@[deprecated getElem_replicate (since := \"2024-06-12\")]\ntheorem get_replicate (a : α) {n : Nat} (m : Fin _) : (replicate n a).get m = a", "start": [ 1315, 1 ], "end": [ 1317, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_replicate", "code": "theorem getElem?_replicate : (replicate n a)[m]? = if m < n then some a else none", "start": [ 1319, 1 ], "end": [ 1322, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_replicate_of_lt", "code": "@[simp] theorem getElem?_replicate_of_lt {n : Nat} {m : Nat} (h : m < n) : (replicate n a)[m]? = some a", "start": [ 1324, 1 ], "end": [ 1325, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.replicate_inj", "code": "@[simp] theorem replicate_inj : replicate n a = replicate m b ↔ n = m ∧ (n = 0 ∨ a = b)", "start": [ 1327, 1 ], "end": [ 1338, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_replicate_of_mem", "code": "theorem eq_replicate_of_mem {a : α} :\n ∀ {l : List α}, (∀ (b) (_ : b ∈ l), b = a) → l = replicate l.length a", "start": [ 1340, 1 ], "end": [ 1345, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_replicate", "code": "theorem eq_replicate {a : α} {n} {l : List α} :\n l = replicate n a ↔ length l = n ∧ ∀ (b) (_ : b ∈ l), b = a", "start": [ 1347, 1 ], "end": [ 1350, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.map_eq_replicate_iff", "code": "theorem map_eq_replicate_iff {l : List α} {f : α → β} {b : β} :\n l.map f = replicate l.length b ↔ ∀ x ∈ l, f x = b", "start": [ 1352, 1 ], "end": [ 1354, 22 ], "kind": "commanddeclaration" }, { "full_name": "List.map_const", "code": "@[simp] theorem map_const (l : List α) (b : β) : map (Function.const α b) l = replicate l.length b", "start": [ 1356, 1 ], "end": [ 1357, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.map_const'", "code": "theorem map_const' (l : List α) (b : β) : map (fun _ => b) l = replicate l.length b", "start": [ 1360, 1 ], "end": [ 1361, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.append_replicate_replicate", "code": "@[simp] theorem append_replicate_replicate : replicate n a ++ replicate m a = replicate (n + m) a", "start": [ 1363, 1 ], "end": [ 1369, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.map_replicate", "code": "@[simp] theorem map_replicate : (replicate n a).map f = replicate n (f a)", "start": [ 1371, 1 ], "end": [ 1374, 17 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_replicate", "code": "theorem filter_replicate : (replicate n a).filter p = if p a then replicate n a else []", "start": [ 1376, 1 ], "end": [ 1381, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_replicate_of_pos", "code": "@[simp] theorem filter_replicate_of_pos (h : p a) : (replicate n a).filter p = replicate n a", "start": [ 1383, 1 ], "end": [ 1384, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.filter_replicate_of_neg", "code": "@[simp] theorem filter_replicate_of_neg (h : ¬ p a) : (replicate n a).filter p = []", "start": [ 1386, 1 ], "end": [ 1387, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_replicate", "code": "theorem filterMap_replicate {f : α → Option β} :\n (replicate n a).filterMap f = match f a with | none => [] | .some b => replicate n b", "start": [ 1389, 1 ], "end": [ 1395, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_replicate_of_some", "code": "theorem filterMap_replicate_of_some {f : α → Option β} (h : f a = some b) :\n (replicate n a).filterMap f = replicate n b", "start": [ 1398, 1 ], "end": [ 1400, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_replicate_of_isSome", "code": "@[simp] theorem filterMap_replicate_of_isSome {f : α → Option β} (h : (f a).isSome) :\n (replicate n a).filterMap f = replicate n (Option.get _ h)", "start": [ 1402, 1 ], "end": [ 1406, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.filterMap_replicate_of_none", "code": "@[simp] theorem filterMap_replicate_of_none {f : α → Option β} (h : f a = none) :\n (replicate n a).filterMap f = []", "start": [ 1408, 1 ], "end": [ 1410, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.join_replicate_nil", "code": "@[simp] theorem join_replicate_nil : (replicate n ([] : List α)).join = []", "start": [ 1412, 1 ], "end": [ 1413, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.join_replicate_singleton", "code": "@[simp] theorem join_replicate_singleton : (replicate n [a]).join = replicate n a", "start": [ 1415, 1 ], "end": [ 1416, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.join_replicate_replicate", "code": "@[simp] theorem join_replicate_replicate : (replicate n (replicate m a)).join = replicate (n * m) a", "start": [ 1418, 1 ], "end": [ 1423, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.bind_replicate", "code": "theorem bind_replicate {β} (f : α → List β) : (replicate n a).bind f = (replicate n (f a)).join", "start": [ 1425, 1 ], "end": [ 1428, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.isEmpty_replicate", "code": "@[simp] theorem isEmpty_replicate : (replicate n a).isEmpty = decide (n = 0)", "start": [ 1430, 1 ], "end": [ 1431, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.length_reverse", "code": "@[simp] theorem length_reverse (as : List α) : (as.reverse).length = as.length", "start": [ 1435, 1 ], "end": [ 1438, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_reverse'", "code": "theorem getElem?_reverse' : ∀ {l : List α} (i j), i + j + 1 = length l →\n l.reverse[i]? = l[j]?", "start": [ 1440, 1 ], "end": [ 1447, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_reverse'", "code": "@[deprecated getElem?_reverse' (since := \"2024-06-12\")]\ntheorem get?_reverse' {l : List α} (i j) (h : i + j + 1 = length l) : get? l.reverse i = get? l j", "start": [ 1449, 1 ], "end": [ 1451, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_reverse", "code": "theorem getElem?_reverse {l : List α} {i} (h : i < length l) :\n l.reverse[i]? = l[l.length - 1 - i]?", "start": [ 1453, 1 ], "end": [ 1457, 65 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_reverse", "code": "@[deprecated getElem?_reverse (since := \"2024-06-12\")]\ntheorem get?_reverse {l : List α} {i} (h : i < length l) :\n get? l.reverse i = get? l (l.length - 1 - i)", "start": [ 1459, 1 ], "end": [ 1462, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_reverseAux_nil", "code": "theorem reverseAux_reverseAux_nil (as bs : List α) : reverseAux (reverseAux as bs) [] = reverseAux bs as", "start": [ 1464, 1 ], "end": [ 1467, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_reverse", "code": "@[simp] theorem reverse_reverse (as : List α) : as.reverse.reverse = as", "start": [ 1469, 1 ], "end": [ 1470, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.getLast?_reverse", "code": "@[simp] theorem getLast?_reverse (l : List α) : l.reverse.getLast? = l.head?", "start": [ 1472, 1 ], "end": [ 1472, 100 ], "kind": "commanddeclaration" }, { "full_name": "List.head?_reverse", "code": "@[simp] theorem head?_reverse (l : List α) : l.reverse.head? = l.getLast?", "start": [ 1474, 1 ], "end": [ 1475, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_append", "code": "@[simp] theorem reverse_append (as bs : List α) : (as ++ bs).reverse = bs.reverse ++ as.reverse", "start": [ 1477, 1 ], "end": [ 1478, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.map_reverse", "code": "@[simp] theorem map_reverse (f : α → β) (l : List α) : l.reverse.map f = (l.map f).reverse", "start": [ 1480, 1 ], "end": [ 1481, 27 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_map", "code": "@[deprecated map_reverse (since := \"2024-06-20\")]\ntheorem reverse_map (f : α → β) (l : List α) : (l.map f).reverse = l.reverse.map f", "start": [ 1483, 1 ], "end": [ 1485, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_eq_nil_iff", "code": "@[simp] theorem reverse_eq_nil_iff {xs : List α} : xs.reverse = [] ↔ xs = []", "start": [ 1487, 1 ], "end": [ 1490, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_reverseAux", "code": "@[simp] theorem mem_reverseAux {x : α} : ∀ {as bs}, x ∈ reverseAux as bs ↔ x ∈ as ∨ x ∈ bs", "start": [ 1492, 1 ], "end": [ 1494, 96 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_reverse", "code": "@[simp] theorem mem_reverse {x : α} {as : List α} : x ∈ reverse as ↔ x ∈ as", "start": [ 1496, 1 ], "end": [ 1496, 97 ], "kind": "commanddeclaration" }, { "full_name": "List.reverseAux_eq", "code": "theorem reverseAux_eq (as bs : List α) : reverseAux as bs = reverse as ++ bs", "start": [ 1498, 1 ], "end": [ 1499, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.foldrM_reverse", "code": "@[simp] theorem foldrM_reverse [Monad m] (l : List α) (f : α → β → m β) (b) :\n l.reverse.foldrM f b = l.foldlM (fun x y => f y x) b", "start": [ 1501, 1 ], "end": [ 1503, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.foldl_reverse", "code": "@[simp] theorem foldl_reverse (l : List α) (f : β → α → β) (b) :\n l.reverse.foldl f b = l.foldr (fun x y => f y x) b", "start": [ 1505, 1 ], "end": [ 1506, 101 ], "kind": "commanddeclaration" }, { "full_name": "List.foldr_reverse", "code": "@[simp] theorem foldr_reverse (l : List α) (f : α → β → β) (b) :\n l.reverse.foldr f b = l.foldl (fun x y => f y x) b", "start": [ 1508, 1 ], "end": [ 1510, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_replicate", "code": "@[simp] theorem reverse_replicate (n) (a : α) : reverse (replicate n a) = replicate n a", "start": [ 1512, 1 ], "end": [ 1515, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.elem_cons_self", "code": "@[simp] theorem elem_cons_self [BEq α] [LawfulBEq α] {a : α} : (a::as).elem a = true", "start": [ 1521, 1 ], "end": [ 1522, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.contains_cons", "code": "@[simp] theorem contains_cons [BEq α] :\n (a :: as : List α).contains x = (x == a || as.contains x)", "start": [ 1524, 1 ], "end": [ 1527, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.contains_eq_any_beq", "code": "theorem contains_eq_any_beq [BEq α] (l : List α) (a : α) : l.contains a = l.any (a == ·)", "start": [ 1529, 1 ], "end": [ 1530, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.take_append_drop", "code": "@[simp] theorem take_append_drop : ∀ (n : Nat) (l : List α), take n l ++ drop n l = l", "start": [ 1540, 1 ], "end": [ 1543, 63 ], "kind": "commanddeclaration" }, { "full_name": "List.length_drop", "code": "@[simp] theorem length_drop : ∀ (i : Nat) (l : List α), length (drop i l) = length l - i", "start": [ 1545, 1 ], "end": [ 1550, 81 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_length_le", "code": "theorem drop_length_le {l : List α} (h : l.length ≤ i) : drop i l = []", "start": [ 1552, 1 ], "end": [ 1553, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.take_length_le", "code": "theorem take_length_le {l : List α} (h : l.length ≤ i) : take i l = l", "start": [ 1555, 1 ], "end": [ 1557, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_length", "code": "@[simp] theorem drop_length (l : List α) : drop l.length l = []", "start": [ 1559, 1 ], "end": [ 1559, 98 ], "kind": "commanddeclaration" }, { "full_name": "List.take_length", "code": "@[simp] theorem take_length (l : List α) : take l.length l = l", "start": [ 1561, 1 ], "end": [ 1561, 97 ], "kind": "commanddeclaration" }, { "full_name": "List.take_concat_get", "code": "theorem take_concat_get (l : List α) (i : Nat) (h : i < l.length) :\n (l.take i).concat l[i] = l.take (i+1)", "start": [ 1563, 1 ], "end": [ 1566, 94 ], "kind": "commanddeclaration" }, { "full_name": "List.reverse_concat", "code": "theorem reverse_concat (l : List α) (a : α) : (l.concat a).reverse = a :: l.reverse", "start": [ 1568, 1 ], "end": [ 1569, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.take_succ_cons", "code": "abbrev take_succ_cons := @take_cons_succ", "start": [ 1571, 1 ], "end": [ 1571, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.take_all_of_le", "code": "theorem take_all_of_le {n} {l : List α} (h : length l ≤ n) : take n l = l", "start": [ 1573, 1 ], "end": [ 1574, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.take_left", "code": "@[simp]\ntheorem take_left : ∀ l₁ l₂ : List α, take (length l₁) (l₁ ++ l₂) = l₁", "start": [ 1576, 1 ], "end": [ 1579, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.take_left'", "code": "theorem take_left' {l₁ l₂ : List α} {n} (h : length l₁ = n) : take n (l₁ ++ l₂) = l₁", "start": [ 1581, 1 ], "end": [ 1582, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.map_take", "code": "@[simp] theorem map_take (f : α → β) :\n ∀ (L : List α) (i : Nat), (L.take i).map f = (L.map f).take i", "start": [ 1584, 1 ], "end": [ 1588, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_take", "code": "theorem getElem?_take {l : List α} {n m : Nat} (h : m < n) : (l.take n)[m]? = l[m]?", "start": [ 1590, 1 ], "end": [ 1600, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_take", "code": "@[deprecated getElem?_take (since := \"2024-06-12\")]\ntheorem get?_take {l : List α} {n m : Nat} (h : m < n) : (l.take n).get? m = l.get? m", "start": [ 1602, 1 ], "end": [ 1604, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_take_of_succ", "code": "@[simp]\ntheorem get?_take_of_succ {l : List α} {n : Nat} : (l.take (n + 1))[n]? = l[n]?", "start": [ 1606, 1 ], "end": [ 1608, 37 ], "kind": "commanddeclaration" }, { "full_name": "List.take_succ", "code": "theorem take_succ {l : List α} {n : Nat} : l.take (n + 1) = l.take n ++ l[n]?.toList", "start": [ 1610, 1 ], "end": [ 1617, 60 ], "kind": "commanddeclaration" }, { "full_name": "List.take_eq_nil_iff", "code": "@[simp]\ntheorem take_eq_nil_iff {l : List α} {k : Nat} : l.take k = [] ↔ l = [] ∨ k = 0", "start": [ 1619, 1 ], "end": [ 1621, 50 ], "kind": "commanddeclaration" }, { "full_name": "List.take_eq_nil_of_eq_nil", "code": "theorem take_eq_nil_of_eq_nil : ∀ {as : List α} {i}, as = [] → as.take i = []", "start": [ 1623, 1 ], "end": [ 1624, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_nil_of_take_ne_nil", "code": "theorem ne_nil_of_take_ne_nil {as : List α} {i : Nat} (h: as.take i ≠ []) : as ≠ []", "start": [ 1626, 1 ], "end": [ 1627, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_eq_take", "code": "theorem dropLast_eq_take (l : List α) : l.dropLast = l.take l.length.pred", "start": [ 1629, 1 ], "end": [ 1635, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_eq_nil_iff_le", "code": "@[simp]\ntheorem drop_eq_nil_iff_le {l : List α} {k : Nat} : l.drop k = [] ↔ l.length ≤ k", "start": [ 1637, 1 ], "end": [ 1648, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_sizeOf_le", "code": "theorem drop_sizeOf_le [SizeOf α] (l : List α) (n : Nat) : sizeOf (l.drop n) ≤ sizeOf l", "start": [ 1650, 1 ], "end": [ 1657, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_drop", "code": "@[simp] theorem drop_drop (n : Nat) : ∀ (m) (l : List α), drop n (drop m l) = drop (n + m) l", "start": [ 1659, 1 ], "end": [ 1666, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.take_drop", "code": "theorem take_drop : ∀ (m n : Nat) (l : List α), take n (drop m l) = drop m (take (m + n) l)", "start": [ 1668, 1 ], "end": [ 1671, 97 ], "kind": "commanddeclaration" }, { "full_name": "List.map_drop", "code": "@[simp] theorem map_drop (f : α → β) :\n ∀ (L : List α) (i : Nat), (L.drop i).map f = (L.map f).drop i", "start": [ 1673, 1 ], "end": [ 1679, 22 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_cons_drop", "code": "@[simp]\ntheorem getElem_cons_drop : ∀ (l : List α) (i : Nat) (h : i < l.length),\n l[i] :: drop (i + 1) l = drop i l", "start": [ 1681, 1 ], "end": [ 1685, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.get_cons_drop", "code": "@[deprecated getElem_cons_drop (since := \"2024-06-12\")]\ntheorem get_cons_drop (l : List α) (i) : get l i :: drop (i + 1) l = drop i l", "start": [ 1687, 1 ], "end": [ 1689, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_eq_getElem_cons", "code": "theorem drop_eq_getElem_cons {n} {l : List α} (h) : drop n l = l[n] :: drop (n + 1) l", "start": [ 1691, 1 ], "end": [ 1692, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_eq_get_cons", "code": "@[deprecated drop_eq_getElem_cons (since := \"2024-06-12\")]\ntheorem drop_eq_get_cons {n} {l : List α} (h) : drop n l = get l ⟨n, h⟩ :: drop (n + 1) l", "start": [ 1694, 1 ], "end": [ 1696, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_eq_nil_of_eq_nil", "code": "theorem drop_eq_nil_of_eq_nil : ∀ {as : List α} {i}, as = [] → as.drop i = []", "start": [ 1698, 1 ], "end": [ 1699, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.ne_nil_of_drop_ne_nil", "code": "theorem ne_nil_of_drop_ne_nil {as : List α} {i : Nat} (h: as.drop i ≠ []) : as ≠ []", "start": [ 1701, 1 ], "end": [ 1702, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_add", "code": "@[deprecated drop_drop (since := \"2024-06-15\")]\ntheorem drop_add (m n) (l : List α) : drop (m + n) l = drop m (drop n l)", "start": [ 1704, 1 ], "end": [ 1706, 19 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_left", "code": "@[simp]\ntheorem drop_left : ∀ l₁ l₂ : List α, drop (length l₁) (l₁ ++ l₂) = l₂", "start": [ 1708, 1 ], "end": [ 1711, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.drop_left'", "code": "theorem drop_left' {l₁ l₂ : List α} {n} (h : length l₁ = n) : drop n (l₁ ++ l₂) = l₂", "start": [ 1713, 1 ], "end": [ 1714, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_cons", "code": "theorem takeWhile_cons (p : α → Bool) (a : α) (l : List α) :\n (a :: l).takeWhile p = if p a then a :: l.takeWhile p else []", "start": [ 1718, 1 ], "end": [ 1721, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_cons", "code": "theorem dropWhile_cons :\n (x :: xs : List α).dropWhile p = if p x then xs.dropWhile p else x :: xs", "start": [ 1723, 1 ], "end": [ 1725, 33 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_map", "code": "theorem takeWhile_map (f : α → β) (p : β → Bool) (l : List α) :\n (l.map f).takeWhile p = (l.takeWhile (p ∘ f)).map f", "start": [ 1727, 1 ], "end": [ 1733, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_map", "code": "theorem dropWhile_map (f : α → β) (p : β → Bool) (l : List α) :\n (l.map f).dropWhile p = (l.dropWhile (p ∘ f)).map f", "start": [ 1735, 1 ], "end": [ 1741, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_append_dropWhile", "code": "@[simp] theorem takeWhile_append_dropWhile (p : α → Bool) :\n ∀ (l : List α), takeWhile p l ++ dropWhile p l = l", "start": [ 1743, 1 ], "end": [ 1746, 100 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_append", "code": "theorem dropWhile_append {xs ys : List α} :\n (xs ++ ys).dropWhile p =\n if (xs.dropWhile p).isEmpty then ys.dropWhile p else xs.dropWhile p ++ ys", "start": [ 1748, 1 ], "end": [ 1755, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_replicate_eq_filter", "code": "@[simp] theorem takeWhile_replicate_eq_filter (p : α → Bool) :\n (replicate n a).takeWhile p = (replicate n a).filter p", "start": [ 1757, 1 ], "end": [ 1763, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.takeWhile_replicate", "code": "theorem takeWhile_replicate (p : α → Bool) :\n (replicate n a).takeWhile p = if p a then replicate n a else []", "start": [ 1765, 1 ], "end": [ 1767, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_replicate_eq_filter_not", "code": "@[simp] theorem dropWhile_replicate_eq_filter_not (p : α → Bool) :\n (replicate n a).dropWhile p = (replicate n a).filter (fun a => !p a)", "start": [ 1769, 1 ], "end": [ 1775, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.dropWhile_replicate", "code": "theorem dropWhile_replicate (p : α → Bool) :\n (replicate n a).dropWhile p = if p a then [] else replicate n a", "start": [ 1777, 1 ], "end": [ 1780, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.partition_eq_filter_filter", "code": "@[simp] theorem partition_eq_filter_filter (p : α → Bool) (l : List α) :\n partition p l = (filter p l, filter (not ∘ p) l)", "start": [ 1784, 1 ], "end": [ 1789, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.length_dropLast", "code": "@[simp] theorem length_dropLast : ∀ (xs : List α), xs.dropLast.length = xs.length - 1", "start": [ 1797, 1 ], "end": [ 1799, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem_dropLast", "code": "@[simp] theorem getElem_dropLast : ∀ (xs : List α) (i : Nat) (h : i < xs.dropLast.length),\n xs.dropLast[i] = xs[i]'(Nat.lt_of_lt_of_le h (length_dropLast .. ▸ Nat.pred_le _))", "start": [ 1801, 1 ], "end": [ 1804, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.get_dropLast", "code": "@[deprecated getElem_dropLast (since := \"2024-06-12\")]\ntheorem get_dropLast (xs : List α) (i : Fin xs.dropLast.length) :\n xs.dropLast.get i = xs.get ⟨i, Nat.lt_of_lt_of_le i.isLt (length_dropLast .. ▸ Nat.pred_le _)⟩", "start": [ 1806, 1 ], "end": [ 1809, 7 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_cons_of_ne_nil", "code": "theorem dropLast_cons_of_ne_nil {α : Type u} {x : α}\n {l : List α} (h : l ≠ []) : (x :: l).dropLast = x :: l.dropLast", "start": [ 1811, 1 ], "end": [ 1813, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_append_of_ne_nil", "code": "@[simp] theorem dropLast_append_of_ne_nil {α : Type u} {l : List α} :\n ∀ (l' : List α) (_ : l ≠ []), (l' ++ l).dropLast = l' ++ l.dropLast", "start": [ 1815, 1 ], "end": [ 1820, 13 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_append_cons", "code": "theorem dropLast_append_cons : dropLast (l₁ ++ b::l₂) = l₁ ++ dropLast (b::l₂)", "start": [ 1822, 1 ], "end": [ 1823, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_concat", "code": "@[simp 1100] theorem dropLast_concat : dropLast (l₁ ++ [b]) = l₁", "start": [ 1825, 1 ], "end": [ 1825, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.map_dropLast", "code": "@[simp] theorem map_dropLast (f : α → β) (l : List α) : l.dropLast.map f = (l.map f).dropLast", "start": [ 1827, 1 ], "end": [ 1830, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_replicate", "code": "@[simp] theorem dropLast_replicate (n) (a : α) : dropLast (replicate n a) = replicate (n - 1) a", "start": [ 1832, 1 ], "end": [ 1839, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.dropLast_cons_self_replicate", "code": "@[simp] theorem dropLast_cons_self_replicate (n) (a : α) :\n dropLast (a :: replicate n a) = replicate n a", "start": [ 1841, 1 ], "end": [ 1843, 64 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_cons₂_self", "code": "@[simp] theorem isPrefixOf_cons₂_self [LawfulBEq α] {a : α} :\n isPrefixOf (a::as) (a::bs) = isPrefixOf as bs", "start": [ 1849, 1 ], "end": [ 1850, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_length_pos_nil", "code": "@[simp] theorem isPrefixOf_length_pos_nil {L : List α} (h : 0 < L.length) : isPrefixOf L [] = false", "start": [ 1852, 1 ], "end": [ 1853, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.isPrefixOf_replicate", "code": "@[simp] theorem isPrefixOf_replicate {a : α} :\n isPrefixOf l (replicate n a) = (decide (l.length ≤ n) && l.all (· == a))", "start": [ 1855, 1 ], "end": [ 1862, 92 ], "kind": "commanddeclaration" }, { "full_name": "List.isSuffixOf_cons_nil", "code": "@[simp] theorem isSuffixOf_cons_nil : isSuffixOf (a::as) ([] : List α) = false", "start": [ 1870, 1 ], "end": [ 1871, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.isSuffixOf_replicate", "code": "@[simp] theorem isSuffixOf_replicate {a : α} :\n isSuffixOf l (replicate n a) = (decide (l.length ≤ n) && l.all (· == a))", "start": [ 1873, 1 ], "end": [ 1875, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateLeft_zero", "code": "@[simp] theorem rotateLeft_zero (l : List α) : rotateLeft l 0 = l", "start": [ 1881, 1 ], "end": [ 1882, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.rotateRight_zero", "code": "@[simp] theorem rotateRight_zero (l : List α) : rotateRight l 0 = l", "start": [ 1889, 1 ], "end": [ 1890, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_cons_self", "code": "@[simp] theorem replace_cons_self [LawfulBEq α] {a : α} : (a::as).replace a b = b::as", "start": [ 1901, 1 ], "end": [ 1902, 22 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_of_not_mem", "code": "@[simp] theorem replace_of_not_mem {l : List α} (h : !l.elem a) : l.replace a b = l", "start": [ 1904, 1 ], "end": [ 1905, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_replicate_self", "code": "@[simp] theorem replace_replicate_self [LawfulBEq α] {a : α} (h : 0 < n) :\n (replicate n a).replace a b = b :: replicate (n - 1) a", "start": [ 1907, 1 ], "end": [ 1909, 54 ], "kind": "commanddeclaration" }, { "full_name": "List.replace_replicate_ne", "code": "@[simp] theorem replace_replicate_ne {a b c : α} (h : !b == a) :\n (replicate n a).replace b c = replicate n a", "start": [ 1911, 1 ], "end": [ 1914, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.insert_nil", "code": "@[simp] theorem insert_nil (a : α) : [].insert a = [a]", "start": [ 1923, 1 ], "end": [ 1924, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.insert_of_mem", "code": "@[simp] theorem insert_of_mem {l : List α} (h : a ∈ l) : l.insert a = l", "start": [ 1926, 1 ], "end": [ 1927, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.insert_of_not_mem", "code": "@[simp] theorem insert_of_not_mem {l : List α} (h : a ∉ l) : l.insert a = a :: l", "start": [ 1929, 1 ], "end": [ 1930, 24 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_insert_iff", "code": "@[simp] theorem mem_insert_iff {l : List α} : a ∈ l.insert b ↔ a = b ∨ a ∈ l", "start": [ 1932, 1 ], "end": [ 1939, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_insert_self", "code": "@[simp 1100] theorem mem_insert_self (a : α) (l : List α) : a ∈ l.insert a", "start": [ 1941, 1 ], "end": [ 1942, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_insert_of_mem", "code": "theorem mem_insert_of_mem {l : List α} (h : a ∈ l) : a ∈ l.insert b", "start": [ 1944, 1 ], "end": [ 1945, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.eq_or_mem_of_mem_insert", "code": "theorem eq_or_mem_of_mem_insert {l : List α} (h : a ∈ l.insert b) : a = b ∨ a ∈ l", "start": [ 1947, 1 ], "end": [ 1948, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.length_insert_of_mem", "code": "@[simp] theorem length_insert_of_mem {l : List α} (h : a ∈ l) :\n length (l.insert a) = length l", "start": [ 1950, 1 ], "end": [ 1951, 62 ], "kind": "commanddeclaration" }, { "full_name": "List.length_insert_of_not_mem", "code": "@[simp] theorem length_insert_of_not_mem {l : List α} (h : a ∉ l) :\n length (l.insert a) = length l + 1", "start": [ 1953, 1 ], "end": [ 1954, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.insert_replicate_self", "code": "@[simp] theorem insert_replicate_self {a : α} (h : 0 < n) : (replicate n a).insert a = replicate n a", "start": [ 1956, 1 ], "end": [ 1957, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.insert_replicate_ne", "code": "@[simp] theorem insert_replicate_ne {a b : α} (h : !b == a) :\n (replicate n a).insert b = b :: replicate n a", "start": [ 1959, 1 ], "end": [ 1962, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_cons_head", "code": "@[simp] theorem erase_cons_head [LawfulBEq α] (a : α) (l : List α) : (a :: l).erase a = l", "start": [ 1971, 1 ], "end": [ 1972, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_cons_tail", "code": "@[simp] theorem erase_cons_tail {a b : α} (l : List α) (h : ¬(b == a)) :\n (b :: l).erase a = b :: l.erase a", "start": [ 1974, 1 ], "end": [ 1975, 77 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_of_not_mem", "code": "theorem erase_of_not_mem [LawfulBEq α] {a : α} : ∀ {l : List α}, a ∉ l → l.erase a = l", "start": [ 1977, 1 ], "end": [ 1981, 101 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_replicate_self", "code": "@[simp] theorem erase_replicate_self [LawfulBEq α] {a : α} :\n (replicate n a).erase a = replicate (n - 1) a", "start": [ 1983, 1 ], "end": [ 1985, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.erase_replicate_ne", "code": "@[simp] theorem erase_replicate_ne [LawfulBEq α] {a b : α} (h : !b == a) :\n (replicate n a).erase b = replicate n a", "start": [ 1987, 1 ], "end": [ 1990, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_cons_of_pos", "code": "@[simp] theorem find?_cons_of_pos (l) (h : p a) : find? p (a :: l) = some a", "start": [ 1996, 1 ], "end": [ 1997, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_cons_of_neg", "code": "@[simp] theorem find?_cons_of_neg (l) (h : ¬p a) : find? p (a :: l) = find? p l", "start": [ 1999, 1 ], "end": [ 2000, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_eq_none", "code": "@[simp] theorem find?_eq_none : find? p l = none ↔ ∀ x ∈ l, ¬ p x", "start": [ 2002, 1 ], "end": [ 2003, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_some", "code": "theorem find?_some : ∀ {l}, find? p l = some a → p a", "start": [ 2005, 1 ], "end": [ 2009, 25 ], "kind": "commanddeclaration" }, { "full_name": "List.mem_of_find?_eq_some", "code": "@[simp] theorem mem_of_find?_eq_some : ∀ {l}, find? p l = some a → a ∈ l", "start": [ 2011, 1 ], "end": [ 2015, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_map", "code": "@[simp] theorem find?_map (f : β → α) (l : List β) : find? p (l.map f) = (l.find? (p ∘ f)).map f", "start": [ 2017, 1 ], "end": [ 2022, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate", "code": "theorem find?_replicate : find? p (replicate n a) = if n = 0 then none else if p a then some a else none", "start": [ 2024, 1 ], "end": [ 2027, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate_of_length_pos", "code": "@[simp] theorem find?_replicate_of_length_pos (h : 0 < n) : find? p (replicate n a) = if p a then some a else none", "start": [ 2029, 1 ], "end": [ 2030, 41 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate_of_pos", "code": "@[simp] theorem find?_replicate_of_pos (h : p a) : find? p (replicate n a) = if n = 0 then none else some a", "start": [ 2032, 1 ], "end": [ 2033, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate_of_neg", "code": "@[simp] theorem find?_replicate_of_neg (h : ¬ p a) : find? p (replicate n a) = none", "start": [ 2035, 1 ], "end": [ 2036, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_cons_of_isSome", "code": "@[simp] theorem findSome?_cons_of_isSome (l) (h : (f a).isSome) : findSome? f (a :: l) = f a", "start": [ 2040, 1 ], "end": [ 2042, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_cons_of_isNone", "code": "@[simp] theorem findSome?_cons_of_isNone (l) (h : (f a).isNone) : findSome? f (a :: l) = findSome? f l", "start": [ 2044, 1 ], "end": [ 2046, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.exists_of_findSome?_eq_some", "code": "theorem exists_of_findSome?_eq_some {l : List α} {f : α → Option β} (w : l.findSome? f = some b) :\n ∃ a, a ∈ l ∧ f a = b", "start": [ 2048, 1 ], "end": [ 2054, 28 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_map", "code": "@[simp] theorem findSome?_map (f : β → γ) (l : List β) : findSome? p (l.map f) = l.findSome? (p ∘ f)", "start": [ 2056, 1 ], "end": [ 2061, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_replicate", "code": "theorem findSome?_replicate : findSome? f (replicate n a) = if n = 0 then none else f a", "start": [ 2063, 1 ], "end": [ 2068, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.findSome?_replicate_of_pos", "code": "@[simp] theorem findSome?_replicate_of_pos (h : 0 < n) : findSome? f (replicate n a) = f a", "start": [ 2070, 1 ], "end": [ 2071, 45 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate_of_isSome", "code": "@[simp] theorem find?_replicate_of_isSome (h : (f a).isSome) : findSome? f (replicate n a) = if n = 0 then none else f a", "start": [ 2073, 1 ], "end": [ 2074, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.find?_replicate_of_isNone", "code": "@[simp] theorem find?_replicate_of_isNone (h : (f a).isNone) : findSome? f (replicate n a) = none", "start": [ 2076, 1 ], "end": [ 2078, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_cons_self", "code": "@[simp] theorem lookup_cons_self {k : α} : ((k,b)::es).lookup k = some b", "start": [ 2084, 1 ], "end": [ 2085, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_replicate", "code": "theorem lookup_replicate {k : α} :\n (replicate n (a,b)).lookup k = if n = 0 then none else if k == a then some b else none", "start": [ 2087, 1 ], "end": [ 2093, 23 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_replicate_of_pos", "code": "theorem lookup_replicate_of_pos {k : α} (h : 0 < n) :\n (replicate n (a,b)).lookup k = if k == a then some b else none", "start": [ 2095, 1 ], "end": [ 2097, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_replicate_self", "code": "theorem lookup_replicate_self {a : α} :\n (replicate n (a, b)).lookup a = if n = 0 then none else some b", "start": [ 2099, 1 ], "end": [ 2101, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_replicate_self_of_pos", "code": "@[simp] theorem lookup_replicate_self_of_pos {a : α} (h : 0 < n) :\n (replicate n (a, b)).lookup a = some b", "start": [ 2103, 1 ], "end": [ 2105, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.lookup_replicate_ne", "code": "@[simp] theorem lookup_replicate_ne {k : α} (h : !k == a) :\n (replicate n (a,b)).lookup k = none", "start": [ 2107, 1 ], "end": [ 2109, 30 ], "kind": "commanddeclaration" }, { "full_name": "List.not_any_eq_all_not", "code": "theorem not_any_eq_all_not (l : List α) (p : α → Bool) : (!l.any p) = l.all fun a => !p a", "start": [ 2117, 1 ], "end": [ 2118, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.not_all_eq_any_not", "code": "theorem not_all_eq_any_not (l : List α) (p : α → Bool) : (!l.all p) = l.any fun a => !p a", "start": [ 2120, 1 ], "end": [ 2121, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.and_any_distrib_left", "code": "theorem and_any_distrib_left (l : List α) (p : α → Bool) (q : Bool) :\n (q && l.any p) = l.any fun a => q && p a", "start": [ 2123, 1 ], "end": [ 2125, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.and_any_distrib_right", "code": "theorem and_any_distrib_right (l : List α) (p : α → Bool) (q : Bool) :\n (l.any p && q) = l.any fun a => p a && q", "start": [ 2127, 1 ], "end": [ 2129, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.or_all_distrib_left", "code": "theorem or_all_distrib_left (l : List α) (p : α → Bool) (q : Bool) :\n (q || l.all p) = l.all fun a => q || p a", "start": [ 2131, 1 ], "end": [ 2133, 75 ], "kind": "commanddeclaration" }, { "full_name": "List.or_all_distrib_right", "code": "theorem or_all_distrib_right (l : List α) (p : α → Bool) (q : Bool) :\n (l.all p || q) = l.all fun a => p a || q", "start": [ 2135, 1 ], "end": [ 2137, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.any_eq_not_all_not", "code": "theorem any_eq_not_all_not (l : List α) (p : α → Bool) : l.any p = !l.all (!p .)", "start": [ 2139, 1 ], "end": [ 2140, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.all_eq_not_any_not", "code": "theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any (!p .)", "start": [ 2142, 1 ], "end": [ 2143, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.any_map", "code": "theorem any_map (f : α → β) (l : List α) (p : β → Bool) : (l.map f).any p = l.any (p ∘ f)", "start": [ 2145, 1 ], "end": [ 2146, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.all_map", "code": "theorem all_map (f : α → β) (l : List α) (p : β → Bool) : (l.map f).all p = l.all (p ∘ f)", "start": [ 2148, 1 ], "end": [ 2149, 49 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_map", "code": "theorem zip_map (f : α → γ) (g : β → δ) :\n ∀ (l₁ : List α) (l₂ : List β), zip (l₁.map f) (l₂.map g) = (zip l₁ l₂).map (Prod.map f g)", "start": [ 2155, 1 ], "end": [ 2160, 67 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_map_left", "code": "theorem zip_map_left (f : α → γ) (l₁ : List α) (l₂ : List β) :\n zip (l₁.map f) l₂ = (zip l₁ l₂).map (Prod.map f id)", "start": [ 2162, 1 ], "end": [ 2163, 85 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_map_right", "code": "theorem zip_map_right (f : β → γ) (l₁ : List α) (l₂ : List β) :\n zip l₁ (l₂.map f) = (zip l₁ l₂).map (Prod.map id f)", "start": [ 2165, 1 ], "end": [ 2166, 85 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_append", "code": "theorem zip_append :\n ∀ {l₁ r₁ : List α} {l₂ r₂ : List β} (_h : length l₁ = length l₂),\n zip (l₁ ++ r₁) (l₂ ++ r₂) = zip l₁ l₂ ++ zip r₁ r₂", "start": [ 2168, 1 ], "end": [ 2174, 72 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_map'", "code": "theorem zip_map' (f : α → β) (g : α → γ) :\n ∀ l : List α, zip (l.map f) (l.map g) = l.map fun a => (f a, g a)", "start": [ 2176, 1 ], "end": [ 2179, 58 ], "kind": "commanddeclaration" }, { "full_name": "List.of_mem_zip", "code": "theorem of_mem_zip {a b} : ∀ {l₁ : List α} {l₂ : List β}, (a, b) ∈ zip l₁ l₂ → a ∈ l₁ ∧ b ∈ l₂", "start": [ 2181, 1 ], "end": [ 2187, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.map_fst_zip", "code": "theorem map_fst_zip :\n ∀ (l₁ : List α) (l₂ : List β), l₁.length ≤ l₂.length → map Prod.fst (zip l₁ l₂) = l₁", "start": [ 2189, 1 ], "end": [ 2196, 35 ], "kind": "commanddeclaration" }, { "full_name": "List.map_snd_zip", "code": "theorem map_snd_zip :\n ∀ (l₁ : List α) (l₂ : List β), l₂.length ≤ l₁.length → map Prod.snd (zip l₁ l₂) = l₂", "start": [ 2198, 1 ], "end": [ 2207, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.zip_replicate'", "code": "@[simp] theorem zip_replicate' {a : α} {b : β} {n : Nat} :\n zip (replicate n a) (replicate n b) = replicate n (a, b)", "start": [ 2209, 1 ], "end": [ 2214, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_zipWith", "code": "theorem getElem?_zipWith {f : α → β → γ} {i : Nat} :\n (List.zipWith f as bs)[i]? = match as[i]?, bs[i]? with\n | some a, some b => some (f a b) | _, _ => none", "start": [ 2218, 1 ], "end": [ 2227, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_zipWith", "code": "@[deprecated getElem?_zipWith (since := \"2024-06-12\")]\ntheorem get?_zipWith {f : α → β → γ} :\n (List.zipWith f as bs).get? i = match as.get? i, bs.get? i with\n | some a, some b => some (f a b) | _, _ => none", "start": [ 2229, 1 ], "end": [ 2233, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_get?", "code": "@[deprecated getElem?_zipWith (since := \"2024-06-07\")] abbrev zipWith_get? := @get?_zipWith", "start": [ 2236, 1 ], "end": [ 2236, 92 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_map", "code": "@[simp]\ntheorem zipWith_map {μ} (f : γ → δ → μ) (g : α → γ) (h : β → δ) (l₁ : List α) (l₂ : List β) :\n zipWith f (l₁.map g) (l₂.map h) = zipWith (fun a b => f (g a) (h b)) l₁ l₂", "start": [ 2238, 1 ], "end": [ 2241, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_map_left", "code": "theorem zipWith_map_left (l₁ : List α) (l₂ : List β) (f : α → α') (g : α' → β → γ) :\n zipWith g (l₁.map f) l₂ = zipWith (fun a b => g (f a) b) l₁ l₂", "start": [ 2243, 1 ], "end": [ 2245, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_map_right", "code": "theorem zipWith_map_right (l₁ : List α) (l₂ : List β) (f : β → β') (g : α → β' → γ) :\n zipWith g l₁ (l₂.map f) = zipWith (fun a b => g a (f b)) l₁ l₂", "start": [ 2247, 1 ], "end": [ 2249, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_foldr_eq_zip_foldr", "code": "theorem zipWith_foldr_eq_zip_foldr {f : α → β → γ} (i : δ):\n (zipWith f l₁ l₂).foldr g i = (zip l₁ l₂).foldr (fun p r => g (f p.1 p.2) r) i", "start": [ 2251, 1 ], "end": [ 2253, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_foldl_eq_zip_foldl", "code": "theorem zipWith_foldl_eq_zip_foldl {f : α → β → γ} (i : δ):\n (zipWith f l₁ l₂).foldl g i = (zip l₁ l₂).foldl (fun r p => g r (f p.1 p.2)) i", "start": [ 2255, 1 ], "end": [ 2257, 59 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_eq_nil_iff", "code": "@[simp]\ntheorem zipWith_eq_nil_iff {f : α → β → γ} {l l'} : zipWith f l l' = [] ↔ l = [] ∨ l' = []", "start": [ 2259, 1 ], "end": [ 2261, 32 ], "kind": "commanddeclaration" }, { "full_name": "List.map_zipWith", "code": "theorem map_zipWith {δ : Type _} (f : α → β) (g : γ → δ → α) (l : List γ) (l' : List δ) :\n map f (zipWith g l l') = zipWith (fun x y => f (g x y)) l l'", "start": [ 2263, 1 ], "end": [ 2270, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_distrib_take", "code": "theorem zipWith_distrib_take : (zipWith f l l').take n = zipWith f (l.take n) (l'.take n)", "start": [ 2272, 1 ], "end": [ 2280, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_distrib_drop", "code": "theorem zipWith_distrib_drop : (zipWith f l l').drop n = zipWith f (l.drop n) (l'.drop n)", "start": [ 2282, 1 ], "end": [ 2290, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_append", "code": "theorem zipWith_append (f : α → β → γ) (l la : List α) (l' lb : List β)\n (h : l.length = l'.length) :\n zipWith f (l ++ la) (l' ++ lb) = zipWith f l l' ++ zipWith f la lb", "start": [ 2292, 1 ], "end": [ 2304, 20 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWith_replicate'", "code": "@[simp] theorem zipWith_replicate' {a : α} {b : β} {n : Nat} :\n zipWith f (replicate n a) (replicate n b) = replicate n (f a b)", "start": [ 2306, 1 ], "end": [ 2311, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.getElem?_zipWithAll", "code": "theorem getElem?_zipWithAll {f : Option α → Option β → γ} {i : Nat} :\n (zipWithAll f as bs)[i]? = match as[i]?, bs[i]? with\n | none, none => .none | a?, b? => some (f a? b?)", "start": [ 2315, 1 ], "end": [ 2326, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.get?_zipWithAll", "code": "@[deprecated getElem?_zipWithAll (since := \"2024-06-12\")]\ntheorem get?_zipWithAll {f : Option α → Option β → γ} :\n (zipWithAll f as bs).get? i = match as.get? i, bs.get? i with\n | none, none => .none | a?, b? => some (f a? b?)", "start": [ 2328, 1 ], "end": [ 2332, 29 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_get?", "code": "@[deprecated getElem?_zipWithAll (since := \"2024-06-07\")] abbrev zipWithAll_get? := @get?_zipWithAll", "start": [ 2335, 1 ], "end": [ 2335, 101 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_map", "code": "theorem zipWithAll_map {μ} (f : Option γ → Option δ → μ) (g : α → γ) (h : β → δ) (l₁ : List α) (l₂ : List β) :\n zipWithAll f (l₁.map g) (l₂.map h) = zipWithAll (fun a b => f (g <$> a) (h <$> b)) l₁ l₂", "start": [ 2337, 1 ], "end": [ 2339, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_map_left", "code": "theorem zipWithAll_map_left (l₁ : List α) (l₂ : List β) (f : α → α') (g : Option α' → Option β → γ) :\n zipWithAll g (l₁.map f) l₂ = zipWithAll (fun a b => g (f <$> a) b) l₁ l₂", "start": [ 2341, 1 ], "end": [ 2343, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_map_right", "code": "theorem zipWithAll_map_right (l₁ : List α) (l₂ : List β) (f : β → β') (g : Option α → Option β' → γ) :\n zipWithAll g l₁ (l₂.map f) = zipWithAll (fun a b => g a (f <$> b)) l₁ l₂", "start": [ 2345, 1 ], "end": [ 2347, 57 ], "kind": "commanddeclaration" }, { "full_name": "List.map_zipWithAll", "code": "theorem map_zipWithAll {δ : Type _} (f : α → β) (g : Option γ → Option δ → α) (l : List γ) (l' : List δ) :\n map f (zipWithAll g l l') = zipWithAll (fun x y => f (g x y)) l l'", "start": [ 2349, 1 ], "end": [ 2354, 26 ], "kind": "commanddeclaration" }, { "full_name": "List.zipWithAll_replicate", "code": "@[simp] theorem zipWithAll_replicate {a : α} {b : β} {n : Nat} :\n zipWithAll f (replicate n a) (replicate n b) = replicate n (f a b)", "start": [ 2356, 1 ], "end": [ 2360, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.unzip_replicate", "code": "@[simp] theorem unzip_replicate {n : Nat} {a : α} {b : β} :\n unzip (replicate n (a, b)) = (replicate n a, replicate n b)", "start": [ 2364, 1 ], "end": [ 2368, 43 ], "kind": "commanddeclaration" }, { "full_name": "List.enumFrom_length", "code": "@[simp] theorem enumFrom_length : ∀ {n} {l : List α}, (enumFrom n l).length = l.length", "start": [ 2374, 1 ], "end": [ 2376, 51 ], "kind": "commanddeclaration" }, { "full_name": "List.map_enumFrom", "code": "theorem map_enumFrom (f : α → β) (n : Nat) (l : List α) :\n map (Prod.map id f) (enumFrom n l) = enumFrom n (map f l)", "start": [ 2378, 1 ], "end": [ 2380, 42 ], "kind": "commanddeclaration" }, { "full_name": "List.enum_length", "code": "@[simp] theorem enum_length : (enum l).length = l.length", "start": [ 2384, 1 ], "end": [ 2385, 18 ], "kind": "commanddeclaration" }, { "full_name": "List.enum_cons", "code": "theorem enum_cons : (a::as).enum = (0, a) :: as.enumFrom 1", "start": [ 2387, 1 ], "end": [ 2387, 66 ], "kind": "commanddeclaration" }, { "full_name": "List.map_enum", "code": "theorem map_enum (f : α → β) (l : List α) : map (Prod.map id f) (enum l) = enum (map f l)", "start": [ 2389, 1 ], "end": [ 2390, 21 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_nil", "code": "@[simp] theorem minimum?_nil [Min α] : ([] : List α).minimum? = none", "start": [ 2396, 1 ], "end": [ 2396, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_cons", "code": "theorem minimum?_cons [Min α] {xs : List α} : (x :: xs).minimum? = foldl min x xs", "start": [ 2400, 1 ], "end": [ 2400, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_eq_none_iff", "code": "@[simp] theorem minimum?_eq_none_iff {xs : List α} [Min α] : xs.minimum? = none ↔ xs = []", "start": [ 2402, 1 ], "end": [ 2403, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_mem", "code": "theorem minimum?_mem [Min α] (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b) :\n {xs : List α} → xs.minimum? = some a → a ∈ xs", "start": [ 2405, 1 ], "end": [ 2423, 36 ], "kind": "commanddeclaration" }, { "full_name": "List.le_minimum?_iff", "code": "theorem le_minimum?_iff [Min α] [LE α]\n (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) :\n {xs : List α} → xs.minimum? = some a → ∀ x, x ≤ a ↔ ∀ b, b ∈ xs → x ≤ b", "start": [ 2425, 1 ], "end": [ 2439, 44 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_eq_some_iff", "code": "theorem minimum?_eq_some_iff [Min α] [LE α] [anti : Antisymm ((· : α) ≤ ·)]\n (le_refl : ∀ a : α, a ≤ a)\n (min_eq_or : ∀ a b : α, min a b = a ∨ min a b = b)\n (le_min_iff : ∀ a b c : α, a ≤ min b c ↔ a ≤ b ∧ a ≤ c) {xs : List α} :\n xs.minimum? = some a ↔ a ∈ xs ∧ ∀ b, b ∈ xs → a ≤ b", "start": [ 2443, 1 ], "end": [ 2455, 56 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_replicate", "code": "theorem minimum?_replicate [Min α] {n : Nat} {a : α} (w : min a a = a) :\n (replicate n a).minimum? = if n = 0 then none else some a", "start": [ 2457, 1 ], "end": [ 2461, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.minimum?_replicate_of_pos", "code": "@[simp] theorem minimum?_replicate_of_pos [Min α] {n : Nat} {a : α} (w : min a a = a) (h : 0 < n) :\n (replicate n a).minimum? = some a", "start": [ 2463, 1 ], "end": [ 2465, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_nil", "code": "@[simp] theorem maximum?_nil [Max α] : ([] : List α).maximum? = none", "start": [ 2469, 1 ], "end": [ 2469, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_cons", "code": "theorem maximum?_cons [Max α] {xs : List α} : (x :: xs).maximum? = foldl max x xs", "start": [ 2473, 1 ], "end": [ 2473, 89 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_eq_none_iff", "code": "@[simp] theorem maximum?_eq_none_iff {xs : List α} [Max α] : xs.maximum? = none ↔ xs = []", "start": [ 2475, 1 ], "end": [ 2476, 31 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_mem", "code": "theorem maximum?_mem [Max α] (min_eq_or : ∀ a b : α, max a b = a ∨ max a b = b) :\n {xs : List α} → xs.maximum? = some a → a ∈ xs", "start": [ 2478, 1 ], "end": [ 2486, 39 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_le_iff", "code": "theorem maximum?_le_iff [Max α] [LE α]\n (max_le_iff : ∀ a b c : α, max b c ≤ a ↔ b ≤ a ∧ c ≤ a) :\n {xs : List α} → xs.maximum? = some a → ∀ x, a ≤ x ↔ ∀ b ∈ xs, b ≤ x", "start": [ 2488, 1 ], "end": [ 2496, 55 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_eq_some_iff", "code": "theorem maximum?_eq_some_iff [Max α] [LE α] [anti : Antisymm ((· : α) ≤ ·)]\n (le_refl : ∀ a : α, a ≤ a)\n (max_eq_or : ∀ a b : α, max a b = a ∨ max a b = b)\n (max_le_iff : ∀ a b c : α, max b c ≤ a ↔ b ≤ a ∧ c ≤ a) {xs : List α} :\n xs.maximum? = some a ↔ a ∈ xs ∧ ∀ b ∈ xs, b ≤ a", "start": [ 2500, 1 ], "end": [ 2512, 76 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_replicate", "code": "theorem maximum?_replicate [Max α] {n : Nat} {a : α} (w : max a a = a) :\n (replicate n a).maximum? = if n = 0 then none else some a", "start": [ 2514, 1 ], "end": [ 2518, 70 ], "kind": "commanddeclaration" }, { "full_name": "List.maximum?_replicate_of_pos", "code": "@[simp] theorem maximum?_replicate_of_pos [Max α] {n : Nat} {a : α} (w : max a a = a) (h : 0 < n) :\n (replicate n a).maximum? = some a", "start": [ 2520, 1 ], "end": [ 2522, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM'", "code": "def mapM' [Monad m] (f : α → m β) : List α → m (List β)\n | [] => pure []\n | a :: l => return (← f a) :: (← l.mapM' f)", "start": [ 2528, 1 ], "end": [ 2531, 46 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM'_nil", "code": "@[simp] theorem mapM'_nil [Monad m] {f : α → m β} : mapM' f [] = pure []", "start": [ 2533, 1 ], "end": [ 2533, 80 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM'_cons", "code": "@[simp] theorem mapM'_cons [Monad m] {f : α → m β} :\n mapM' f (a :: l) = return ((← f a) :: (← l.mapM' f))", "start": [ 2534, 1 ], "end": [ 2536, 6 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM'_eq_mapM", "code": "theorem mapM'_eq_mapM [Monad m] [LawfulMonad m] (f : α → m β) (l : List α) :\n mapM' f l = mapM f l", "start": [ 2538, 1 ], "end": [ 2542, 52 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM_nil", "code": "@[simp] theorem mapM_nil [Monad m] (f : α → m β) : [].mapM f = pure []", "start": [ 2544, 1 ], "end": [ 2544, 78 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM_cons", "code": "@[simp] theorem mapM_cons [Monad m] [LawfulMonad m] (f : α → m β) :\n (a :: l).mapM f = (return (← f a) :: (← l.mapM f))", "start": [ 2546, 1 ], "end": [ 2547, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.mapM_append", "code": "@[simp] theorem mapM_append [Monad m] [LawfulMonad m] (f : α → m β) {l₁ l₂ : List α} :\n (l₁ ++ l₂).mapM f = (return (← l₁.mapM f) ++ (← l₂.mapM f))", "start": [ 2549, 1 ], "end": [ 2550, 96 ], "kind": "commanddeclaration" }, { "full_name": "List.forM_nil'", "code": "@[simp] theorem forM_nil' [Monad m] : ([] : List α).forM f = (pure .unit : m PUnit)", "start": [ 2557, 1 ], "end": [ 2557, 91 ], "kind": "commanddeclaration" }, { "full_name": "List.forM_cons'", "code": "@[simp] theorem forM_cons' [Monad m] :\n (a::as).forM f = (f a >>= fun _ => as.forM f : m PUnit)", "start": [ 2559, 1 ], "end": [ 2561, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/IntList.lean
[ ".lake/packages/lean4/src/lean/Init/Data/List/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/DivModLemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Gcd.lean" ]
[ { "full_name": "Lean.Omega.IntList", "code": "abbrev IntList := List Int", "start": [ 13, 1 ], "end": [ 19, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get", "code": "def get (xs : IntList) (i : Nat) : Int := (xs.get? i).getD 0", "start": [ 23, 1 ], "end": [ 24, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get_nil", "code": "@[simp] theorem get_nil : get ([] : IntList) i = 0", "start": [ 26, 1 ], "end": [ 26, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get_cons_zero", "code": "@[simp] theorem get_cons_zero : get (x :: xs) 0 = x", "start": [ 27, 1 ], "end": [ 27, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get_cons_succ", "code": "@[simp] theorem get_cons_succ : get (x :: xs) (i+1) = get xs i", "start": [ 28, 1 ], "end": [ 28, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get_map", "code": "theorem get_map {xs : IntList} (h : f 0 = 0) : get (xs.map f) i = f (xs.get i)", "start": [ 30, 1 ], "end": [ 32, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.get_of_length_le", "code": "theorem get_of_length_le {xs : IntList} (h : xs.length ≤ i) : xs.get i = 0", "start": [ 34, 1 ], "end": [ 36, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.set", "code": "def set (xs : IntList) (i : Nat) (y : Int) : IntList :=\n match xs, i with\n | [], 0 => [y]\n | [], (i+1) => 0 :: set [] i y\n | _ :: xs, 0 => y :: xs\n | x :: xs, (i+1) => x :: set xs i y", "start": [ 42, 1 ], "end": [ 48, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.set_nil_zero", "code": "@[simp] theorem set_nil_zero : set [] 0 y = [y]", "start": [ 50, 1 ], "end": [ 50, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.set_nil_succ", "code": "@[simp] theorem set_nil_succ : set [] (i+1) y = 0 :: set [] i y", "start": [ 51, 1 ], "end": [ 51, 71 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.set_cons_zero", "code": "@[simp] theorem set_cons_zero : set (x :: xs) 0 y = y :: xs", "start": [ 52, 1 ], "end": [ 52, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.set_cons_succ", "code": "@[simp] theorem set_cons_succ : set (x :: xs) (i+1) y = x :: set xs i y", "start": [ 53, 1 ], "end": [ 53, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.leading", "code": "def leading (xs : IntList) : Int := xs.find? (! · == 0) |>.getD 0", "start": [ 55, 1 ], "end": [ 56, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.add", "code": "def add (xs ys : IntList) : IntList :=\n List.zipWithAll (fun x y => x.getD 0 + y.getD 0) xs ys", "start": [ 58, 1 ], "end": [ 60, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.add_def", "code": "theorem add_def (xs ys : IntList) :\n xs + ys = List.zipWithAll (fun x y => x.getD 0 + y.getD 0) xs ys", "start": [ 64, 1 ], "end": [ 66, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.add_get", "code": "@[simp] theorem add_get (xs ys : IntList) (i : Nat) : (xs + ys).get i = xs.get i + ys.get i", "start": [ 68, 1 ], "end": [ 70, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.add_nil", "code": "@[simp] theorem add_nil (xs : IntList) : xs + [] = xs", "start": [ 72, 1 ], "end": [ 72, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.nil_add", "code": "@[simp] theorem nil_add (xs : IntList) : [] + xs = xs", "start": [ 73, 1 ], "end": [ 73, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.cons_add_cons", "code": "@[simp] theorem cons_add_cons (x) (xs : IntList) (y) (ys : IntList) :\n (x :: xs) + (y :: ys) = (x + y) :: (xs + ys)", "start": [ 74, 1 ], "end": [ 75, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul", "code": "def mul (xs ys : IntList) : IntList := List.zipWith (· * ·) xs ys", "start": [ 77, 1 ], "end": [ 78, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_def", "code": "theorem mul_def (xs ys : IntList) : xs * ys = List.zipWith (· * ·) xs ys", "start": [ 82, 1 ], "end": [ 83, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_get", "code": "@[simp] theorem mul_get (xs ys : IntList) (i : Nat) : (xs * ys).get i = xs.get i * ys.get i", "start": [ 85, 1 ], "end": [ 87, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_nil_left", "code": "@[simp] theorem mul_nil_left : ([] : IntList) * ys = []", "start": [ 89, 1 ], "end": [ 89, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_nil_right", "code": "@[simp] theorem mul_nil_right : xs * ([] : IntList) = []", "start": [ 90, 1 ], "end": [ 90, 83 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_cons₂", "code": "@[simp] theorem mul_cons₂ : (x::xs : IntList) * (y::ys) = (x * y) :: (xs * ys)", "start": [ 91, 1 ], "end": [ 91, 86 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.neg", "code": "def neg (xs : IntList) : IntList := xs.map fun x => -x", "start": [ 93, 1 ], "end": [ 94, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.neg_def", "code": "theorem neg_def (xs : IntList) : - xs = xs.map fun x => -x", "start": [ 98, 1 ], "end": [ 98, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.neg_get", "code": "@[simp] theorem neg_get (xs : IntList) (i : Nat) : (- xs).get i = - xs.get i", "start": [ 100, 1 ], "end": [ 102, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.neg_nil", "code": "@[simp] theorem neg_nil : (- ([] : IntList)) = []", "start": [ 104, 1 ], "end": [ 104, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.neg_cons", "code": "@[simp] theorem neg_cons : (- (x::xs : IntList)) = -x :: -xs", "start": [ 105, 1 ], "end": [ 105, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sub", "code": "def sub (xs ys : IntList) : IntList :=\n List.zipWithAll (fun x y => x.getD 0 - y.getD 0) xs ys", "start": [ 107, 1 ], "end": [ 109, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sub_def", "code": "theorem sub_def (xs ys : IntList) :\n xs - ys = List.zipWithAll (fun x y => x.getD 0 - y.getD 0) xs ys", "start": [ 113, 1 ], "end": [ 115, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.smul", "code": "def smul (xs : IntList) (i : Int) : IntList :=\n xs.map fun x => i * x", "start": [ 117, 1 ], "end": [ 119, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.smul_def", "code": "theorem smul_def (xs : IntList) (i : Int) : i * xs = xs.map fun x => i * x", "start": [ 124, 1 ], "end": [ 124, 82 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.smul_get", "code": "@[simp] theorem smul_get (xs : IntList) (a : Int) (i : Nat) : (a * xs).get i = a * xs.get i", "start": [ 126, 1 ], "end": [ 128, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.smul_nil", "code": "@[simp] theorem smul_nil {i : Int} : i * ([] : IntList) = []", "start": [ 130, 1 ], "end": [ 130, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.smul_cons", "code": "@[simp] theorem smul_cons {i : Int} : i * (x::xs : IntList) = i * x :: i * xs", "start": [ 131, 1 ], "end": [ 131, 85 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.combo", "code": "def combo (a : Int) (xs : IntList) (b : Int) (ys : IntList) : IntList :=\n List.zipWithAll (fun x y => a * x.getD 0 + b * y.getD 0) xs ys", "start": [ 133, 1 ], "end": [ 135, 65 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.combo_eq_smul_add_smul", "code": "theorem combo_eq_smul_add_smul (a : Int) (xs : IntList) (b : Int) (ys : IntList) :\n combo a xs b ys = a * xs + b * ys", "start": [ 137, 1 ], "end": [ 145, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_distrib_left", "code": "theorem mul_distrib_left (xs ys zs : IntList) : (xs + ys) * zs = xs * zs + ys * zs", "start": [ 148, 1 ], "end": [ 163, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_neg_left", "code": "theorem mul_neg_left (xs ys : IntList) : (-xs) * ys = -(xs * ys)", "start": [ 165, 1 ], "end": [ 171, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sub_eq_add_neg", "code": "theorem sub_eq_add_neg (xs ys : IntList) : xs - ys = xs + (-ys)", "start": [ 174, 1 ], "end": [ 180, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.mul_smul_left", "code": "@[simp] theorem mul_smul_left {i : Int} {xs ys : IntList} : (i * xs) * ys = i * (xs * ys)", "start": [ 182, 1 ], "end": [ 188, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum", "code": "def sum (xs : IntList) : Int := xs.foldr (· + ·) 0", "start": [ 190, 1 ], "end": [ 191, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum_nil", "code": "@[simp] theorem sum_nil : sum ([] : IntList) = 0", "start": [ 193, 1 ], "end": [ 193, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum_cons", "code": "@[simp] theorem sum_cons : sum (x::xs : IntList) = x + sum xs", "start": [ 194, 1 ], "end": [ 194, 69 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum_add", "code": "theorem sum_add (xs ys : IntList) : (xs + ys).sum = xs.sum + ys.sum", "start": [ 197, 1 ], "end": [ 203, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum_neg", "code": "@[simp]\ntheorem sum_neg (xs : IntList) : (-xs).sum = -(xs.sum)", "start": [ 205, 1 ], "end": [ 209, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sum_smul", "code": "@[simp]\ntheorem sum_smul (i : Int) (xs : IntList) : (i * xs).sum = i * (xs.sum)", "start": [ 211, 1 ], "end": [ 215, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot", "code": "def dot (xs ys : IntList) : Int := (xs * ys).sum", "start": [ 217, 1 ], "end": [ 218, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_nil_left", "code": "@[local simp] theorem dot_nil_left : dot ([] : IntList) ys = 0", "start": [ 223, 1 ], "end": [ 223, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_nil_right", "code": "@[simp] theorem dot_nil_right : dot xs ([] : IntList) = 0", "start": [ 224, 1 ], "end": [ 224, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_cons₂", "code": "@[simp] theorem dot_cons₂ : dot (x::xs) (y::ys) = x * y + dot xs ys", "start": [ 225, 1 ], "end": [ 225, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_set_left", "code": "@[simp] theorem dot_set_left (xs ys : IntList) (i : Nat) (z : Int) :\n dot (xs.set i z) ys = dot xs ys + (z - xs.get i) * ys.get i", "start": [ 230, 1 ], "end": [ 248, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_distrib_left", "code": "theorem dot_distrib_left (xs ys zs : IntList) : (xs + ys).dot zs = xs.dot zs + ys.dot zs", "start": [ 250, 1 ], "end": [ 251, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_neg_left", "code": "@[simp] theorem dot_neg_left (xs ys : IntList) : (-xs).dot ys = -(xs.dot ys)", "start": [ 253, 1 ], "end": [ 254, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_smul_left", "code": "@[simp] theorem dot_smul_left (xs ys : IntList) (i : Int) : (i * xs).dot ys = i * xs.dot ys", "start": [ 256, 1 ], "end": [ 257, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_of_left_zero", "code": "theorem dot_of_left_zero (w : ∀ x, x ∈ xs → x = 0) : dot xs ys = 0", "start": [ 259, 1 ], "end": [ 270, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sdiv", "code": "def sdiv (xs : IntList) (g : Int) : IntList := xs.map fun x => x / g", "start": [ 272, 1 ], "end": [ 273, 69 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sdiv_nil", "code": "@[simp] theorem sdiv_nil : sdiv [] g = []", "start": [ 275, 1 ], "end": [ 275, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.sdiv_cons", "code": "@[simp] theorem sdiv_cons : sdiv (x::xs) g = (x / g) :: sdiv xs g", "start": [ 276, 1 ], "end": [ 276, 73 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd", "code": "def gcd (xs : IntList) : Nat := xs.foldr (fun x g => Nat.gcd x.natAbs g) 0", "start": [ 278, 1 ], "end": [ 279, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_nil", "code": "@[simp] theorem gcd_nil : gcd [] = 0", "start": [ 281, 1 ], "end": [ 281, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_cons", "code": "@[simp] theorem gcd_cons : gcd (x :: xs) = Nat.gcd x.natAbs (gcd xs)", "start": [ 282, 1 ], "end": [ 282, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_cons_div_left", "code": "theorem gcd_cons_div_left : (gcd (x::xs) : Int) ∣ x", "start": [ 284, 1 ], "end": [ 286, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_cons_div_right", "code": "theorem gcd_cons_div_right : gcd (x::xs) ∣ gcd xs", "start": [ 288, 1 ], "end": [ 290, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_cons_div_right'", "code": "theorem gcd_cons_div_right' : (gcd (x::xs) : Int) ∣ (gcd xs : Int)", "start": [ 292, 1 ], "end": [ 294, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_dvd", "code": "theorem gcd_dvd (xs : IntList) {a : Int} (m : a ∈ xs) : (xs.gcd : Int) ∣ a", "start": [ 296, 1 ], "end": [ 304, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dvd_gcd", "code": "theorem dvd_gcd (xs : IntList) (c : Nat) (w : ∀ {a : Int}, a ∈ xs → (c : Int) ∣ a) :\n c ∣ xs.gcd", "start": [ 306, 1 ], "end": [ 319, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_eq_iff", "code": "theorem gcd_eq_iff (xs : IntList) (g : Nat) :\n xs.gcd = g ↔\n (∀ {a : Int}, a ∈ xs → (g : Int) ∣ a) ∧\n (∀ (c : Nat), (∀ {a : Int}, a ∈ xs → (c : Int) ∣ a) → c ∣ g)", "start": [ 321, 1 ], "end": [ 333, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_eq_zero", "code": "@[simp] theorem gcd_eq_zero (xs : IntList) : xs.gcd = 0 ↔ ∀ x, x ∈ xs → x = 0", "start": [ 337, 1 ], "end": [ 338, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_mod_gcd_left", "code": "@[simp] theorem dot_mod_gcd_left (xs ys : IntList) : dot xs ys % xs.gcd = 0", "start": [ 340, 1 ], "end": [ 350, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.gcd_dvd_dot_left", "code": "theorem gcd_dvd_dot_left (xs ys : IntList) : (xs.gcd : Int) ∣ dot xs ys", "start": [ 352, 1 ], "end": [ 353, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_eq_zero_of_left_eq_zero", "code": "@[simp]\ntheorem dot_eq_zero_of_left_eq_zero {xs ys : IntList} (h : ∀ x, x ∈ xs → x = 0) : dot xs ys = 0", "start": [ 355, 1 ], "end": [ 364, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dot_sdiv_left", "code": "theorem dot_sdiv_left (xs ys : IntList) {d : Int} (h : d ∣ xs.gcd) :\n dot (xs.sdiv d) ys = (dot xs ys) / d", "start": [ 366, 1 ], "end": [ 377, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.bmod", "code": "abbrev bmod (x : IntList) (m : Nat) : IntList := x.map (Int.bmod · m)", "start": [ 379, 1 ], "end": [ 380, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.bmod_length", "code": "theorem bmod_length (x : IntList) (m) : (bmod x m).length ≤ x.length", "start": [ 382, 1 ], "end": [ 383, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.bmod_dot_sub_dot_bmod", "code": "abbrev bmod_dot_sub_dot_bmod (m : Nat) (a b : IntList) : Int :=\n (Int.bmod (dot a b) m) - dot (bmod a m) b", "start": [ 385, 1 ], "end": [ 390, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.IntList.dvd_bmod_dot_sub_dot_bmod", "code": "theorem dvd_bmod_dot_sub_dot_bmod (m : Nat) (xs ys : IntList) :\n (m : Int) ∣ bmod_dot_sub_dot_bmod m xs ys", "start": [ 392, 1 ], "end": [ 410, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/Coeffs.lean
[ ".lake/packages/lean4/src/lean/Init/Omega/IntList.lean" ]
[ { "full_name": "Lean.Omega.Coeffs", "code": "abbrev Coeffs := IntList", "start": [ 31, 1 ], "end": [ 32, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.toList", "code": "abbrev toList (xs : Coeffs) : List Int := xs", "start": [ 36, 1 ], "end": [ 37, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.ofList", "code": "abbrev ofList (xs : List Int) : Coeffs := xs", "start": [ 38, 1 ], "end": [ 39, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.isZero", "code": "abbrev isZero (xs : Coeffs) : Prop := ∀ x, x ∈ xs → x = 0", "start": [ 40, 1 ], "end": [ 41, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.set", "code": "abbrev set (xs : Coeffs) (i : Nat) (y : Int) : Coeffs := IntList.set xs i y", "start": [ 42, 1 ], "end": [ 43, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.get", "code": "abbrev get (xs : Coeffs) (i : Nat) : Int := IntList.get xs i", "start": [ 44, 1 ], "end": [ 45, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.gcd", "code": "abbrev gcd (xs : Coeffs) : Nat := IntList.gcd xs", "start": [ 46, 1 ], "end": [ 47, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.smul", "code": "abbrev smul (xs : Coeffs) (g : Int) : Coeffs := IntList.smul xs g", "start": [ 48, 1 ], "end": [ 49, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.sdiv", "code": "abbrev sdiv (xs : Coeffs) (g : Int) : Coeffs := IntList.sdiv xs g", "start": [ 50, 1 ], "end": [ 51, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot", "code": "abbrev dot (xs ys : Coeffs) : Int := IntList.dot xs ys", "start": [ 52, 1 ], "end": [ 53, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.add", "code": "abbrev add (xs ys : Coeffs) : Coeffs := IntList.add xs ys", "start": [ 54, 1 ], "end": [ 55, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.sub", "code": "abbrev sub (xs ys : Coeffs) : Coeffs := IntList.sub xs ys", "start": [ 56, 1 ], "end": [ 57, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.neg", "code": "abbrev neg (xs : Coeffs) : Coeffs := IntList.neg xs", "start": [ 58, 1 ], "end": [ 59, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.combo", "code": "abbrev combo (a : Int) (xs : Coeffs) (b : Int) (ys : Coeffs) : Coeffs := IntList.combo a xs b ys", "start": [ 60, 1 ], "end": [ 61, 97 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.length", "code": "abbrev length (xs : Coeffs) := List.length xs", "start": [ 62, 1 ], "end": [ 63, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.leading", "code": "abbrev leading (xs : Coeffs) : Int := IntList.leading xs", "start": [ 64, 1 ], "end": [ 65, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.map", "code": "abbrev map (f : Int → Int) (xs : Coeffs) : Coeffs := List.map f xs", "start": [ 66, 1 ], "end": [ 67, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.findIdx?", "code": "abbrev findIdx? (f : Int → Bool) (xs : Coeffs) : Option Nat :=\n xs.enum.find? (f ·.2) |>.map (·.1)", "start": [ 68, 1 ], "end": [ 72, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.bmod", "code": "abbrev bmod (x : Coeffs) (m : Nat) : Coeffs := IntList.bmod x m", "start": [ 73, 1 ], "end": [ 74, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.bmod_dot_sub_dot_bmod", "code": "abbrev bmod_dot_sub_dot_bmod (m : Nat) (a b : Coeffs) : Int :=\n IntList.bmod_dot_sub_dot_bmod m a b", "start": [ 75, 1 ], "end": [ 77, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.bmod_length", "code": "theorem bmod_length (x : Coeffs) (m : Nat) : (bmod x m).length ≤ x.length", "start": [ 78, 1 ], "end": [ 79, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dvd_bmod_dot_sub_dot_bmod", "code": "theorem dvd_bmod_dot_sub_dot_bmod (m : Nat) (xs ys : Coeffs) :\n (m : Int) ∣ bmod_dot_sub_dot_bmod m xs ys", "start": [ 80, 1 ], "end": [ 81, 91 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.get_of_length_le", "code": "theorem get_of_length_le {i : Nat} {xs : Coeffs} (h : length xs ≤ i) : get xs i = 0", "start": [ 83, 1 ], "end": [ 84, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_set_left", "code": "theorem dot_set_left (xs ys : Coeffs) (i : Nat) (z : Int) :\n dot (set xs i z) ys = dot xs ys + (z - get xs i) * get ys i", "start": [ 85, 1 ], "end": [ 87, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_sdiv_left", "code": "theorem dot_sdiv_left (xs ys : Coeffs) {d : Int} (h : d ∣ xs.gcd) :\n dot (xs.sdiv d) ys = (dot xs ys) / d", "start": [ 88, 1 ], "end": [ 90, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_smul_left", "code": "theorem dot_smul_left (xs ys : Coeffs) (i : Int) : dot (i * xs) ys = i * dot xs ys", "start": [ 91, 1 ], "end": [ 92, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_distrib_left", "code": "theorem dot_distrib_left (xs ys zs : Coeffs) : (xs + ys).dot zs = xs.dot zs + ys.dot zs", "start": [ 93, 1 ], "end": [ 94, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.sub_eq_add_neg", "code": "theorem sub_eq_add_neg (xs ys : Coeffs) : xs - ys = xs + -ys", "start": [ 95, 1 ], "end": [ 96, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.combo_eq_smul_add_smul", "code": "theorem combo_eq_smul_add_smul (a : Int) (xs : Coeffs) (b : Int) (ys : Coeffs) :\n combo a xs b ys = (a * xs) + (b * ys)", "start": [ 97, 1 ], "end": [ 99, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.gcd_dvd_dot_left", "code": "theorem gcd_dvd_dot_left (xs ys : Coeffs) : (gcd xs : Int) ∣ dot xs ys", "start": [ 100, 1 ], "end": [ 101, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.map_length", "code": "theorem map_length {xs : Coeffs} : (xs.map f).length ≤ xs.length", "start": [ 102, 1 ], "end": [ 103, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_nil_right", "code": "theorem dot_nil_right {xs : Coeffs} : dot xs .nil = 0", "start": [ 105, 1 ], "end": [ 105, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.get_nil", "code": "theorem get_nil : get .nil i = 0", "start": [ 106, 1 ], "end": [ 106, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Coeffs.dot_neg_left", "code": "theorem dot_neg_left (xs ys : IntList) : dot (-xs) ys = -dot xs ys", "start": [ 107, 1 ], "end": [ 108, 29 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/LinearCombo.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Macro.lean", ".lake/packages/lean4/src/lean/Init/Omega/Coeffs.lean" ]
[ { "full_name": "Lean.Omega.LinearCombo", "code": "structure LinearCombo where\n \n const : Int := 0\n \n coeffs : Coeffs := []\nderiving DecidableEq, Repr", "start": [ 19, 1 ], "end": [ 25, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.ext", "code": "theorem ext {a b : LinearCombo} (w₁ : a.const = b.const) (w₂ : a.coeffs = b.coeffs) :\n a = b", "start": [ 35, 1 ], "end": [ 39, 8 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.eval", "code": "def eval (lc : LinearCombo) (values : Coeffs) : Int :=\n lc.const + lc.coeffs.dot values", "start": [ 41, 1 ], "end": [ 46, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.eval_nil", "code": "@[simp] theorem eval_nil : (lc : LinearCombo).eval .nil = lc.const", "start": [ 48, 1 ], "end": [ 49, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate", "code": "def coordinate (i : Nat) : LinearCombo where\n const := 0\n coeffs := Coeffs.set .nil i 1", "start": [ 51, 1 ], "end": [ 54, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval", "code": "@[simp] theorem coordinate_eval (i : Nat) (v : Coeffs) :\n (coordinate i).eval v = v.get i", "start": [ 56, 1 ], "end": [ 58, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_0", "code": "theorem coordinate_eval_0 : (coordinate 0).eval (.ofList (a0 :: t)) = a0", "start": [ 60, 1 ], "end": [ 60, 84 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_1", "code": "theorem coordinate_eval_1 : (coordinate 1).eval (.ofList (a0 :: a1 :: t)) = a1", "start": [ 61, 1 ], "end": [ 61, 90 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_2", "code": "theorem coordinate_eval_2 : (coordinate 2).eval (.ofList (a0 :: a1 :: a2 :: t)) = a2", "start": [ 62, 1 ], "end": [ 62, 96 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_3", "code": "theorem coordinate_eval_3 :\n (coordinate 3).eval (.ofList (a0 :: a1 :: a2 :: a3 :: t)) = a3", "start": [ 63, 1 ], "end": [ 64, 78 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_4", "code": "theorem coordinate_eval_4 :\n (coordinate 4).eval (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: t)) = a4", "start": [ 65, 1 ], "end": [ 66, 84 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_5", "code": "theorem coordinate_eval_5 :\n (coordinate 5).eval (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: t)) = a5", "start": [ 67, 1 ], "end": [ 68, 90 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_6", "code": "theorem coordinate_eval_6 :\n (coordinate 6).eval (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: t)) = a6", "start": [ 69, 1 ], "end": [ 70, 96 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_7", "code": "theorem coordinate_eval_7 :\n (coordinate 7).eval\n (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: t)) = a7", "start": [ 71, 1 ], "end": [ 73, 84 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_8", "code": "theorem coordinate_eval_8 :\n (coordinate 8).eval\n (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: a8 :: t)) = a8", "start": [ 74, 1 ], "end": [ 76, 90 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.coordinate_eval_9", "code": "theorem coordinate_eval_9 :\n (coordinate 9).eval\n (.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: a8 :: a9 :: t)) = a9", "start": [ 77, 1 ], "end": [ 79, 96 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.add", "code": "def add (l₁ l₂ : LinearCombo) : LinearCombo where\n const := l₁.const + l₂.const\n coeffs := l₁.coeffs + l₂.coeffs", "start": [ 81, 1 ], "end": [ 84, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.add_const", "code": "@[simp] theorem add_const {l₁ l₂ : LinearCombo} : (l₁ + l₂).const = l₁.const + l₂.const", "start": [ 88, 1 ], "end": [ 88, 95 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.add_coeffs", "code": "@[simp] theorem add_coeffs {l₁ l₂ : LinearCombo} : (l₁ + l₂).coeffs = l₁.coeffs + l₂.coeffs", "start": [ 89, 1 ], "end": [ 89, 99 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.sub", "code": "def sub (l₁ l₂ : LinearCombo) : LinearCombo where\n const := l₁.const - l₂.const\n coeffs := l₁.coeffs - l₂.coeffs", "start": [ 91, 1 ], "end": [ 94, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.sub_const", "code": "@[simp] theorem sub_const {l₁ l₂ : LinearCombo} : (l₁ - l₂).const = l₁.const - l₂.const", "start": [ 98, 1 ], "end": [ 98, 95 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.sub_coeffs", "code": "@[simp] theorem sub_coeffs {l₁ l₂ : LinearCombo} : (l₁ - l₂).coeffs = l₁.coeffs - l₂.coeffs", "start": [ 99, 1 ], "end": [ 99, 99 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.neg", "code": "def neg (lc : LinearCombo) : LinearCombo where\n const := -lc.const\n coeffs := -lc.coeffs", "start": [ 101, 1 ], "end": [ 104, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.neg_const", "code": "@[simp] theorem neg_const {l : LinearCombo} : (-l).const = -l.const", "start": [ 108, 1 ], "end": [ 108, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.neg_coeffs", "code": "@[simp] theorem neg_coeffs {l : LinearCombo} : (-l).coeffs = -l.coeffs", "start": [ 109, 1 ], "end": [ 109, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.sub_eq_add_neg", "code": "theorem sub_eq_add_neg (l₁ l₂ : LinearCombo) : l₁ - l₂ = l₁ + -l₂", "start": [ 111, 1 ], "end": [ 115, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.smul", "code": "def smul (lc : LinearCombo) (i : Int) : LinearCombo where\n const := i * lc.const\n coeffs := lc.coeffs.smul i", "start": [ 117, 1 ], "end": [ 120, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.smul_const", "code": "@[simp] theorem smul_const {lc : LinearCombo} {i : Int} : (i * lc).const = i * lc.const", "start": [ 124, 1 ], "end": [ 124, 95 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.smul_coeffs", "code": "@[simp] theorem smul_coeffs {lc : LinearCombo} {i : Int} : (i * lc).coeffs = i * lc.coeffs", "start": [ 125, 1 ], "end": [ 125, 98 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.add_eval", "code": "@[simp] theorem add_eval (l₁ l₂ : LinearCombo) (v : Coeffs) :\n (l₁ + l₂).eval v = l₁.eval v + l₂.eval v", "start": [ 127, 1 ], "end": [ 132, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.neg_eval", "code": "@[simp] theorem neg_eval (lc : LinearCombo) (v : Coeffs) : (-lc).eval v = - lc.eval v", "start": [ 134, 1 ], "end": [ 136, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.sub_eval", "code": "@[simp] theorem sub_eval (l₁ l₂ : LinearCombo) (v : Coeffs) :\n (l₁ - l₂).eval v = l₁.eval v - l₂.eval v", "start": [ 138, 1 ], "end": [ 140, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.smul_eval", "code": "@[simp] theorem smul_eval (lc : LinearCombo) (i : Int) (v : Coeffs) :\n (i * lc).eval v = i * lc.eval v", "start": [ 142, 1 ], "end": [ 145, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.smul_eval_comm", "code": "theorem smul_eval_comm (lc : LinearCombo) (i : Int) (v : Coeffs) :\n (i * lc).eval v = lc.eval v * i", "start": [ 147, 1 ], "end": [ 149, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.mul", "code": "def mul (l₁ l₂ : LinearCombo) : LinearCombo :=\n l₂.const * l₁ + l₁.const * l₂ - { const := l₁.const * l₂.const }", "start": [ 151, 1 ], "end": [ 157, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.mul_eval_of_const_left", "code": "theorem mul_eval_of_const_left (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₁.coeffs.isZero) :\n (mul l₁ l₂).eval v = l₁.eval v * l₂.eval v", "start": [ 159, 1 ], "end": [ 163, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.mul_eval_of_const_right", "code": "theorem mul_eval_of_const_right (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₂.coeffs.isZero) :\n (mul l₁ l₂).eval v = l₁.eval v * l₂.eval v", "start": [ 165, 1 ], "end": [ 169, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LinearCombo.mul_eval", "code": "theorem mul_eval (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₁.coeffs.isZero ∨ l₂.coeffs.isZero) :\n (mul l₁ l₂).eval v = l₁.eval v * l₂.eval v", "start": [ 171, 1 ], "end": [ 175, 41 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/Int.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Int/DivMod.lean", ".lake/packages/lean4/src/lean/Init/Data/Int/Order.lean" ]
[ { "full_name": "Lean.Omega.Int.ofNat_pow", "code": "theorem ofNat_pow (a b : Nat) : ((a ^ b : Nat) : Int) = (a : Int) ^ b", "start": [ 23, 1 ], "end": [ 26, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.pos_pow_of_pos", "code": "theorem pos_pow_of_pos (a : Int) (b : Nat) (h : 0 < a) : 0 < a ^ b", "start": [ 28, 1 ], "end": [ 30, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_pos", "code": "theorem ofNat_pos {a : Nat} : 0 < (a : Int) ↔ 0 < a", "start": [ 32, 1 ], "end": [ 33, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_pos_of_pos", "code": "theorem ofNat_pos_of_pos {a : Nat} (h : 0 < a) : 0 < (a : Int)", "start": [ 35, 1 ], "end": [ 36, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.natCast_ofNat", "code": "theorem natCast_ofNat {x : Nat} :\n @Nat.cast Int instNatCastInt (no_index (OfNat.ofNat x)) = OfNat.ofNat x", "start": [ 38, 1 ], "end": [ 39, 83 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_lt_of_lt", "code": "theorem ofNat_lt_of_lt {x y : Nat} (h : x < y) : (x : Int) < (y : Int)", "start": [ 41, 1 ], "end": [ 42, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_le_of_le", "code": "theorem ofNat_le_of_le {x y : Nat} (h : x ≤ y) : (x : Int) ≤ (y : Int)", "start": [ 44, 1 ], "end": [ 45, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_shiftLeft_eq", "code": "theorem ofNat_shiftLeft_eq {x y : Nat} : (x <<< y : Int) = (x : Int) * (2 ^ y : Nat)", "start": [ 47, 1 ], "end": [ 48, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_shiftRight_eq_div_pow", "code": "theorem ofNat_shiftRight_eq_div_pow {x y : Nat} : (x >>> y : Int) = (x : Int) / (2 ^ y : Nat)", "start": [ 50, 1 ], "end": [ 51, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.emod_ofNat_nonneg", "code": "theorem emod_ofNat_nonneg {x : Nat} {y : Int} : 0 ≤ (x : Int) % y", "start": [ 53, 1 ], "end": [ 54, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.lt_of_not_ge", "code": "theorem lt_of_not_ge {x y : Int} (h : ¬ (x ≤ y)) : y < x", "start": [ 57, 1 ], "end": [ 57, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.lt_of_not_le", "code": "theorem lt_of_not_le {x y : Int} (h : ¬ (x ≤ y)) : y < x", "start": [ 58, 1 ], "end": [ 58, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.not_le_of_lt", "code": "theorem not_le_of_lt {x y : Int} (h : y < x) : ¬ (x ≤ y)", "start": [ 59, 1 ], "end": [ 59, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.lt_le_asymm", "code": "theorem lt_le_asymm {x y : Int} (h₁ : y < x) (h₂ : x ≤ y) : False", "start": [ 60, 1 ], "end": [ 60, 90 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.le_lt_asymm", "code": "theorem le_lt_asymm {x y : Int} (h₁ : y ≤ x) (h₂ : x < y) : False", "start": [ 61, 1 ], "end": [ 61, 90 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.le_of_not_gt", "code": "theorem le_of_not_gt {x y : Int} (h : ¬ (y > x)) : y ≤ x", "start": [ 63, 1 ], "end": [ 63, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.not_lt_of_ge", "code": "theorem not_lt_of_ge {x y : Int} (h : y ≥ x) : ¬ (y < x)", "start": [ 64, 1 ], "end": [ 64, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.le_of_not_lt", "code": "theorem le_of_not_lt {x y : Int} (h : ¬ (x < y)) : y ≤ x", "start": [ 65, 1 ], "end": [ 65, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.not_lt_of_le", "code": "theorem not_lt_of_le {x y : Int} (h : y ≤ x) : ¬ (x < y)", "start": [ 66, 1 ], "end": [ 66, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_congr", "code": "theorem add_congr {a b c d : Int} (h₁ : a = b) (h₂ : c = d) : a + c = b + d", "start": [ 68, 1 ], "end": [ 69, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.mul_congr", "code": "theorem mul_congr {a b c d : Int} (h₁ : a = b) (h₂ : c = d) : a * c = b * d", "start": [ 71, 1 ], "end": [ 72, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.mul_congr_left", "code": "theorem mul_congr_left {a b : Int} (h₁ : a = b) (c : Int) : a * c = b * c", "start": [ 74, 1 ], "end": [ 75, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.sub_congr", "code": "theorem sub_congr {a b c d : Int} (h₁ : a = b) (h₂ : c = d) : a - c = b - d", "start": [ 77, 1 ], "end": [ 78, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.neg_congr", "code": "theorem neg_congr {a b : Int} (h₁ : a = b) : -a = -b", "start": [ 80, 1 ], "end": [ 81, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.lt_of_gt", "code": "theorem lt_of_gt {x y : Int} (h : x > y) : y < x", "start": [ 83, 1 ], "end": [ 83, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.le_of_ge", "code": "theorem le_of_ge {x y : Int} (h : x ≥ y) : y ≤ x", "start": [ 84, 1 ], "end": [ 84, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_sub_eq_zero", "code": "theorem ofNat_sub_eq_zero {b a : Nat} (h : ¬ b ≤ a) : ((a - b : Nat) : Int) = 0", "start": [ 86, 1 ], "end": [ 87, 81 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_sub_dichotomy", "code": "theorem ofNat_sub_dichotomy {a b : Nat} :\n b ≤ a ∧ ((a - b : Nat) : Int) = a - b ∨ a < b ∧ ((a - b : Nat) : Int) = 0", "start": [ 89, 1 ], "end": [ 99, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_congr", "code": "theorem ofNat_congr {a b : Nat} (h : a = b) : (a : Int) = (b : Int)", "start": [ 101, 1 ], "end": [ 101, 84 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_sub_sub", "code": "theorem ofNat_sub_sub {a b c : Nat} : ((a - b - c : Nat) : Int) = ((a - (b + c) : Nat) : Int)", "start": [ 103, 1 ], "end": [ 104, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_min", "code": "theorem ofNat_min (a b : Nat) : ((min a b : Nat) : Int) = min (a : Int) (b : Int)", "start": [ 106, 1 ], "end": [ 108, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_max", "code": "theorem ofNat_max (a b : Nat) : ((max a b : Nat) : Int) = max (a : Int) (b : Int)", "start": [ 110, 1 ], "end": [ 112, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_natAbs", "code": "theorem ofNat_natAbs (a : Int) : (a.natAbs : Int) = if 0 ≤ a then a else -a", "start": [ 114, 1 ], "end": [ 119, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.natAbs_dichotomy", "code": "theorem natAbs_dichotomy {a : Int} : 0 ≤ a ∧ a.natAbs = a ∨ a < 0 ∧ a.natAbs = -a", "start": [ 121, 1 ], "end": [ 128, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.neg_le_natAbs", "code": "theorem neg_le_natAbs {a : Int} : -a ≤ a.natAbs", "start": [ 130, 1 ], "end": [ 133, 10 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_le_iff_le_sub", "code": "theorem add_le_iff_le_sub (a b c : Int) : a + b ≤ c ↔ a ≤ c - b", "start": [ 135, 1 ], "end": [ 140, 10 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.le_add_iff_sub_le", "code": "theorem le_add_iff_sub_le (a b c : Int) : a ≤ b + c ↔ a - c ≤ b", "start": [ 142, 1 ], "end": [ 146, 10 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_le_zero_iff_le_neg", "code": "theorem add_le_zero_iff_le_neg (a b : Int) : a + b ≤ 0 ↔ a ≤ - b", "start": [ 148, 1 ], "end": [ 149, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_le_zero_iff_le_neg'", "code": "theorem add_le_zero_iff_le_neg' (a b : Int) : a + b ≤ 0 ↔ b ≤ -a", "start": [ 150, 1 ], "end": [ 151, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_nonnneg_iff_neg_le", "code": "theorem add_nonnneg_iff_neg_le (a b : Int) : 0 ≤ a + b ↔ -b ≤ a", "start": [ 152, 1 ], "end": [ 153, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.add_nonnneg_iff_neg_le'", "code": "theorem add_nonnneg_iff_neg_le' (a b : Int) : 0 ≤ a + b ↔ -a ≤ b", "start": [ 154, 1 ], "end": [ 155, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_fst_mk", "code": "theorem ofNat_fst_mk {β} {x : Nat} {y : β} : (Prod.mk x y).fst = (x : Int)", "start": [ 157, 1 ], "end": [ 157, 82 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Int.ofNat_snd_mk", "code": "theorem ofNat_snd_mk {α} {x : α} {y : Nat} : (Prod.mk x y).snd = (y : Int)", "start": [ 158, 1 ], "end": [ 158, 82 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Nat.lt_of_gt", "code": "theorem lt_of_gt {x y : Nat} (h : x > y) : y < x", "start": [ 165, 1 ], "end": [ 165, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Nat.le_of_ge", "code": "theorem le_of_ge {x y : Nat} (h : x ≥ y) : y ≤ x", "start": [ 166, 1 ], "end": [ 166, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.ne_iff_lt_or_gt", "code": "theorem ne_iff_lt_or_gt {i j : Fin n} : i ≠ j ↔ i < j ∨ i > j", "start": [ 172, 1 ], "end": [ 173, 89 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.lt_or_gt_of_ne", "code": "protected theorem lt_or_gt_of_ne {i j : Fin n} (h : i ≠ j) : i < j ∨ i > j", "start": [ 175, 1 ], "end": [ 175, 103 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.not_le", "code": "theorem not_le {i j : Fin n} : ¬ i ≤ j ↔ j < i", "start": [ 177, 1 ], "end": [ 178, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.not_lt", "code": "theorem not_lt {i j : Fin n} : ¬ i < j ↔ j ≤ i", "start": [ 180, 1 ], "end": [ 181, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.lt_of_not_le", "code": "protected theorem lt_of_not_le {i j : Fin n} (h : ¬ i ≤ j) : j < i", "start": [ 183, 1 ], "end": [ 183, 86 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.le_of_not_lt", "code": "protected theorem le_of_not_lt {i j : Fin n} (h : ¬ i < j) : j ≤ i", "start": [ 184, 1 ], "end": [ 184, 86 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.ofNat_val_add", "code": "theorem ofNat_val_add {x y : Fin n} :\n (((x + y : Fin n)) : Int) = ((x : Int) + (y : Int)) % n", "start": [ 186, 1 ], "end": [ 187, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.ofNat_val_sub", "code": "theorem ofNat_val_sub {x y : Fin n} :\n (((x - y : Fin n)) : Int) = (((n - y : Nat) + (x : Int) : Int)) % n", "start": [ 189, 1 ], "end": [ 190, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.ofNat_val_mul", "code": "theorem ofNat_val_mul {x y : Fin n} :\n (((x * y : Fin n)) : Int) = ((x : Int) * (y : Int)) % n", "start": [ 192, 1 ], "end": [ 193, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Fin.ofNat_val_natCast", "code": "theorem ofNat_val_natCast {n x y : Nat} (h : y = x % (n + 1)):\n @Nat.cast Int instNatCastInt (@Fin.val (n + 1) (OfNat.ofNat x)) = OfNat.ofNat y", "start": [ 195, 1 ], "end": [ 198, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Prod.of_lex", "code": "theorem of_lex (w : Prod.Lex r s p q) : r p.fst q.fst ∨ p.fst = q.fst ∧ s p.snd q.snd", "start": [ 204, 1 ], "end": [ 205, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Prod.of_not_lex", "code": "theorem of_not_lex {α} {r : α → α → Prop} [DecidableEq α] {β} {s : β → β → Prop}\n {p q : α × β} (w : ¬ Prod.Lex r s p q) :\n ¬ r p.fst q.fst ∧ (p.fst ≠ q.fst ∨ ¬ s p.snd q.snd)", "start": [ 207, 1 ], "end": [ 211, 10 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Prod.fst_mk", "code": "theorem fst_mk : (Prod.mk x y).fst = x", "start": [ 213, 1 ], "end": [ 213, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Prod.snd_mk", "code": "theorem snd_mk : (Prod.mk x y).snd = y", "start": [ 214, 1 ], "end": [ 214, 46 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/Logic.lean
[ ".lake/packages/lean4/src/lean/Init/PropLemmas.lean" ]
[ { "full_name": "Lean.Omega.and_not_not_of_not_or", "code": "theorem and_not_not_of_not_or (h : ¬ (p ∨ q)) : ¬ p ∧ ¬ q", "start": [ 19, 1 ], "end": [ 19, 73 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Decidable.or_not_not_of_not_and", "code": "theorem Decidable.or_not_not_of_not_and [Decidable p] [Decidable q]\n (h : ¬ (p ∧ q)) : ¬ p ∨ ¬ q", "start": [ 21, 1 ], "end": [ 23, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Decidable.and_or_not_and_not_of_iff", "code": "theorem Decidable.and_or_not_and_not_of_iff {p q : Prop} [Decidable q] (h : p ↔ q) :\n (p ∧ q) ∨ (¬p ∧ ¬q)", "start": [ 25, 1 ], "end": [ 26, 69 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Decidable.not_iff_iff_and_not_or_not_and", "code": "theorem Decidable.not_iff_iff_and_not_or_not_and [Decidable a] [Decidable b] :\n (¬ (a ↔ b)) ↔ (a ∧ ¬ b) ∨ ((¬ a) ∧ b)", "start": [ 28, 1 ], "end": [ 34, 87 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Decidable.and_not_or_not_and_of_not_iff", "code": "theorem Decidable.and_not_or_not_and_of_not_iff [Decidable a] [Decidable b]\n (h : ¬ (a ↔ b)) : a ∧ ¬b ∨ ¬a ∧ b", "start": [ 36, 1 ], "end": [ 38, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Decidable.and_not_of_not_imp", "code": "theorem Decidable.and_not_of_not_imp [Decidable a] (h : ¬(a → b)) : a ∧ ¬b", "start": [ 40, 1 ], "end": [ 41, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.ite_disjunction", "code": "theorem ite_disjunction {α : Type u} {P : Prop} [Decidable P] {a b : α} :\n (P ∧ (if P then a else b) = a) ∨ (¬ P ∧ (if P then a else b) = b)", "start": [ 43, 1 ], "end": [ 48, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega/Constraint.lean
[ ".lake/packages/lean4/src/lean/Init/Omega/Int.lean", ".lake/packages/lean4/src/lean/Init/Omega/LinearCombo.lean" ]
[ { "full_name": "Lean.Omega.LowerBound", "code": "abbrev LowerBound : Type := Option Int", "start": [ 17, 1 ], "end": [ 18, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.UpperBound", "code": "abbrev UpperBound : Type := Option Int", "start": [ 19, 1 ], "end": [ 20, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.LowerBound.sat", "code": "abbrev LowerBound.sat (b : LowerBound) (t : Int) := b.all fun x => x ≤ t", "start": [ 22, 1 ], "end": [ 23, 73 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.UpperBound.sat", "code": "abbrev UpperBound.sat (b : UpperBound) (t : Int) := b.all fun y => t ≤ y", "start": [ 24, 1 ], "end": [ 25, 73 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint", "code": "structure Constraint where\n \n lowerBound : LowerBound\n \n upperBound : UpperBound\nderiving BEq, DecidableEq, Repr", "start": [ 27, 1 ], "end": [ 36, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.sat", "code": "def sat (c : Constraint) (t : Int) : Bool := c.lowerBound.sat t ∧ c.upperBound.sat t", "start": [ 48, 1 ], "end": [ 49, 85 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.map", "code": "def map (c : Constraint) (f : Int → Int) : Constraint where\n lowerBound := c.lowerBound.map f\n upperBound := c.upperBound.map f", "start": [ 51, 1 ], "end": [ 54, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.translate", "code": "def translate (c : Constraint) (t : Int) : Constraint := c.map (· + t)", "start": [ 56, 1 ], "end": [ 57, 71 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.translate_sat", "code": "theorem translate_sat : {c : Constraint} → {v : Int} → sat c v → sat (c.translate t) (v + t)", "start": [ 59, 1 ], "end": [ 65, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.flip", "code": "def flip (c : Constraint) : Constraint where\n lowerBound := c.upperBound\n upperBound := c.lowerBound", "start": [ 67, 1 ], "end": [ 73, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.neg", "code": "def neg (c : Constraint) : Constraint := c.flip.map (- ·)", "start": [ 75, 1 ], "end": [ 78, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.neg_sat", "code": "theorem neg_sat : {c : Constraint} → {v : Int} → sat c v → sat (c.neg) (-v)", "start": [ 80, 1 ], "end": [ 86, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.trivial", "code": "def trivial : Constraint := ⟨none, none⟩", "start": [ 88, 1 ], "end": [ 89, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.impossible", "code": "def impossible : Constraint := ⟨some 1, some 0⟩", "start": [ 90, 1 ], "end": [ 91, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.exact", "code": "def exact (r : Int) : Constraint := ⟨some r, some r⟩", "start": [ 92, 1 ], "end": [ 93, 53 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.trivial_say", "code": "@[simp] theorem trivial_say : trivial.sat t", "start": [ 95, 1 ], "end": [ 96, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.exact_sat", "code": "@[simp] theorem exact_sat (r : Int) (t : Int) : (exact r).sat t = decide (r = t)", "start": [ 98, 1 ], "end": [ 100, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.isImpossible", "code": "def isImpossible : Constraint → Bool\n | ⟨some x, some y⟩ => y < x\n | _ => false", "start": [ 102, 1 ], "end": [ 105, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.isExact", "code": "def isExact : Constraint → Bool\n | ⟨some x, some y⟩ => x = y\n | _ => false", "start": [ 107, 1 ], "end": [ 110, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.not_sat_of_isImpossible", "code": "theorem not_sat_of_isImpossible (h : isImpossible c) {t} : ¬ c.sat t", "start": [ 112, 1 ], "end": [ 116, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.scale", "code": "def scale (k : Int) (c : Constraint) : Constraint :=\n if k = 0 then\n if c.isImpossible then c else ⟨some 0, some 0⟩\n else if 0 < k then\n c.map (k * ·)\n else\n c.flip.map (k * ·)", "start": [ 118, 1 ], "end": [ 131, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.scale_sat", "code": "theorem scale_sat {c : Constraint} (k) (w : c.sat t) : (scale k c).sat (k * t)", "start": [ 133, 1 ], "end": [ 154, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.add", "code": "def add (x y : Constraint) : Constraint where\n lowerBound := x.lowerBound.bind fun a => y.lowerBound.map fun b => a + b\n upperBound := x.upperBound.bind fun a => y.upperBound.map fun b => a + b", "start": [ 156, 1 ], "end": [ 159, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.add_sat", "code": "theorem add_sat (w₁ : c₁.sat x₁) (w₂ : c₂.sat x₂) : (add c₁ c₂).sat (x₁ + x₂)", "start": [ 161, 1 ], "end": [ 172, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.combo", "code": "def combo (a : Int) (x : Constraint) (b : Int) (y : Constraint) : Constraint :=\n add (scale a x) (scale b y)", "start": [ 174, 1 ], "end": [ 176, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.combo_sat", "code": "theorem combo_sat (a) (w₁ : c₁.sat x₁) (b) (w₂ : c₂.sat x₂) :\n (combo a c₁ b c₂).sat (a * x₁ + b * x₂)", "start": [ 178, 1 ], "end": [ 180, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.combine", "code": "def combine (x y : Constraint) : Constraint where\n lowerBound := max x.lowerBound y.lowerBound\n upperBound := min x.upperBound y.upperBound", "start": [ 182, 1 ], "end": [ 185, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.combine_sat", "code": "theorem combine_sat : (c : Constraint) → (c' : Constraint) → (t : Int) →\n (c.combine c').sat t = (c.sat t ∧ c'.sat t)", "start": [ 187, 1 ], "end": [ 196, 92 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.div", "code": "def div (c : Constraint) (k : Nat) : Constraint where\n lowerBound := c.lowerBound.map fun x => (- ((- x) / k))\n upperBound := c.upperBound.map fun y => y / k", "start": [ 198, 1 ], "end": [ 204, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.div_sat", "code": "theorem div_sat (c : Constraint) (t : Int) (k : Nat) (n : k ≠ 0) (h : (k : Int) ∣ t) (w : c.sat t) :\n (c.div k).sat (t / k)", "start": [ 206, 1 ], "end": [ 228, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.sat'", "code": "abbrev sat' (c : Constraint) (x y : Coeffs) := c.sat (Coeffs.dot x y)", "start": [ 230, 1 ], "end": [ 234, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.combine_sat'", "code": "theorem combine_sat' {s t : Constraint} {x y} (ws : s.sat' x y) (wt : t.sat' x y) :\n (s.combine t).sat' x y", "start": [ 236, 1 ], "end": [ 237, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.div_sat'", "code": "theorem div_sat' {c : Constraint} {x y} (h : Coeffs.gcd x ≠ 0) (w : c.sat (Coeffs.dot x y)) :\n (c.div (Coeffs.gcd x)).sat' (Coeffs.sdiv x (Coeffs.gcd x)) y", "start": [ 239, 1 ], "end": [ 243, 69 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.not_sat'_of_isImpossible", "code": "theorem not_sat'_of_isImpossible (h : isImpossible c) {x y} : ¬ c.sat' x y", "start": [ 245, 1 ], "end": [ 246, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.addInequality_sat", "code": "theorem addInequality_sat (w : c + Coeffs.dot x y ≥ 0) :\n Constraint.sat' { lowerBound := some (-c), upperBound := none } x y", "start": [ 248, 1 ], "end": [ 252, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.Constraint.addEquality_sat", "code": "theorem addEquality_sat (w : c + Coeffs.dot x y = 0) :\n Constraint.sat' { lowerBound := some (-c), upperBound := some (-c) } x y", "start": [ 254, 1 ], "end": [ 258, 80 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalize?", "code": "def normalize? : Constraint × Coeffs → Option (Constraint × Coeffs)\n | ⟨s, x⟩ =>\n let gcd := Coeffs.gcd x if gcd = 0 then\n if s.sat 0 then\n some (.trivial, x)\n else\n some (.impossible, x)\n else if gcd = 1 then\n none\n else\n some (s.div gcd, Coeffs.sdiv x gcd)", "start": [ 262, 1 ], "end": [ 278, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalize", "code": "def normalize (p : Constraint × Coeffs) : Constraint × Coeffs :=\n normalize? p |>.getD p", "start": [ 280, 1 ], "end": [ 282, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalizeConstraint", "code": "noncomputable abbrev normalizeConstraint (s : Constraint) (x : Coeffs) : Constraint :=\n (normalize (s, x)).1", "start": [ 284, 1 ], "end": [ 287, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalizeCoeffs", "code": "noncomputable abbrev normalizeCoeffs (s : Constraint) (x : Coeffs) : Coeffs :=\n (normalize (s, x)).2", "start": [ 288, 1 ], "end": [ 290, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalize?_eq_some", "code": "theorem normalize?_eq_some (w : normalize? (s, x) = some (s', x')) :\n normalizeConstraint s x = s' ∧ normalizeCoeffs s x = x'", "start": [ 292, 1 ], "end": [ 294, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.normalize_sat", "code": "theorem normalize_sat {s x v} (w : s.sat' x v) :\n (normalizeConstraint s x).sat' (normalizeCoeffs s x) v", "start": [ 296, 1 ], "end": [ 306, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivize?", "code": "def positivize? : Constraint × Coeffs → Option (Constraint × Coeffs)\n | ⟨s, x⟩ =>\n if 0 ≤ x.leading then\n none\n else\n (s.neg, Coeffs.smul x (-1))", "start": [ 308, 1 ], "end": [ 314, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivize", "code": "noncomputable def positivize (p : Constraint × Coeffs) : Constraint × Coeffs :=\n positivize? p |>.getD p", "start": [ 316, 1 ], "end": [ 318, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivizeConstraint", "code": "noncomputable abbrev positivizeConstraint (s : Constraint) (x : Coeffs) : Constraint :=\n (positivize (s, x)).1", "start": [ 320, 1 ], "end": [ 322, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivizeCoeffs", "code": "noncomputable abbrev positivizeCoeffs (s : Constraint) (x : Coeffs) : Coeffs :=\n (positivize (s, x)).2", "start": [ 323, 1 ], "end": [ 325, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivize?_eq_some", "code": "theorem positivize?_eq_some (w : positivize? (s, x) = some (s', x')) :\n positivizeConstraint s x = s' ∧ positivizeCoeffs s x = x'", "start": [ 327, 1 ], "end": [ 329, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.positivize_sat", "code": "theorem positivize_sat {s x v} (w : s.sat' x v) :\n (positivizeConstraint s x).sat' (positivizeCoeffs s x) v", "start": [ 331, 1 ], "end": [ 338, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.tidy?", "code": "def tidy? : Constraint × Coeffs → Option (Constraint × Coeffs)\n | ⟨s, x⟩ =>\n match positivize? (s, x) with\n | none => match normalize? (s, x) with\n | none => none\n | some (s', x') => some (s', x')\n | some (s', x') => normalize (s', x')", "start": [ 340, 1 ], "end": [ 347, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.tidy", "code": "def tidy (p : Constraint × Coeffs) : Constraint × Coeffs :=\n tidy? p |>.getD p", "start": [ 349, 1 ], "end": [ 351, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.tidyConstraint", "code": "abbrev tidyConstraint (s : Constraint) (x : Coeffs) : Constraint := (tidy (s, x)).1", "start": [ 353, 1 ], "end": [ 354, 84 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.tidyCoeffs", "code": "abbrev tidyCoeffs (s : Constraint) (x : Coeffs) : Coeffs := (tidy (s, x)).2", "start": [ 355, 1 ], "end": [ 356, 76 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.tidy_sat", "code": "theorem tidy_sat {s x v} (w : s.sat' x v) : (tidyConstraint s x).sat' (tidyCoeffs s x) v", "start": [ 358, 1 ], "end": [ 366, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.combo_sat'", "code": "theorem combo_sat' (s t : Constraint)\n (a : Int) (x : Coeffs) (b : Int) (y : Coeffs) (v : Coeffs)\n (wx : s.sat' x v) (wy : t.sat' y v) :\n (Constraint.combo a s b t).sat' (Coeffs.combo a x b y) v", "start": [ 368, 1 ], "end": [ 374, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.bmod_div_term", "code": "abbrev bmod_div_term (m : Nat) (a b : Coeffs) : Int := Coeffs.bmod_dot_sub_dot_bmod m a b / m", "start": [ 376, 1 ], "end": [ 377, 94 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.bmod_coeffs", "code": "def bmod_coeffs (m : Nat) (i : Nat) (x : Coeffs) : Coeffs :=\n Coeffs.set (Coeffs.bmod x m) i m", "start": [ 379, 1 ], "end": [ 381, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Omega.bmod_sat", "code": "theorem bmod_sat (m : Nat) (r : Int) (i : Nat) (x v : Coeffs)\n (h : x.length ≤ i) (p : Coeffs.get v i = bmod_div_term m x v) (w : (Constraint.exact r).sat' x v) :\n (Constraint.exact (Int.bmod r m)).sat' (bmod_coeffs m i x) v", "start": [ 383, 1 ], "end": [ 393, 86 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/MinMax.lean
[ ".lake/packages/lean4/src/lean/Init/ByCases.lean" ]
[ { "full_name": "Nat.min_eq_min", "code": "protected theorem min_eq_min (a : Nat) : Nat.min a b = min a b", "start": [ 13, 1 ], "end": [ 13, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_comm", "code": "protected theorem min_comm (a b : Nat) : min a b = min b a", "start": [ 15, 1 ], "end": [ 19, 75 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_le_right", "code": "protected theorem min_le_right (a b : Nat) : min a b ≤ b", "start": [ 22, 1 ], "end": [ 23, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_le_left", "code": "protected theorem min_le_left (a b : Nat) : min a b ≤ a", "start": [ 24, 1 ], "end": [ 25, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_eq_left", "code": "protected theorem min_eq_left {a b : Nat} (h : a ≤ b) : min a b = a", "start": [ 27, 1 ], "end": [ 27, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_eq_right", "code": "protected theorem min_eq_right {a b : Nat} (h : b ≤ a) : min a b = b", "start": [ 28, 1 ], "end": [ 29, 38 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_min_of_le_of_le", "code": "protected theorem le_min_of_le_of_le {a b c : Nat} : a ≤ b → a ≤ c → a ≤ min b c", "start": [ 31, 1 ], "end": [ 34, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_min", "code": "protected theorem le_min {a b c : Nat} : a ≤ min b c ↔ a ≤ b ∧ a ≤ c", "start": [ 36, 1 ], "end": [ 38, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_min", "code": "protected theorem lt_min {a b c : Nat} : a < min b c ↔ a < b ∧ a < c", "start": [ 40, 1 ], "end": [ 40, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_eq_max", "code": "protected theorem max_eq_max (a : Nat) : Nat.max a b = max a b", "start": [ 44, 1 ], "end": [ 44, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_comm", "code": "protected theorem max_comm (a b : Nat) : max a b = max b a", "start": [ 46, 1 ], "end": [ 50, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_max_left", "code": "protected theorem le_max_left ( a b : Nat) : a ≤ max a b", "start": [ 53, 1 ], "end": [ 54, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_max_right", "code": "protected theorem le_max_right (a b : Nat) : b ≤ max a b", "start": [ 55, 1 ], "end": [ 56, 40 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Power2.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean" ]
[ { "full_name": "Nat.two_pow_pos", "code": "protected theorem two_pow_pos (w : Nat) : 0 < 2^w", "start": [ 11, 1 ], "end": [ 11, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.nextPowerOfTwo_dec", "code": "theorem nextPowerOfTwo_dec {n power : Nat} (h₁ : power > 0) (h₂ : power < n) : n - power * 2 < n - power", "start": [ 13, 1 ], "end": [ 16, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.nextPowerOfTwo", "code": "def nextPowerOfTwo (n : Nat) : Nat :=\n go 1 (by decide)\nwhere\n go (power : Nat) (h : power > 0) : Nat :=\n if power < n then\n go (power * 2) (Nat.mul_pos h (by decide))\n else\n power\n termination_by n - power\n decreasing_by simp_wf; apply nextPowerOfTwo_dec <;> assumption", "start": [ 18, 1 ], "end": [ 27, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.isPowerOfTwo", "code": "def isPowerOfTwo (n : Nat) := ∃ k, n = 2 ^ k", "start": [ 29, 1 ], "end": [ 29, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_isPowerOfTwo", "code": "theorem one_isPowerOfTwo : isPowerOfTwo 1", "start": [ 31, 1 ], "end": [ 32, 17 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul2_isPowerOfTwo_of_isPowerOfTwo", "code": "theorem mul2_isPowerOfTwo_of_isPowerOfTwo (h : isPowerOfTwo n) : isPowerOfTwo (n * 2)", "start": [ 34, 1 ], "end": [ 36, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_isPowerOfTwo", "code": "theorem pos_of_isPowerOfTwo (h : isPowerOfTwo n) : n > 0", "start": [ 38, 1 ], "end": [ 42, 9 ], "kind": "commanddeclaration" }, { "full_name": "Nat.isPowerOfTwo_nextPowerOfTwo", "code": "theorem isPowerOfTwo_nextPowerOfTwo (n : Nat) : n.nextPowerOfTwo.isPowerOfTwo", "start": [ 44, 1 ], "end": [ 54, 65 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Omega.lean
[ ".lake/packages/lean4/src/lean/Init/Omega/Constraint.lean", ".lake/packages/lean4/src/lean/Init/Omega/IntList.lean", ".lake/packages/lean4/src/lean/Init/Omega/Logic.lean", ".lake/packages/lean4/src/lean/Init/Omega/Int.lean", ".lake/packages/lean4/src/lean/Init/Omega/LinearCombo.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Nat/Log2.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean" ]
[ { "full_name": "Nat.log2_terminates", "code": "theorem log2_terminates : ∀ n, n ≥ 2 → n / 2 < n", "start": [ 11, 1 ], "end": [ 18, 15 ], "kind": "commanddeclaration" }, { "full_name": "Nat.log2", "code": "@[extern \"lean_nat_log2\"]\ndef log2 (n : @& Nat) : Nat :=\n if n ≥ 2 then log2 (n / 2) + 1 else 0\ndecreasing_by exact log2_terminates _ ‹_›", "start": [ 20, 1 ], "end": [ 28, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.log2_le_self", "code": "theorem log2_le_self (n : Nat) : Nat.log2 n ≤ n", "start": [ 30, 1 ], "end": [ 36, 46 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Log2.lean", ".lake/packages/lean4/src/lean/Init/Omega.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Power2.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/MinMax.lean" ]
[ { "full_name": "Nat.add_add_add_comm", "code": "protected theorem add_add_add_comm (a b c d : Nat) : (a + b) + (c + d) = (a + c) + (b + d)", "start": [ 24, 1 ], "end": [ 25, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_add", "code": "theorem one_add (n) : 1 + n = succ n", "start": [ 27, 1 ], "end": [ 27, 56 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_eq_one_add", "code": "theorem succ_eq_one_add (n) : succ n = 1 + n", "start": [ 29, 1 ], "end": [ 29, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_add_eq_add_succ", "code": "theorem succ_add_eq_add_succ (a b) : succ a + b = a + succ b", "start": [ 31, 1 ], "end": [ 31, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_zero_of_add_eq_zero_right", "code": "protected theorem eq_zero_of_add_eq_zero_right (h : n + m = 0) : n = 0", "start": [ 33, 1 ], "end": [ 34, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_eq_zero_iff", "code": "protected theorem add_eq_zero_iff : n + m = 0 ↔ n = 0 ∧ m = 0", "start": [ 36, 1 ], "end": [ 37, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_left_cancel_iff", "code": "protected theorem add_left_cancel_iff {n : Nat} : n + m = n + k ↔ m = k", "start": [ 39, 1 ], "end": [ 40, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_right_cancel_iff", "code": "protected theorem add_right_cancel_iff {n : Nat} : m + n = k + n ↔ m = k", "start": [ 42, 1 ], "end": [ 43, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_add_iff_left", "code": "protected theorem add_le_add_iff_left {n : Nat} : n + m ≤ n + k ↔ m ≤ k", "start": [ 45, 1 ], "end": [ 46, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_add_lt_add_right", "code": "protected theorem lt_of_add_lt_add_right : ∀ {n : Nat}, k + n < m + n → k < m", "start": [ 48, 1 ], "end": [ 50, 68 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_of_add_lt_add_left", "code": "protected theorem lt_of_add_lt_add_left {n : Nat} : n + k < n + m → k < m", "start": [ 52, 1 ], "end": [ 53, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_iff_left", "code": "protected theorem add_lt_add_iff_left {k n m : Nat} : k + n < k + m ↔ n < m", "start": [ 55, 1 ], "end": [ 56, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_iff_right", "code": "protected theorem add_lt_add_iff_right {k n m : Nat} : n + k < m + k ↔ n < m", "start": [ 58, 1 ], "end": [ 59, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_of_le_of_lt", "code": "protected theorem add_lt_add_of_le_of_lt {a b c d : Nat} (hle : a ≤ b) (hlt : c < d) :\n a + c < b + d", "start": [ 61, 1 ], "end": [ 63, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_add_of_lt_of_le", "code": "protected theorem add_lt_add_of_lt_of_le {a b c d : Nat} (hlt : a < b) (hle : c ≤ d) :\n a + c < b + d", "start": [ 65, 1 ], "end": [ 67, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_of_pos_left", "code": "protected theorem lt_add_of_pos_left : 0 < k → n < k + n", "start": [ 69, 1 ], "end": [ 70, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_lt_add_right", "code": "protected theorem pos_of_lt_add_right (h : n < n + k) : 0 < k", "start": [ 72, 1 ], "end": [ 73, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_lt_add_left", "code": "protected theorem pos_of_lt_add_left : n < k + n → 0 < k", "start": [ 75, 1 ], "end": [ 76, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_right_iff_pos", "code": "protected theorem lt_add_right_iff_pos : n < n + k ↔ 0 < k", "start": [ 78, 1 ], "end": [ 79, 53 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_add_left_iff_pos", "code": "protected theorem lt_add_left_iff_pos : n < k + n ↔ 0 < k", "start": [ 81, 1 ], "end": [ 82, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_pos_left", "code": "protected theorem add_pos_left (h : 0 < m) (n) : 0 < m + n", "start": [ 84, 1 ], "end": [ 85, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_pos_right", "code": "protected theorem add_pos_right (m) (h : 0 < n) : 0 < m + n", "start": [ 87, 1 ], "end": [ 88, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_self_ne_one", "code": "protected theorem add_self_ne_one : ∀ n, n + n ≠ 1", "start": [ 90, 1 ], "end": [ 91, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one", "code": "protected theorem sub_one (n) : n - 1 = pred n", "start": [ 95, 1 ], "end": [ 95, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_sub", "code": "protected theorem one_sub : ∀ n, 1 - n = if n = 0 then 1 else 0", "start": [ 97, 1 ], "end": [ 99, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_sub_sub_succ", "code": "theorem succ_sub_sub_succ (n m k) : succ n - m - succ k = n - m - k", "start": [ 101, 1 ], "end": [ 102, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_sub_add_right", "code": "theorem add_sub_sub_add_right (n m k l : Nat) :\n (n + l) - m - (k + l) = n - m - k", "start": [ 104, 1 ], "end": [ 106, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_right_comm", "code": "protected theorem sub_right_comm (m n k : Nat) : m - n - k = m - k - n", "start": [ 108, 1 ], "end": [ 109, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_cancel_right", "code": "protected theorem add_sub_cancel_right (n m : Nat) : (n + m) - m = n", "start": [ 111, 1 ], "end": [ 111, 94 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_sub_cancel'", "code": "@[simp] protected theorem add_sub_cancel' {n m : Nat} (h : m ≤ n) : m + (n - m) = n", "start": [ 113, 1 ], "end": [ 114, 42 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_sub_one", "code": "theorem succ_sub_one (n) : succ n - 1 = n", "start": [ 116, 1 ], "end": [ 116, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_sub_one", "code": "protected theorem add_one_sub_one (n : Nat) : (n + 1) - 1 = n", "start": [ 118, 1 ], "end": [ 118, 69 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_add_sub_one", "code": "protected theorem one_add_sub_one (n : Nat) : (1 + n) - 1 = n", "start": [ 120, 1 ], "end": [ 120, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_sub_self", "code": "protected theorem sub_sub_self {n m : Nat} (h : m ≤ n) : n - (n - m) = m", "start": [ 122, 1 ], "end": [ 123, 71 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_comm", "code": "protected theorem sub_add_comm {n m k : Nat} (h : k ≤ n) : n + m - k = n - k + m", "start": [ 125, 1 ], "end": [ 127, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_zero_iff_le", "code": "protected theorem sub_eq_zero_iff_le : n - m = 0 ↔ n ≤ m", "start": [ 129, 1 ], "end": [ 130, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_pos_iff_lt", "code": "protected theorem sub_pos_iff_lt : 0 < n - m ↔ m < n", "start": [ 132, 1 ], "end": [ 133, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_iff_le_add", "code": "protected theorem sub_le_iff_le_add {a b c : Nat} : a - b ≤ c ↔ a ≤ c + b", "start": [ 135, 1 ], "end": [ 136, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_iff_le_add'", "code": "protected theorem sub_le_iff_le_add' {a b c : Nat} : a - b ≤ c ↔ a ≤ b + c", "start": [ 138, 1 ], "end": [ 139, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_iff_add_le", "code": "protected theorem le_sub_iff_add_le {n : Nat} (h : k ≤ m) : n ≤ m - k ↔ n + k ≤ m", "start": [ 141, 1 ], "end": [ 142, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_to_le_sub", "code": "@[deprecated Nat.le_sub_iff_add_le (since := \"2024-02-19\")]\nprotected theorem add_le_to_le_sub (n : Nat) (h : m ≤ k) : n + m ≤ k ↔ n ≤ k - m", "start": [ 144, 1 ], "end": [ 146, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_of_le_sub'", "code": "protected theorem add_le_of_le_sub' {n k m : Nat} (h : m ≤ k) : n ≤ k - m → m + n ≤ k", "start": [ 148, 1 ], "end": [ 149, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_le_of_le_sub_left", "code": "@[deprecated Nat.add_le_of_le_sub' (since := \"2024-02-19\")]\nprotected theorem add_le_of_le_sub_left {n k m : Nat} (h : m ≤ k) : n ≤ k - m → m + n ≤ k", "start": [ 151, 1 ], "end": [ 153, 26 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_of_add_le'", "code": "protected theorem le_sub_of_add_le' {n k m : Nat} : m + n ≤ k → n ≤ k - m", "start": [ 155, 1 ], "end": [ 156, 41 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_sub_iff_add_le'", "code": "protected theorem le_sub_iff_add_le' {n : Nat} (h : k ≤ m) : n ≤ m - k ↔ k + n ≤ m", "start": [ 158, 1 ], "end": [ 159, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_sub_le_sub_left", "code": "protected theorem le_of_sub_le_sub_left : ∀ {n k m : Nat}, n ≤ k → k - m ≤ k - n → n ≤ m", "start": [ 161, 1 ], "end": [ 167, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_le_sub_iff_left", "code": "protected theorem sub_le_sub_iff_left {n m k : Nat} (h : n ≤ k) : k - m ≤ k - n ↔ n ≤ m", "start": [ 169, 1 ], "end": [ 170, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_of_pos_le", "code": "protected theorem sub_lt_of_pos_le (h₀ : 0 < a) (h₁ : a ≤ b) : b - a < b", "start": [ 172, 1 ], "end": [ 173, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_self", "code": "protected abbrev sub_lt_self := @Nat.sub_lt_of_pos_le", "start": [ 174, 1 ], "end": [ 174, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_lt_of_lt_sub'", "code": "theorem add_lt_of_lt_sub' {a b c : Nat} : b < c - a → a + b < c", "start": [ 176, 1 ], "end": [ 177, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_lt_sub", "code": "protected theorem sub_add_lt_sub (h₁ : m + k ≤ n) (h₂ : 0 < k) : n - (m + k) < n - m", "start": [ 179, 1 ], "end": [ 180, 79 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_lt_of_le", "code": "theorem sub_one_lt_of_le (h₀ : 0 < a) (h₁ : a ≤ b) : a - 1 < b", "start": [ 182, 1 ], "end": [ 183, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_succ", "code": "theorem sub_lt_succ (a b) : a - b < succ a", "start": [ 185, 1 ], "end": [ 185, 73 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_lt_add_one", "code": "theorem sub_lt_add_one (a b) : a - b < a + 1", "start": [ 187, 1 ], "end": [ 187, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_one_sub_lt", "code": "theorem sub_one_sub_lt (h : i < n) : n - 1 - i < n", "start": [ 189, 1 ], "end": [ 190, 92 ], "kind": "commanddeclaration" }, { "full_name": "Nat.exists_eq_add_of_le", "code": "protected theorem exists_eq_add_of_le (h : m ≤ n) : ∃ k : Nat, n = m + k", "start": [ 192, 1 ], "end": [ 193, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.exists_eq_add_of_le'", "code": "protected theorem exists_eq_add_of_le' (h : m ≤ n) : ∃ k : Nat, n = k + m", "start": [ 195, 1 ], "end": [ 196, 39 ], "kind": "commanddeclaration" }, { "full_name": "Nat.exists_eq_add_of_lt", "code": "protected theorem exists_eq_add_of_lt (h : m < n) : ∃ k : Nat, n = m + k + 1", "start": [ 198, 1 ], "end": [ 199, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_min_succ", "code": "theorem succ_min_succ (x y) : min (succ x) (succ y) = succ (min x y)", "start": [ 203, 1 ], "end": [ 206, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_self", "code": "@[simp] protected theorem min_self (a : Nat) : min a a = a", "start": [ 208, 1 ], "end": [ 208, 94 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_min", "code": "@[simp] protected theorem zero_min (a) : min 0 a = 0", "start": [ 211, 1 ], "end": [ 211, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_zero", "code": "@[simp] protected theorem min_zero (a) : min a 0 = 0", "start": [ 213, 1 ], "end": [ 213, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_assoc", "code": "@[simp] protected theorem min_assoc : ∀ (a b c : Nat), min (min a b) c = min a (min b c)", "start": [ 215, 1 ], "end": [ 219, 95 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_self_assoc", "code": "@[simp] protected theorem min_self_assoc {m n : Nat} : min m (min m n) = min m n", "start": [ 222, 1 ], "end": [ 223, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_self_assoc'", "code": "@[simp] protected theorem min_self_assoc' {m n : Nat} : min n (min m n) = min n m", "start": [ 225, 1 ], "end": [ 226, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_sub_eq_min", "code": "protected theorem sub_sub_eq_min : ∀ (a b : Nat), a - (a - b) = min a b", "start": [ 228, 1 ], "end": [ 233, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_sub_min", "code": "protected theorem sub_eq_sub_min (n m : Nat) : n - m = n - min n m", "start": [ 235, 1 ], "end": [ 238, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_min_cancel", "code": "@[simp] protected theorem sub_add_min_cancel (n m : Nat) : n - m + min n m = n", "start": [ 240, 1 ], "end": [ 241, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_eq_right", "code": "protected theorem max_eq_right {a b : Nat} (h : a ≤ b) : max a b = b", "start": [ 243, 1 ], "end": [ 243, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_eq_left", "code": "protected theorem max_eq_left {a b : Nat} (h : b ≤ a) : max a b = a", "start": [ 245, 1 ], "end": [ 246, 46 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_max_succ", "code": "protected theorem succ_max_succ (x y) : max (succ x) (succ y) = succ (max x y)", "start": [ 248, 1 ], "end": [ 251, 74 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_le_of_le_of_le", "code": "protected theorem max_le_of_le_of_le {a b c : Nat} : a ≤ c → b ≤ c → max a b ≤ c", "start": [ 253, 1 ], "end": [ 256, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_le", "code": "protected theorem max_le {a b c : Nat} : max a b ≤ c ↔ a ≤ c ∧ b ≤ c", "start": [ 258, 1 ], "end": [ 260, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_lt", "code": "protected theorem max_lt {a b c : Nat} : max a b < c ↔ a < c ∧ b < c", "start": [ 262, 1 ], "end": [ 263, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_self", "code": "@[simp] protected theorem max_self (a : Nat) : max a a = a", "start": [ 265, 1 ], "end": [ 265, 95 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_max", "code": "@[simp] protected theorem zero_max (a) : max 0 a = a", "start": [ 268, 1 ], "end": [ 268, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_zero", "code": "@[simp] protected theorem max_zero (a) : max a 0 = a", "start": [ 270, 1 ], "end": [ 270, 88 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_assoc", "code": "protected theorem max_assoc : ∀ (a b c : Nat), max (max a b) c = max a (max b c)", "start": [ 275, 1 ], "end": [ 279, 95 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_add_eq_max", "code": "protected theorem sub_add_eq_max (a b : Nat) : a - b + b = max a b", "start": [ 282, 1 ], "end": [ 285, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_eq_max_sub", "code": "protected theorem sub_eq_max_sub (n m : Nat) : n - m = max n m - m", "start": [ 287, 1 ], "end": [ 290, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_min_distrib_left", "code": "protected theorem max_min_distrib_left : ∀ (a b c : Nat), max a (min b c) = min (max a b) (max a c)", "start": [ 292, 1 ], "end": [ 302, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_max_distrib_left", "code": "protected theorem min_max_distrib_left : ∀ (a b c : Nat), min a (max b c) = max (min a b) (min a c)", "start": [ 304, 1 ], "end": [ 310, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.max_min_distrib_right", "code": "protected theorem max_min_distrib_right (a b c : Nat) :\n max (min a b) c = min (max a c) (max b c)", "start": [ 312, 1 ], "end": [ 315, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.min_max_distrib_right", "code": "protected theorem min_max_distrib_right (a b c : Nat) :\n min (max a b) c = max (min a c) (min b c)", "start": [ 317, 1 ], "end": [ 320, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_max_add_right", "code": "protected theorem add_max_add_right : ∀ (a b c : Nat), max (a + c) (b + c) = max a b + c", "start": [ 322, 1 ], "end": [ 324, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_min_add_right", "code": "protected theorem add_min_add_right : ∀ (a b c : Nat), min (a + c) (b + c) = min a b + c", "start": [ 326, 1 ], "end": [ 328, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_max_add_left", "code": "protected theorem add_max_add_left (a b c : Nat) : max (a + b) (a + c) = a + max b c", "start": [ 330, 1 ], "end": [ 332, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_min_add_left", "code": "protected theorem add_min_add_left (a b c : Nat) : min (a + b) (a + c) = a + min b c", "start": [ 334, 1 ], "end": [ 336, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_min_pred", "code": "protected theorem pred_min_pred : ∀ (x y), min (pred x) (pred y) = pred (min x y)", "start": [ 338, 1 ], "end": [ 341, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pred_max_pred", "code": "protected theorem pred_max_pred : ∀ (x y), max (pred x) (pred y) = pred (max x y)", "start": [ 343, 1 ], "end": [ 346, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_min_sub_right", "code": "protected theorem sub_min_sub_right : ∀ (a b c : Nat), min (a - c) (b - c) = min a b - c", "start": [ 348, 1 ], "end": [ 350, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_max_sub_right", "code": "protected theorem sub_max_sub_right : ∀ (a b c : Nat), max (a - c) (b - c) = max a b - c", "start": [ 352, 1 ], "end": [ 354, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_min_sub_left", "code": "protected theorem sub_min_sub_left (a b c : Nat) : min (a - b) (a - c) = a - max b c", "start": [ 356, 1 ], "end": [ 357, 8 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_max_sub_left", "code": "protected theorem sub_max_sub_left (a b c : Nat) : max (a - b) (a - c) = a - min b c", "start": [ 359, 1 ], "end": [ 360, 8 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_max_mul_right", "code": "protected theorem mul_max_mul_right (a b c : Nat) : max (a * c) (b * c) = max a b * c", "start": [ 362, 1 ], "end": [ 366, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_min_mul_right", "code": "protected theorem mul_min_mul_right (a b c : Nat) : min (a * c) (b * c) = min a b * c", "start": [ 368, 1 ], "end": [ 372, 81 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_max_mul_left", "code": "protected theorem mul_max_mul_left (a b c : Nat) : max (a * b) (a * c) = a * max b c", "start": [ 374, 1 ], "end": [ 376, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_min_mul_left", "code": "protected theorem mul_min_mul_left (a b c : Nat) : min (a * b) (a * c) = a * min b c", "start": [ 378, 1 ], "end": [ 380, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_mul_of_nonneg_left", "code": "@[deprecated Nat.mul_le_mul_left (since := \"2024-02-19\")]\nprotected theorem mul_le_mul_of_nonneg_left {a b c : Nat} : a ≤ b → c * a ≤ c * b", "start": [ 416, 1 ], "end": [ 418, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_mul_of_nonneg_right", "code": "@[deprecated Nat.mul_le_mul_right (since := \"2024-02-19\")]\nprotected theorem mul_le_mul_of_nonneg_right {a b c : Nat} : a ≤ b → a * c ≤ b * c", "start": [ 420, 1 ], "end": [ 422, 25 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_right_comm", "code": "protected theorem mul_right_comm (n m k : Nat) : n * m * k = n * k * m", "start": [ 424, 1 ], "end": [ 425, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mul_mul_comm", "code": "protected theorem mul_mul_mul_comm (a b c d : Nat) : (a * b) * (c * d) = (a * c) * (b * d)", "start": [ 427, 1 ], "end": [ 428, 57 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_eq_zero", "code": "theorem mul_eq_zero : ∀ {m n}, n * m = 0 ↔ n = 0 ∨ m = 0", "start": [ 430, 1 ], "end": [ 433, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_ne_zero_iff", "code": "protected theorem mul_ne_zero_iff : n * m ≠ 0 ↔ n ≠ 0 ∧ m ≠ 0", "start": [ 435, 1 ], "end": [ 435, 100 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_ne_zero", "code": "protected theorem mul_ne_zero : n ≠ 0 → m ≠ 0 → n * m ≠ 0", "start": [ 437, 1 ], "end": [ 437, 91 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_zero_of_mul_ne_zero_left", "code": "protected theorem ne_zero_of_mul_ne_zero_left (h : n * m ≠ 0) : n ≠ 0", "start": [ 439, 1 ], "end": [ 440, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_left_cancel", "code": "protected theorem mul_left_cancel {n m k : Nat} (np : 0 < n) (h : n * m = n * k) : m = k", "start": [ 442, 1 ], "end": [ 450, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_right_cancel", "code": "protected theorem mul_right_cancel {n m k : Nat} (mp : 0 < m) (h : n * m = k * m) : n = k", "start": [ 452, 1 ], "end": [ 454, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_left_cancel_iff", "code": "protected theorem mul_left_cancel_iff {n: Nat} (p : 0 < n) (m k : Nat) : n * m = n * k ↔ m = k", "start": [ 456, 1 ], "end": [ 457, 44 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_right_cancel_iff", "code": "protected theorem mul_right_cancel_iff {m : Nat} (p : 0 < m) (n k : Nat) : n * m = k * m ↔ n = k", "start": [ 459, 1 ], "end": [ 460, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.ne_zero_of_mul_ne_zero_right", "code": "protected theorem ne_zero_of_mul_ne_zero_right (h : n * m ≠ 0) : m ≠ 0", "start": [ 462, 1 ], "end": [ 463, 30 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_mul_of_pos_left", "code": "protected theorem le_mul_of_pos_left (m) (h : 0 < n) : m ≤ n * m", "start": [ 465, 1 ], "end": [ 466, 78 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_mul_of_pos_right", "code": "protected theorem le_mul_of_pos_right (n) (h : 0 < m) : n ≤ n * m", "start": [ 468, 1 ], "end": [ 469, 77 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_lt_of_le", "code": "protected theorem mul_lt_mul_of_lt_of_le (hac : a < c) (hbd : b ≤ d) (hd : 0 < d) :\n a * b < c * d", "start": [ 471, 1 ], "end": [ 473, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_lt_of_le'", "code": "protected theorem mul_lt_mul_of_lt_of_le' (hac : a < c) (hbd : b ≤ d) (hb : 0 < b) :\n a * b < c * d", "start": [ 475, 1 ], "end": [ 477, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_le_of_lt", "code": "protected theorem mul_lt_mul_of_le_of_lt (hac : a ≤ c) (hbd : b < d) (hc : 0 < c) :\n a * b < c * d", "start": [ 479, 1 ], "end": [ 481, 86 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_le_of_lt'", "code": "protected theorem mul_lt_mul_of_le_of_lt' (hac : a ≤ c) (hbd : b < d) (ha : 0 < a) :\n a * b < c * d", "start": [ 483, 1 ], "end": [ 485, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_lt_mul_of_lt_of_lt", "code": "protected theorem mul_lt_mul_of_lt_of_lt {a b c d : Nat} (hac : a < c) (hbd : b < d) :\n a * b < c * d", "start": [ 487, 1 ], "end": [ 489, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_mul_succ", "code": "theorem succ_mul_succ (a b) : succ a * succ b = a * b + a + b + 1", "start": [ 491, 1 ], "end": [ 492, 31 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_one_mul_add_one", "code": "theorem add_one_mul_add_one (a b : Nat) : (a + 1) * (b + 1) = a * b + a + b + 1", "start": [ 494, 1 ], "end": [ 495, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_le_add_right", "code": "theorem mul_le_add_right (m k n : Nat) : k * m ≤ m + n ↔ (k-1) * m ≤ n", "start": [ 497, 1 ], "end": [ 502, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.succ_mul_succ_eq", "code": "theorem succ_mul_succ_eq (a b : Nat) : succ a * succ b = a * b + a + b + 1", "start": [ 504, 1 ], "end": [ 505, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_self_sub_mul_self_eq", "code": "protected theorem mul_self_sub_mul_self_eq (a b : Nat) : a * a - b * b = (a + b) * (a - b)", "start": [ 507, 1 ], "end": [ 509, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_mul_pos_left", "code": "protected theorem pos_of_mul_pos_left {a b : Nat} (h : 0 < a * b) : 0 < b", "start": [ 511, 1 ], "end": [ 514, 11 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pos_of_mul_pos_right", "code": "protected theorem pos_of_mul_pos_right {a b : Nat} (h : 0 < a * b) : 0 < a", "start": [ 516, 1 ], "end": [ 519, 11 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pos_iff_of_pos_left", "code": "@[simp] protected theorem mul_pos_iff_of_pos_left {a b : Nat} (h : 0 < a) :\n 0 < a * b ↔ 0 < b", "start": [ 521, 1 ], "end": [ 523, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pos_iff_of_pos_right", "code": "@[simp] protected theorem mul_pos_iff_of_pos_right {a b : Nat} (h : 0 < b) :\n 0 < a * b ↔ 0 < a", "start": [ 525, 1 ], "end": [ 527, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_two_eq_zero_or_one", "code": "theorem mod_two_eq_zero_or_one (n : Nat) : n % 2 = 0 ∨ n % 2 = 1", "start": [ 531, 1 ], "end": [ 534, 21 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_of_mod_lt", "code": "theorem le_of_mod_lt {a b : Nat} (h : a % b < a) : b ≤ a", "start": [ 536, 1 ], "end": [ 537, 65 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mod_mul_right", "code": "theorem mul_mod_mul_right (z x y : Nat) : (x * z) % (y * z) = (x % y) * z", "start": [ 539, 1 ], "end": [ 540, 90 ], "kind": "commanddeclaration" }, { "full_name": "Nat.sub_mul_mod", "code": "theorem sub_mul_mod {x k n : Nat} (h₁ : n*k ≤ x) : (x - n*k) % n = x % n", "start": [ 542, 1 ], "end": [ 551, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_mod", "code": "@[simp] theorem mod_mod (a n : Nat) : (a % n) % n = a % n", "start": [ 553, 1 ], "end": [ 556, 50 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_mod", "code": "theorem mul_mod (a b n : Nat) : a * b % n = (a % n) * (b % n) % n", "start": [ 558, 1 ], "end": [ 563, 72 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_add_mod", "code": "@[simp] theorem mod_add_mod (m n k : Nat) : (m % n + k) % n = (m + k) % n", "start": [ 565, 1 ], "end": [ 567, 48 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mod_mod", "code": "@[simp] theorem add_mod_mod (m n k : Nat) : (m + n % k) % k = (m + n) % k", "start": [ 569, 1 ], "end": [ 570, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.add_mod", "code": "theorem add_mod (a b n : Nat) : (a + b) % n = ((a % n) + (b % n)) % n", "start": [ 572, 1 ], "end": [ 573, 32 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_succ'", "code": "theorem pow_succ' {m n : Nat} : m ^ n.succ = m * m ^ n", "start": [ 577, 1 ], "end": [ 578, 34 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_add_one'", "code": "theorem pow_add_one' {m n : Nat} : m ^ (n + 1) = m * m ^ n", "start": [ 580, 1 ], "end": [ 581, 37 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_eq", "code": "@[simp] theorem pow_eq {m n : Nat} : m.pow n = m ^ n", "start": [ 583, 1 ], "end": [ 583, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_shiftLeft", "code": "theorem one_shiftLeft (n : Nat) : 1 <<< n = 2 ^ n", "start": [ 585, 1 ], "end": [ 585, 87 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_pow", "code": "protected theorem zero_pow {n : Nat} (H : 0 < n) : 0 ^ n = 0", "start": [ 589, 1 ], "end": [ 592, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_pow", "code": "@[simp] protected theorem one_pow (n : Nat) : 1 ^ n = 1", "start": [ 594, 1 ], "end": [ 597, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_one", "code": "@[simp] protected theorem pow_one (a : Nat) : a ^ 1 = a", "start": [ 599, 1 ], "end": [ 600, 47 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_two", "code": "protected theorem pow_two (a : Nat) : a ^ 2 = a * a", "start": [ 602, 1 ], "end": [ 602, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_add", "code": "protected theorem pow_add (a m n : Nat) : a ^ (m + n) = a ^ m * a ^ n", "start": [ 604, 1 ], "end": [ 607, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_add'", "code": "protected theorem pow_add' (a m n : Nat) : a ^ (m + n) = a ^ n * a ^ m", "start": [ 609, 1 ], "end": [ 610, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_mul", "code": "protected theorem pow_mul (a m n : Nat) : a ^ (m * n) = (a ^ m) ^ n", "start": [ 612, 1 ], "end": [ 615, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_mul'", "code": "protected theorem pow_mul' (a m n : Nat) : a ^ (m * n) = (a ^ n) ^ m", "start": [ 617, 1 ], "end": [ 618, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_right_comm", "code": "protected theorem pow_right_comm (a m n : Nat) : (a ^ m) ^ n = (a ^ n) ^ m", "start": [ 620, 1 ], "end": [ 621, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_pow", "code": "protected theorem mul_pow (a b n : Nat) : (a * b) ^ n = a ^ n * b ^ n", "start": [ 623, 1 ], "end": [ 626, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_left", "code": "protected abbrev pow_le_pow_left := @pow_le_pow_of_le_left", "start": [ 628, 1 ], "end": [ 628, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_right", "code": "protected abbrev pow_le_pow_right := @pow_le_pow_of_le_right", "start": [ 629, 1 ], "end": [ 629, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_lt_two_pow", "code": "protected theorem one_lt_two_pow (h : n ≠ 0) : 1 < 2 ^ n", "start": [ 631, 1 ], "end": [ 635, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_lt_two_pow_iff", "code": "@[simp] protected theorem one_lt_two_pow_iff : 1 < 2 ^ n ↔ n ≠ 0", "start": [ 637, 1 ], "end": [ 638, 59 ], "kind": "commanddeclaration" }, { "full_name": "Nat.one_le_two_pow", "code": "protected theorem one_le_two_pow : 1 ≤ 2 ^ n", "start": [ 640, 1 ], "end": [ 644, 40 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_pos", "code": "protected theorem pow_pos (h : 0 < a) : 0 < a^n", "start": [ 646, 1 ], "end": [ 649, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_lt_pow_succ", "code": "protected theorem pow_lt_pow_succ (h : 1 < a) : a ^ n < a ^ (n + 1)", "start": [ 651, 1 ], "end": [ 653, 100 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_lt_pow_of_lt", "code": "protected theorem pow_lt_pow_of_lt {a n m : Nat} (h : 1 < a) (w : n < m) : a ^ n < a ^ m", "start": [ 655, 1 ], "end": [ 663, 63 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_of_le", "code": "protected theorem pow_le_pow_of_le {a n m : Nat} (h : 1 < a) (w : n ≤ m) : a ^ n ≤ a ^ m", "start": [ 665, 1 ], "end": [ 671, 24 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_le_pow_iff_right", "code": "protected theorem pow_le_pow_iff_right {a n m : Nat} (h : 1 < a) :\n a ^ n ≤ a ^ m ↔ n ≤ m", "start": [ 673, 1 ], "end": [ 684, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_lt_pow_iff_right", "code": "protected theorem pow_lt_pow_iff_right {a n m : Nat} (h : 1 < a) :\n a ^ n < a ^ m ↔ n < m", "start": [ 686, 1 ], "end": [ 695, 35 ], "kind": "commanddeclaration" }, { "full_name": "Nat.log2_zero", "code": "@[simp]\ntheorem log2_zero : Nat.log2 0 = 0", "start": [ 699, 1 ], "end": [ 701, 18 ], "kind": "commanddeclaration" }, { "full_name": "Nat.le_log2", "code": "theorem le_log2 (h : n ≠ 0) : k ≤ n.log2 ↔ 2 ^ k ≤ n", "start": [ 703, 1 ], "end": [ 714, 77 ], "kind": "commanddeclaration" }, { "full_name": "Nat.log2_lt", "code": "theorem log2_lt (h : n ≠ 0) : n.log2 < k ↔ n < 2 ^ k", "start": [ 716, 1 ], "end": [ 717, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.log2_self_le", "code": "theorem log2_self_le (h : n ≠ 0) : 2 ^ n.log2 ≤ n", "start": [ 719, 1 ], "end": [ 719, 83 ], "kind": "commanddeclaration" }, { "full_name": "Nat.lt_log2_self", "code": "theorem lt_log2_self : n < 2 ^ (n.log2 + 1)", "start": [ 721, 1 ], "end": [ 724, 54 ], "kind": "commanddeclaration" }, { "full_name": "Nat.eq_mul_of_div_eq_right", "code": "protected theorem eq_mul_of_div_eq_right {a b c : Nat} (H1 : b ∣ a) (H2 : a / b = c) :\n a = b * c", "start": [ 728, 1 ], "end": [ 730, 36 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_iff_eq_mul_right", "code": "protected theorem div_eq_iff_eq_mul_right {a b c : Nat} (H : 0 < b) (H' : b ∣ a) :\n a / b = c ↔ a = b * c", "start": [ 732, 1 ], "end": [ 734, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.div_eq_iff_eq_mul_left", "code": "protected theorem div_eq_iff_eq_mul_left {a b c : Nat} (H : 0 < b) (H' : b ∣ a) :\n a / b = c ↔ a = c * b", "start": [ 736, 1 ], "end": [ 738, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_dvd_pow_iff_pow_le_pow", "code": "theorem pow_dvd_pow_iff_pow_le_pow {k l : Nat} :\n ∀ {x : Nat}, 0 < x → (x ^ k ∣ x ^ l ↔ x ^ k ≤ x ^ l)", "start": [ 740, 1 ], "end": [ 753, 66 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_dvd_pow_iff_le_right", "code": "theorem pow_dvd_pow_iff_le_right {x k l : Nat} (w : 1 < x) : x ^ k ∣ x ^ l ↔ k ≤ l", "start": [ 755, 1 ], "end": [ 757, 80 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_dvd_pow_iff_le_right'", "code": "theorem pow_dvd_pow_iff_le_right' {b k l : Nat} : (b + 2) ^ k ∣ (b + 2) ^ l ↔ k ≤ l", "start": [ 759, 1 ], "end": [ 760, 55 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_dvd_pow", "code": "protected theorem pow_dvd_pow {m n : Nat} (a : Nat) (h : m ≤ n) : a ^ m ∣ a ^ n", "start": [ 762, 1 ], "end": [ 767, 28 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_sub_mul_pow", "code": "protected theorem pow_sub_mul_pow (a : Nat) {m n : Nat} (h : m ≤ n) :\n a ^ (n - m) * a ^ m = a ^ n", "start": [ 769, 1 ], "end": [ 771, 43 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_dvd_of_le_of_pow_dvd", "code": "theorem pow_dvd_of_le_of_pow_dvd {p m n k : Nat} (hmn : m ≤ n) (hdiv : p ^ n ∣ k) : p ^ m ∣ k", "start": [ 773, 1 ], "end": [ 774, 45 ], "kind": "commanddeclaration" }, { "full_name": "Nat.dvd_of_pow_dvd", "code": "theorem dvd_of_pow_dvd {p k m : Nat} (hk : 1 ≤ k) (hpk : p ^ k ∣ m) : p ∣ m", "start": [ 776, 1 ], "end": [ 777, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.pow_div", "code": "protected theorem pow_div {x m n : Nat} (h : n ≤ m) (hx : 0 < x) : x ^ m / x ^ n = x ^ (m - n)", "start": [ 779, 1 ], "end": [ 780, 98 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_zero", "code": "@[simp] theorem shiftLeft_zero : n <<< 0 = n", "start": [ 784, 1 ], "end": [ 784, 52 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_succ_inside", "code": "theorem shiftLeft_succ_inside (m n : Nat) : m <<< (n+1) = (2*m) <<< n", "start": [ 786, 1 ], "end": [ 787, 77 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_succ", "code": "theorem shiftLeft_succ : ∀(m n), m <<< (n + 1) = 2 * (m <<< n)", "start": [ 789, 1 ], "end": [ 794, 49 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftRight_succ_inside", "code": "theorem shiftRight_succ_inside : ∀m n, m >>> (n+1) = (m/2) >>> n", "start": [ 796, 1 ], "end": [ 801, 51 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_shiftLeft", "code": "@[simp] theorem zero_shiftLeft : ∀ n, 0 <<< n = 0", "start": [ 803, 1 ], "end": [ 805, 67 ], "kind": "commanddeclaration" }, { "full_name": "Nat.zero_shiftRight", "code": "@[simp] theorem zero_shiftRight : ∀ n, 0 >>> n = 0", "start": [ 807, 1 ], "end": [ 809, 70 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_add", "code": "theorem shiftLeft_add (m n : Nat) : ∀ k, m <<< (n + k) = (m <<< n) <<< k", "start": [ 811, 1 ], "end": [ 813, 76 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_shiftLeft", "code": "@[deprecated shiftLeft_add (since := \"2024-06-02\")]\ntheorem shiftLeft_shiftLeft (m n : Nat) : ∀ k, (m <<< n) <<< k = m <<< (n + k)", "start": [ 815, 1 ], "end": [ 818, 82 ], "kind": "commanddeclaration" }, { "full_name": "Nat.shiftLeft_shiftRight", "code": "@[simp] theorem shiftLeft_shiftRight (x n : Nat) : x <<< n >>> n = x", "start": [ 820, 1 ], "end": [ 821, 93 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_add_div", "code": "theorem mul_add_div {m : Nat} (m_pos : m > 0) (x y : Nat) : (m * x + y) / m = x + y / m", "start": [ 823, 1 ], "end": [ 828, 62 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mul_add_mod", "code": "theorem mul_add_mod (m x y : Nat) : (m * x + y) % m = y % m", "start": [ 830, 1 ], "end": [ 834, 60 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_div_self", "code": "@[simp] theorem mod_div_self (m n : Nat) : m % n / n = 0", "start": [ 836, 1 ], "end": [ 839, 64 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidableBallLT", "code": "instance decidableBallLT :\n ∀ (n : Nat) (P : ∀ k, k < n → Prop) [∀ n h, Decidable (P n h)], Decidable (∀ n h, P n h)\n| 0, _, _ => isTrue fun _ => (by cases ·)\n| n + 1, P, H =>\n match decidableBallLT n (P · <| lt_succ_of_lt ·) with\n | isFalse h => isFalse (h fun _ _ => · _ _)\n | isTrue h =>\n match H n Nat.le.refl with\n | isFalse p => isFalse (p <| · _ _)\n | isTrue p => isTrue fun _ h' => (Nat.lt_succ_iff_lt_or_eq.1 h').elim (h _) fun hn => hn ▸ p", "start": [ 843, 1 ], "end": [ 852, 97 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidableForallFin", "code": "instance decidableForallFin (P : Fin n → Prop) [DecidablePred P] : Decidable (∀ i, P i) :=\n decidable_of_iff (∀ k h, P ⟨k, h⟩) ⟨fun m ⟨k, h⟩ => m k h, fun m k h => m ⟨k, h⟩⟩", "start": [ 854, 1 ], "end": [ 855, 84 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidableBallLE", "code": "instance decidableBallLE (n : Nat) (P : ∀ k, k ≤ n → Prop) [∀ n h, Decidable (P n h)] :\n Decidable (∀ n h, P n h) :=\n decidable_of_iff (∀ (k) (h : k < succ n), P k (le_of_lt_succ h))\n ⟨fun m k h => m k (lt_succ_of_le h), fun m k _ => m k _⟩", "start": [ 857, 1 ], "end": [ 860, 61 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidableExistsLT", "code": "instance decidableExistsLT [h : DecidablePred p] : DecidablePred fun n => ∃ m : Nat, m < n ∧ p m\n | 0 => isFalse (by simp only [not_lt_zero, false_and, exists_const, not_false_eq_true])\n | n + 1 =>\n @decidable_of_decidable_of_iff _ _ (@instDecidableOr _ _ (decidableExistsLT (p := p) n) (h n))\n (by simp only [Nat.lt_succ_iff_lt_or_eq, or_and_right, exists_or, exists_eq_left])", "start": [ 862, 1 ], "end": [ 866, 89 ], "kind": "commanddeclaration" }, { "full_name": "Nat.decidableExistsLE", "code": "instance decidableExistsLE [DecidablePred p] : DecidablePred fun n => ∃ m : Nat, m ≤ n ∧ p m :=\n fun n => decidable_of_iff (∃ m, m < n + 1 ∧ p m)\n (exists_congr fun _ => and_congr_left' Nat.lt_succ_iff)", "start": [ 868, 1 ], "end": [ 870, 60 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Omega.lean", ".lake/packages/lean4/src/lean/Init/Ext.lean", ".lake/packages/lean4/src/lean/Init/Data/Fin/Basic.lean", ".lake/packages/lean4/src/lean/Init/Conv.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/ByCases.lean" ]
[ { "full_name": "Fin.size_pos", "code": "theorem size_pos (i : Fin n) : 0 < n", "start": [ 19, 1 ], "end": [ 20, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mod_def", "code": "theorem mod_def (a m : Fin n) : a % m = Fin.mk (a % m) (Nat.lt_of_le_of_lt (Nat.mod_le _ _) a.2)", "start": [ 22, 1 ], "end": [ 23, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul_def", "code": "theorem mul_def (a b : Fin n) : a * b = Fin.mk ((a * b) % n) (Nat.mod_lt _ a.size_pos)", "start": [ 25, 1 ], "end": [ 25, 94 ], "kind": "commanddeclaration" }, { "full_name": "Fin.sub_def", "code": "theorem sub_def (a b : Fin n) : a - b = Fin.mk (((n - b) + a) % n) (Nat.mod_lt _ a.size_pos)", "start": [ 27, 1 ], "end": [ 27, 100 ], "kind": "commanddeclaration" }, { "full_name": "Fin.size_pos'", "code": "theorem size_pos' : ∀ [Nonempty (Fin n)], 0 < n", "start": [ 29, 1 ], "end": [ 29, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.is_lt", "code": "@[simp] theorem is_lt (a : Fin n) : (a : Nat) < n", "start": [ 31, 1 ], "end": [ 31, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pos_iff_nonempty", "code": "theorem pos_iff_nonempty {n : Nat} : 0 < n ↔ Nonempty (Fin n)", "start": [ 33, 1 ], "end": [ 34, 40 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eta", "code": "@[simp] protected theorem eta (a : Fin n) (h : a < n) : (⟨a, h⟩ : Fin n) = a", "start": [ 38, 1 ], "end": [ 38, 84 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ext", "code": "@[ext] theorem ext {a b : Fin n} (h : (a : Nat) = b) : a = b", "start": [ 40, 1 ], "end": [ 40, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ext_iff", "code": "theorem ext_iff {a b : Fin n} : a = b ↔ a.1 = b.1", "start": [ 42, 1 ], "end": [ 42, 66 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_ne_iff", "code": "theorem val_ne_iff {a b : Fin n} : a.1 ≠ b.1 ↔ a ≠ b", "start": [ 44, 1 ], "end": [ 44, 74 ], "kind": "commanddeclaration" }, { "full_name": "Fin.forall_iff", "code": "theorem forall_iff {p : Fin n → Prop} : (∀ i, p i) ↔ ∀ i h, p ⟨i, h⟩", "start": [ 46, 1 ], "end": [ 47, 53 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk.inj_iff", "code": "protected theorem mk.inj_iff {n a b : Nat} {ha : a < n} {hb : b < n} :\n (⟨a, ha⟩ : Fin n) = ⟨b, hb⟩ ↔ a = b", "start": [ 49, 1 ], "end": [ 50, 51 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_mk", "code": "theorem val_mk {m n : Nat} (h : m < n) : (⟨m, h⟩ : Fin n).val = m", "start": [ 52, 1 ], "end": [ 52, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eq_mk_iff_val_eq", "code": "theorem eq_mk_iff_val_eq {a : Fin n} {k : Nat} {hk : k < n} :\n a = ⟨k, hk⟩ ↔ (a : Nat) = k", "start": [ 54, 1 ], "end": [ 55, 43 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_val", "code": "theorem mk_val (i : Fin n) : (⟨i, i.isLt⟩ : Fin n) = i", "start": [ 57, 1 ], "end": [ 57, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_ofNat'", "code": "@[simp] theorem val_ofNat' (a : Nat) (is_pos : n > 0) :\n (Fin.ofNat' a is_pos).val = a % n", "start": [ 59, 1 ], "end": [ 60, 43 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ofNat'_zero_val", "code": "@[deprecated ofNat'_zero_val (since := \"2024-02-22\")]\ntheorem ofNat'_zero_val : (Fin.ofNat' 0 h).val = 0", "start": [ 62, 1 ], "end": [ 63, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mod_val", "code": "@[simp] theorem mod_val (a b : Fin n) : (a % b).val = a.val % b.val", "start": [ 65, 1 ], "end": [ 66, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.div_val", "code": "@[simp] theorem div_val (a b : Fin n) : (a / b).val = a.val / b.val", "start": [ 68, 1 ], "end": [ 69, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.modn_val", "code": "@[simp] theorem modn_val (a : Fin n) (b : Nat) : (a.modn b).val = a.val % b", "start": [ 71, 1 ], "end": [ 72, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ite_val", "code": "theorem ite_val {n : Nat} {c : Prop} [Decidable c] {x : c → Fin n} (y : ¬c → Fin n) :\n (if h : c then x h else y h).val = if h : c then (x h).val else (y h).val", "start": [ 74, 1 ], "end": [ 76, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.dite_val", "code": "theorem dite_val {n : Nat} {c : Prop} [Decidable c] {x y : Fin n} :\n (if c then x else y).val = if c then x.val else y.val", "start": [ 78, 1 ], "end": [ 80, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_def", "code": "theorem le_def {a b : Fin n} : a ≤ b ↔ a.1 ≤ b.1", "start": [ 84, 1 ], "end": [ 84, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_def", "code": "theorem lt_def {a b : Fin n} : a < b ↔ a.1 < b.1", "start": [ 86, 1 ], "end": [ 86, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_iff_val_lt_val", "code": "theorem lt_iff_val_lt_val {a b : Fin n} : a < b ↔ a.val < b.val", "start": [ 88, 1 ], "end": [ 88, 75 ], "kind": "commanddeclaration" }, { "full_name": "Fin.not_le", "code": "@[simp] protected theorem not_le {a b : Fin n} : ¬ a ≤ b ↔ b < a", "start": [ 90, 1 ], "end": [ 90, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.not_lt", "code": "@[simp] protected theorem not_lt {a b : Fin n} : ¬ a < b ↔ b ≤ a", "start": [ 92, 1 ], "end": [ 92, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_refl", "code": "@[simp] protected theorem le_refl (a : Fin n) : a ≤ a", "start": [ 94, 1 ], "end": [ 94, 74 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_irrefl", "code": "@[simp] protected theorem lt_irrefl (a : Fin n) : ¬ a < a", "start": [ 96, 1 ], "end": [ 96, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_trans", "code": "protected theorem le_trans {a b c : Fin n} : a ≤ b → b ≤ c → a ≤ c", "start": [ 98, 1 ], "end": [ 98, 83 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_trans", "code": "protected theorem lt_trans {a b c : Fin n} : a < b → b < c → a < c", "start": [ 100, 1 ], "end": [ 100, 83 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_total", "code": "protected theorem le_total (a b : Fin n) : a ≤ b ∨ b ≤ a", "start": [ 102, 1 ], "end": [ 102, 77 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_asymm", "code": "protected theorem lt_asymm {a b : Fin n} (h : a < b) : ¬ b < a", "start": [ 104, 1 ], "end": [ 104, 81 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ne_of_lt", "code": "protected theorem ne_of_lt {a b : Fin n} (h : a < b) : a ≠ b", "start": [ 106, 1 ], "end": [ 106, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ne_of_gt", "code": "protected theorem ne_of_gt {a b : Fin n} (h : a < b) : b ≠ a", "start": [ 108, 1 ], "end": [ 108, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_of_lt", "code": "protected theorem le_of_lt {a b : Fin n} (h : a < b) : a ≤ b", "start": [ 110, 1 ], "end": [ 110, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.is_le", "code": "theorem is_le (i : Fin (n + 1)) : i ≤ n", "start": [ 112, 1 ], "end": [ 112, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.is_le'", "code": "@[simp] theorem is_le' {a : Fin n} : a ≤ n", "start": [ 114, 1 ], "end": [ 114, 67 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_lt_of_lt_val", "code": "theorem mk_lt_of_lt_val {b : Fin n} {a : Nat} (h : a < b) :\n (⟨a, Nat.lt_trans h b.is_lt⟩ : Fin n) < b", "start": [ 116, 1 ], "end": [ 117, 51 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_le_of_le_val", "code": "theorem mk_le_of_le_val {b : Fin n} {a : Nat} (h : a ≤ b) :\n (⟨a, Nat.lt_of_le_of_lt h b.is_lt⟩ : Fin n) ≤ b", "start": [ 119, 1 ], "end": [ 120, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_le_mk", "code": "@[simp] theorem mk_le_mk {x y : Nat} {hx hy} : (⟨x, hx⟩ : Fin n) ≤ ⟨y, hy⟩ ↔ x ≤ y", "start": [ 122, 1 ], "end": [ 122, 91 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_lt_mk", "code": "@[simp] theorem mk_lt_mk {x y : Nat} {hx hy} : (⟨x, hx⟩ : Fin n) < ⟨y, hy⟩ ↔ x < y", "start": [ 124, 1 ], "end": [ 124, 91 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_zero", "code": "@[simp] theorem val_zero (n : Nat) : (0 : Fin (n + 1)).1 = 0", "start": [ 126, 1 ], "end": [ 126, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_zero", "code": "@[simp] theorem mk_zero : (⟨0, Nat.succ_pos n⟩ : Fin (n + 1)) = 0", "start": [ 128, 1 ], "end": [ 128, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.zero_le", "code": "@[simp] theorem zero_le (a : Fin (n + 1)) : 0 ≤ a", "start": [ 130, 1 ], "end": [ 130, 71 ], "kind": "commanddeclaration" }, { "full_name": "Fin.zero_lt_one", "code": "theorem zero_lt_one : (0 : Fin (n + 2)) < 1", "start": [ 132, 1 ], "end": [ 132, 63 ], "kind": "commanddeclaration" }, { "full_name": "Fin.not_lt_zero", "code": "@[simp] theorem not_lt_zero (a : Fin (n + 1)) : ¬a < 0", "start": [ 134, 1 ], "end": [ 134, 64 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pos_iff_ne_zero", "code": "theorem pos_iff_ne_zero {a : Fin (n + 1)} : 0 < a ↔ a ≠ 0", "start": [ 136, 1 ], "end": [ 137, 64 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eq_zero_or_eq_succ", "code": "theorem eq_zero_or_eq_succ {n : Nat} : ∀ i : Fin (n + 1), i = 0 ∨ ∃ j : Fin n, i = j.succ", "start": [ 139, 1 ], "end": [ 141, 60 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eq_succ_of_ne_zero", "code": "theorem eq_succ_of_ne_zero {n : Nat} {i : Fin (n + 1)} (hi : i ≠ 0) : ∃ j : Fin n, i = j.succ", "start": [ 143, 1 ], "end": [ 144, 41 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_rev", "code": "@[simp] theorem val_rev (i : Fin n) : rev i = n - (i + 1)", "start": [ 146, 1 ], "end": [ 146, 65 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_rev", "code": "@[simp] theorem rev_rev (i : Fin n) : rev (rev i) = i", "start": [ 148, 1 ], "end": [ 149, 92 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_le_rev", "code": "@[simp] theorem rev_le_rev {i j : Fin n} : rev i ≤ rev j ↔ j ≤ i", "start": [ 151, 1 ], "end": [ 153, 29 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_inj", "code": "@[simp] theorem rev_inj {i j : Fin n} : rev i = rev j ↔ i = j", "start": [ 155, 1 ], "end": [ 156, 55 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_eq", "code": "theorem rev_eq {n a : Nat} (i : Fin (n + 1)) (h : n = a + i) :\n rev i = ⟨a, Nat.lt_succ_of_le (h ▸ Nat.le_add_right ..)⟩", "start": [ 158, 1 ], "end": [ 162, 41 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_lt_rev", "code": "@[simp] theorem rev_lt_rev {i j : Fin n} : rev i < rev j ↔ j < i", "start": [ 164, 1 ], "end": [ 165, 46 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_last", "code": "@[simp] theorem val_last (n : Nat) : last n = n", "start": [ 167, 1 ], "end": [ 167, 55 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_last", "code": "theorem le_last (i : Fin (n + 1)) : i ≤ last n", "start": [ 169, 1 ], "end": [ 169, 76 ], "kind": "commanddeclaration" }, { "full_name": "Fin.last_pos", "code": "theorem last_pos : (0 : Fin (n + 2)) < last (n + 1)", "start": [ 171, 1 ], "end": [ 171, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.eq_last_of_not_lt", "code": "theorem eq_last_of_not_lt {i : Fin (n + 1)} (h : ¬(i : Nat) < n) : i = last n", "start": [ 173, 1 ], "end": [ 174, 54 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_lt_last", "code": "theorem val_lt_last {i : Fin (n + 1)} : i ≠ last n → (i : Nat) < n", "start": [ 176, 1 ], "end": [ 177, 45 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_last", "code": "@[simp] theorem rev_last (n : Nat) : rev (last n) = 0", "start": [ 179, 1 ], "end": [ 179, 72 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_zero", "code": "@[simp] theorem rev_zero (n : Nat) : rev 0 = last n", "start": [ 181, 1 ], "end": [ 182, 36 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_one", "code": "@[simp] theorem val_one (n : Nat) : (1 : Fin (n + 2)).val = 1", "start": [ 186, 1 ], "end": [ 186, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_one", "code": "@[simp] theorem mk_one : (⟨1, Nat.succ_lt_succ (Nat.succ_pos n)⟩ : Fin (n + 2)) = (1 : Fin _)", "start": [ 188, 1 ], "end": [ 188, 101 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subsingleton_iff_le_one", "code": "theorem subsingleton_iff_le_one : Subsingleton (Fin n) ↔ n ≤ 1", "start": [ 190, 1 ], "end": [ 194, 96 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subsingleton_zero", "code": "instance subsingleton_zero : Subsingleton (Fin 0) := subsingleton_iff_le_one.2 (by decide)", "start": [ 196, 1 ], "end": [ 196, 91 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subsingleton_one", "code": "instance subsingleton_one : Subsingleton (Fin 1) := subsingleton_iff_le_one.2 (by decide)", "start": [ 198, 1 ], "end": [ 198, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.fin_one_eq_zero", "code": "theorem fin_one_eq_zero (a : Fin 1) : a = 0", "start": [ 200, 1 ], "end": [ 200, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add_def", "code": "theorem add_def (a b : Fin n) : a + b = Fin.mk ((a + b) % n) (Nat.mod_lt _ a.size_pos)", "start": [ 202, 1 ], "end": [ 202, 94 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_add", "code": "theorem val_add (a b : Fin n) : (a + b).val = (a.val + b.val) % n", "start": [ 204, 1 ], "end": [ 204, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_add_one_of_lt", "code": "theorem val_add_one_of_lt {n : Nat} {i : Fin n.succ} (h : i < last _) : (i + 1).1 = i + 1", "start": [ 206, 1 ], "end": [ 209, 81 ], "kind": "commanddeclaration" }, { "full_name": "Fin.last_add_one", "code": "@[simp] theorem last_add_one : ∀ n, last n + 1 = 0", "start": [ 211, 1 ], "end": [ 213, 77 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_add_one", "code": "theorem val_add_one {n : Nat} (i : Fin (n + 1)) :\n ((i + 1 : Fin (n + 1)) : Nat) = if i = last _ then (0 : Nat) else i + 1", "start": [ 215, 1 ], "end": [ 219, 63 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_two", "code": "@[simp] theorem val_two {n : Nat} : (2 : Fin (n + 3)).val = 2", "start": [ 221, 1 ], "end": [ 221, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add_one_pos", "code": "theorem add_one_pos (i : Fin (n + 1)) (h : i < Fin.last n) : (0 : Fin (n + 1)) < i + 1", "start": [ 223, 1 ], "end": [ 229, 29 ], "kind": "commanddeclaration" }, { "full_name": "Fin.one_pos", "code": "theorem one_pos : (0 : Fin (n + 2)) < 1", "start": [ 231, 1 ], "end": [ 231, 58 ], "kind": "commanddeclaration" }, { "full_name": "Fin.zero_ne_one", "code": "theorem zero_ne_one : (0 : Fin (n + 2)) ≠ 1", "start": [ 233, 1 ], "end": [ 233, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_succ", "code": "@[simp] theorem val_succ (j : Fin n) : (j.succ : Nat) = j + 1", "start": [ 237, 1 ], "end": [ 237, 69 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_pos", "code": "@[simp] theorem succ_pos (a : Fin n) : (0 : Fin (n + 1)) < a.succ", "start": [ 239, 1 ], "end": [ 240, 34 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_le_succ_iff", "code": "@[simp] theorem succ_le_succ_iff {a b : Fin n} : a.succ ≤ b.succ ↔ a ≤ b", "start": [ 242, 1 ], "end": [ 242, 97 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_lt_succ_iff", "code": "@[simp] theorem succ_lt_succ_iff {a b : Fin n} : a.succ < b.succ ↔ a < b", "start": [ 244, 1 ], "end": [ 244, 97 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_inj", "code": "@[simp] theorem succ_inj {a b : Fin n} : a.succ = b.succ ↔ a = b", "start": [ 246, 1 ], "end": [ 248, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_ne_zero", "code": "theorem succ_ne_zero {n} : ∀ k : Fin n, Fin.succ k ≠ 0", "start": [ 250, 1 ], "end": [ 251, 55 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_zero_eq_one", "code": "@[simp] theorem succ_zero_eq_one : Fin.succ (0 : Fin (n + 1)) = 1", "start": [ 253, 1 ], "end": [ 253, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_one_eq_two", "code": "@[simp] theorem succ_one_eq_two : Fin.succ (1 : Fin (n + 2)) = 2", "start": [ 255, 1 ], "end": [ 256, 72 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_mk", "code": "@[simp] theorem succ_mk (n i : Nat) (h : i < n) :\n Fin.succ ⟨i, h⟩ = ⟨i + 1, Nat.succ_lt_succ h⟩", "start": [ 258, 1 ], "end": [ 259, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mk_succ_pos", "code": "theorem mk_succ_pos (i : Nat) (h : i < n) :\n (0 : Fin (n + 1)) < ⟨i.succ, Nat.add_lt_add_right h 1⟩", "start": [ 261, 1 ], "end": [ 263, 46 ], "kind": "commanddeclaration" }, { "full_name": "Fin.one_lt_succ_succ", "code": "theorem one_lt_succ_succ (a : Fin n) : (1 : Fin (n + 2)) < a.succ.succ", "start": [ 265, 1 ], "end": [ 267, 62 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add_one_lt_iff", "code": "@[simp] theorem add_one_lt_iff {n : Nat} {k : Fin (n + 2)} : k + 1 < k ↔ k = last _", "start": [ 269, 1 ], "end": [ 274, 94 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add_one_le_iff", "code": "@[simp] theorem add_one_le_iff {n : Nat} : ∀ {k : Fin (n + 1)}, k + 1 ≤ k ↔ k = last _", "start": [ 276, 1 ], "end": [ 285, 85 ], "kind": "commanddeclaration" }, { "full_name": "Fin.last_le_iff", "code": "@[simp] theorem last_le_iff {n : Nat} {k : Fin (n + 1)} : last n ≤ k ↔ k = last n", "start": [ 287, 1 ], "end": [ 288, 78 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_add_one_iff", "code": "@[simp] theorem lt_add_one_iff {n : Nat} {k : Fin (n + 1)} : k < k + 1 ↔ k < last n", "start": [ 290, 1 ], "end": [ 291, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_zero_iff", "code": "@[simp] theorem le_zero_iff {n : Nat} {k : Fin (n + 1)} : k ≤ 0 ↔ k = 0", "start": [ 293, 1 ], "end": [ 294, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_succ_ne_one", "code": "theorem succ_succ_ne_one (a : Fin n) : Fin.succ (Fin.succ a) ≠ 1", "start": [ 296, 1 ], "end": [ 297, 36 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_castLT", "code": "@[simp] theorem coe_castLT (i : Fin m) (h : i.1 < n) : (castLT i h : Nat) = i", "start": [ 299, 1 ], "end": [ 299, 85 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLT_mk", "code": "@[simp] theorem castLT_mk (i n m : Nat) (hn : i < n) (hm : i < m) : castLT ⟨i, hn⟩ hm = ⟨i, hm⟩", "start": [ 301, 1 ], "end": [ 302, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_castLE", "code": "@[simp] theorem coe_castLE (h : n ≤ m) (i : Fin n) : (castLE h i : Nat) = i", "start": [ 304, 1 ], "end": [ 304, 83 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_mk", "code": "@[simp] theorem castLE_mk (i n m : Nat) (hn : i < n) (h : n ≤ m) :\n castLE h ⟨i, hn⟩ = ⟨i, Nat.lt_of_lt_of_le hn h⟩", "start": [ 306, 1 ], "end": [ 307, 59 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_zero", "code": "@[simp] theorem castLE_zero {n m : Nat} (h : n.succ ≤ m.succ) : castLE h 0 = 0", "start": [ 309, 1 ], "end": [ 309, 100 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_succ", "code": "@[simp] theorem castLE_succ {m n : Nat} (h : m + 1 ≤ n + 1) (i : Fin m) :\n castLE h i.succ = (castLE (Nat.succ_le_succ_iff.mp h) i).succ", "start": [ 311, 1 ], "end": [ 312, 87 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_castLE", "code": "@[simp] theorem castLE_castLE {k m n} (km : k ≤ m) (mn : m ≤ n) (i : Fin k) :\n Fin.castLE mn (Fin.castLE km i) = Fin.castLE (Nat.le_trans km mn) i", "start": [ 314, 1 ], "end": [ 316, 38 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_comp_castLE", "code": "@[simp] theorem castLE_comp_castLE {k m n} (km : k ≤ m) (mn : m ≤ n) :\n Fin.castLE mn ∘ Fin.castLE km = Fin.castLE (Nat.le_trans km mn)", "start": [ 318, 1 ], "end": [ 320, 31 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_cast", "code": "@[simp] theorem coe_cast (h : n = m) (i : Fin n) : (cast h i : Nat) = i", "start": [ 322, 1 ], "end": [ 322, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_last", "code": "@[simp] theorem cast_last {n' : Nat} {h : n + 1 = n' + 1} : cast h (last n) = last n'", "start": [ 324, 1 ], "end": [ 325, 61 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_mk", "code": "@[simp] theorem cast_mk (h : n = m) (i : Nat) (hn : i < n) : cast h ⟨i, hn⟩ = ⟨i, h ▸ hn⟩", "start": [ 327, 1 ], "end": [ 327, 97 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_trans", "code": "@[simp] theorem cast_trans {k : Nat} (h : n = m) (h' : m = k) {i : Fin n} :\n cast h' (cast h i) = cast (Eq.trans h h') i", "start": [ 329, 1 ], "end": [ 330, 55 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLE_of_eq", "code": "theorem castLE_of_eq {m n : Nat} (h : m = n) {h' : m ≤ n} : castLE h' = Fin.cast h", "start": [ 332, 1 ], "end": [ 332, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_castAdd", "code": "@[simp] theorem coe_castAdd (m : Nat) (i : Fin n) : (castAdd m i : Nat) = i", "start": [ 334, 1 ], "end": [ 334, 83 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_zero", "code": "@[simp] theorem castAdd_zero : (castAdd 0 : Fin n → Fin (n + 0)) = cast rfl", "start": [ 336, 1 ], "end": [ 336, 83 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_lt", "code": "theorem castAdd_lt {m : Nat} (n : Nat) (i : Fin m) : (castAdd n i : Nat) < m", "start": [ 338, 1 ], "end": [ 338, 88 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_mk", "code": "@[simp] theorem castAdd_mk (m : Nat) (i : Nat) (h : i < n) :\n castAdd m ⟨i, h⟩ = ⟨i, Nat.lt_add_right m h⟩", "start": [ 340, 1 ], "end": [ 341, 56 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_castLT", "code": "@[simp] theorem castAdd_castLT (m : Nat) (i : Fin (n + m)) (hi : i.val < n) :\n castAdd m (castLT i hi) = i", "start": [ 343, 1 ], "end": [ 344, 39 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLT_castAdd", "code": "@[simp] theorem castLT_castAdd (m : Nat) (i : Fin n) :\n castLT (castAdd m i) (castAdd_lt m i) = i", "start": [ 346, 1 ], "end": [ 347, 53 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_cast", "code": "theorem castAdd_cast {n n' : Nat} (m : Nat) (i : Fin n') (h : n' = n) :\n castAdd m (Fin.cast h i) = Fin.cast (congrArg (. + m) h) (castAdd m i)", "start": [ 349, 1 ], "end": [ 351, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_castAdd_left", "code": "theorem cast_castAdd_left {n n' m : Nat} (i : Fin n') (h : n' + m = n + m) :\n cast h (castAdd m i) = castAdd m (cast (Nat.add_right_cancel h) i)", "start": [ 353, 1 ], "end": [ 354, 78 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_castAdd_right", "code": "@[simp] theorem cast_castAdd_right {n m m' : Nat} (i : Fin n) (h : n + m' = n + m) :\n cast h (castAdd m' i) = castAdd m i", "start": [ 356, 1 ], "end": [ 357, 47 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_castAdd", "code": "theorem castAdd_castAdd {m n p : Nat} (i : Fin m) :\n castAdd p (castAdd n i) = cast (Nat.add_assoc ..).symm (castAdd (n + p) i)", "start": [ 359, 1 ], "end": [ 360, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_succ_eq", "code": "@[simp] theorem cast_succ_eq {n' : Nat} (i : Fin n) (h : n.succ = n'.succ) :\n cast h i.succ = (cast (Nat.succ.inj h) i).succ", "start": [ 362, 1 ], "end": [ 365, 58 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_cast_eq", "code": "theorem succ_cast_eq {n' : Nat} (i : Fin n) (h : n = n') :\n (cast h i).succ = cast (by rw [h]) i.succ", "start": [ 367, 1 ], "end": [ 368, 53 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_castSucc", "code": "@[simp] theorem coe_castSucc (i : Fin n) : (Fin.castSucc i : Nat) = i", "start": [ 370, 1 ], "end": [ 370, 77 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_mk", "code": "@[simp] theorem castSucc_mk (n i : Nat) (h : i < n) : castSucc ⟨i, h⟩ = ⟨i, Nat.lt.step h⟩", "start": [ 372, 1 ], "end": [ 372, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_castSucc", "code": "@[simp] theorem cast_castSucc {n' : Nat} {h : n + 1 = n' + 1} {i : Fin n} :\n cast h (castSucc i) = castSucc (cast (Nat.succ.inj h) i)", "start": [ 374, 1 ], "end": [ 375, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_lt_succ", "code": "theorem castSucc_lt_succ (i : Fin n) : Fin.castSucc i < i.succ", "start": [ 377, 1 ], "end": [ 378, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_castSucc_iff", "code": "theorem le_castSucc_iff {i : Fin (n + 1)} {j : Fin n} : i ≤ Fin.castSucc j ↔ i < j.succ", "start": [ 380, 1 ], "end": [ 381, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_lt_iff_succ_le", "code": "theorem castSucc_lt_iff_succ_le {n : Nat} {i : Fin n} {j : Fin (n + 1)} :\n Fin.castSucc i < j ↔ i.succ ≤ j", "start": [ 383, 1 ], "end": [ 384, 44 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_last", "code": "@[simp] theorem succ_last (n : Nat) : (last n).succ = last n.succ", "start": [ 386, 1 ], "end": [ 386, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_eq_last_succ", "code": "@[simp] theorem succ_eq_last_succ {n : Nat} (i : Fin n.succ) :\n i.succ = last (n + 1) ↔ i = last n", "start": [ 388, 1 ], "end": [ 389, 72 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_castLT", "code": "@[simp] theorem castSucc_castLT (i : Fin (n + 1)) (h : (i : Nat) < n) :\n castSucc (castLT i h) = i", "start": [ 391, 1 ], "end": [ 392, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castLT_castSucc", "code": "@[simp] theorem castLT_castSucc {n : Nat} (a : Fin n) (h : (a : Nat) < n) :\n castLT (castSucc a) h = a", "start": [ 394, 1 ], "end": [ 395, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_lt_castSucc_iff", "code": "@[simp] theorem castSucc_lt_castSucc_iff {a b : Fin n} :\n Fin.castSucc a < Fin.castSucc b ↔ a < b", "start": [ 397, 1 ], "end": [ 398, 52 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_inj", "code": "theorem castSucc_inj {a b : Fin n} : castSucc a = castSucc b ↔ a = b", "start": [ 400, 1 ], "end": [ 400, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_lt_last", "code": "theorem castSucc_lt_last (a : Fin n) : castSucc a < last n", "start": [ 402, 1 ], "end": [ 402, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_zero", "code": "@[simp] theorem castSucc_zero : castSucc (0 : Fin (n + 1)) = 0", "start": [ 404, 1 ], "end": [ 404, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_one", "code": "@[simp] theorem castSucc_one {n : Nat} : castSucc (1 : Fin (n + 2)) = 1", "start": [ 406, 1 ], "end": [ 406, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_pos", "code": "theorem castSucc_pos {i : Fin (n + 1)} (h : 0 < i) : 0 < castSucc i", "start": [ 408, 1 ], "end": [ 410, 25 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_eq_zero_iff", "code": "@[simp] theorem castSucc_eq_zero_iff (a : Fin (n + 1)) : castSucc a = 0 ↔ a = 0", "start": [ 412, 1 ], "end": [ 412, 101 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_ne_zero_iff", "code": "theorem castSucc_ne_zero_iff (a : Fin (n + 1)) : castSucc a ≠ 0 ↔ a ≠ 0", "start": [ 414, 1 ], "end": [ 415, 38 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castSucc_fin_succ", "code": "theorem castSucc_fin_succ (n : Nat) (j : Fin n) :\n castSucc (Fin.succ j) = Fin.succ (castSucc j)", "start": [ 417, 1 ], "end": [ 418, 75 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coeSucc_eq_succ", "code": "@[simp]\ntheorem coeSucc_eq_succ {a : Fin n} : castSucc a + 1 = a.succ", "start": [ 420, 1 ], "end": [ 424, 73 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lt_succ", "code": "theorem lt_succ {a : Fin n} : castSucc a < a.succ", "start": [ 426, 1 ], "end": [ 427, 77 ], "kind": "commanddeclaration" }, { "full_name": "Fin.exists_castSucc_eq", "code": "theorem exists_castSucc_eq {n : Nat} {i : Fin (n + 1)} : (∃ j, castSucc j = i) ↔ i ≠ last n", "start": [ 429, 1 ], "end": [ 431, 52 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_castSucc", "code": "theorem succ_castSucc {n : Nat} (i : Fin n) : i.castSucc.succ = castSucc i.succ", "start": [ 433, 1 ], "end": [ 433, 87 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_addNat", "code": "@[simp] theorem coe_addNat (m : Nat) (i : Fin n) : (addNat i m : Nat) = i + m", "start": [ 435, 1 ], "end": [ 435, 85 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addNat_one", "code": "@[simp] theorem addNat_one {i : Fin n} : addNat i 1 = i.succ", "start": [ 437, 1 ], "end": [ 437, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_coe_addNat", "code": "theorem le_coe_addNat (m : Nat) (i : Fin n) : m ≤ addNat i m", "start": [ 439, 1 ], "end": [ 440, 22 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addNat_mk", "code": "@[simp] theorem addNat_mk (n i : Nat) (hi : i < m) :\n addNat ⟨i, hi⟩ n = ⟨i + n, Nat.add_lt_add_right hi n⟩", "start": [ 442, 1 ], "end": [ 443, 65 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_addNat_zero", "code": "@[simp] theorem cast_addNat_zero {n n' : Nat} (i : Fin n) (h : n + 0 = n') :\n cast h (addNat i 0) = cast ((Nat.add_zero _).symm.trans h) i", "start": [ 445, 1 ], "end": [ 446, 72 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addNat_cast", "code": "theorem addNat_cast {n n' m : Nat} (i : Fin n') (h : n' = n) :\n addNat (cast h i) m = cast (congrArg (. + m) h) (addNat i m)", "start": [ 448, 1 ], "end": [ 450, 72 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_addNat_left", "code": "theorem cast_addNat_left {n n' m : Nat} (i : Fin n') (h : n' + m = n + m) :\n cast h (addNat i m) = addNat (cast (Nat.add_right_cancel h) i) m", "start": [ 452, 1 ], "end": [ 453, 76 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_addNat_right", "code": "@[simp] theorem cast_addNat_right {n m m' : Nat} (i : Fin n) (h : n + m' = n + m) :\n cast h (addNat i m') = addNat i m", "start": [ 455, 1 ], "end": [ 457, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_natAdd", "code": "@[simp] theorem coe_natAdd (n : Nat) {m : Nat} (i : Fin m) : (natAdd n i : Nat) = n + i", "start": [ 459, 1 ], "end": [ 459, 95 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_mk", "code": "@[simp] theorem natAdd_mk (n i : Nat) (hi : i < m) :\n natAdd n ⟨i, hi⟩ = ⟨n + i, Nat.add_lt_add_left hi n⟩", "start": [ 461, 1 ], "end": [ 462, 64 ], "kind": "commanddeclaration" }, { "full_name": "Fin.le_coe_natAdd", "code": "theorem le_coe_natAdd (m : Nat) (i : Fin n) : m ≤ natAdd m i", "start": [ 464, 1 ], "end": [ 464, 84 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_zero", "code": "theorem natAdd_zero {n : Nat} : natAdd 0 = cast (Nat.zero_add n).symm", "start": [ 466, 1 ], "end": [ 466, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_cast", "code": "theorem natAdd_cast {n n' : Nat} (m : Nat) (i : Fin n') (h : n' = n) :\n natAdd m (cast h i) = cast (congrArg _ h) (natAdd m i)", "start": [ 468, 1 ], "end": [ 470, 66 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_natAdd_right", "code": "theorem cast_natAdd_right {n n' m : Nat} (i : Fin n') (h : m + n' = m + n) :\n cast h (natAdd m i) = natAdd m (cast (Nat.add_left_cancel h) i)", "start": [ 472, 1 ], "end": [ 473, 75 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_natAdd_left", "code": "@[simp] theorem cast_natAdd_left {n m m' : Nat} (i : Fin n) (h : m' + n = m + n) :\n cast h (natAdd m' i) = natAdd m i", "start": [ 475, 1 ], "end": [ 477, 65 ], "kind": "commanddeclaration" }, { "full_name": "Fin.castAdd_natAdd", "code": "theorem castAdd_natAdd (p m : Nat) {n : Nat} (i : Fin n) :\n castAdd p (natAdd m i) = cast (Nat.add_assoc ..).symm (natAdd m (castAdd p i))", "start": [ 479, 1 ], "end": [ 480, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_castAdd", "code": "theorem natAdd_castAdd (p m : Nat) {n : Nat} (i : Fin n) :\n natAdd m (castAdd p i) = cast (Nat.add_assoc ..) (castAdd p (natAdd m i))", "start": [ 482, 1 ], "end": [ 483, 85 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_natAdd", "code": "theorem natAdd_natAdd (m n : Nat) {p : Nat} (i : Fin p) :\n natAdd m (natAdd n i) = cast (Nat.add_assoc ..) (natAdd (m + n) i)", "start": [ 485, 1 ], "end": [ 487, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_natAdd_zero", "code": "@[simp]\ntheorem cast_natAdd_zero {n n' : Nat} (i : Fin n) (h : 0 + n = n') :\n cast h (natAdd 0 i) = cast ((Nat.zero_add _).symm.trans h) i", "start": [ 489, 1 ], "end": [ 492, 24 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_natAdd", "code": "@[simp]\ntheorem cast_natAdd (n : Nat) {m : Nat} (i : Fin m) :\n cast (Nat.add_comm ..) (natAdd n i) = addNat i n", "start": [ 494, 1 ], "end": [ 496, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cast_addNat", "code": "@[simp]\ntheorem cast_addNat {n : Nat} (m : Nat) (i : Fin n) :\n cast (Nat.add_comm ..) (addNat i m) = natAdd m i", "start": [ 498, 1 ], "end": [ 500, 79 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_last", "code": "@[simp] theorem natAdd_last {m n : Nat} : natAdd n (last m) = last (n + m)", "start": [ 502, 1 ], "end": [ 502, 82 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_castSucc", "code": "theorem natAdd_castSucc {m n : Nat} {i : Fin m} : natAdd n (castSucc i) = castSucc (natAdd n i)", "start": [ 504, 1 ], "end": [ 505, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_castAdd", "code": "theorem rev_castAdd (k : Fin n) (m : Nat) : rev (castAdd m k) = addNat (rev k) m", "start": [ 507, 1 ], "end": [ 508, 95 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_addNat", "code": "theorem rev_addNat (k : Fin n) (m : Nat) : rev (addNat k m) = castAdd m (rev k)", "start": [ 510, 1 ], "end": [ 511, 52 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_castSucc", "code": "theorem rev_castSucc (k : Fin n) : rev (castSucc k) = succ (rev k)", "start": [ 513, 1 ], "end": [ 513, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.rev_succ", "code": "theorem rev_succ (k : Fin n) : rev (succ k) = castSucc (rev k)", "start": [ 515, 1 ], "end": [ 515, 81 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_pred", "code": "@[simp] theorem coe_pred (j : Fin (n + 1)) (h : j ≠ 0) : (j.pred h : Nat) = j - 1", "start": [ 519, 1 ], "end": [ 519, 89 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succ_pred", "code": "@[simp] theorem succ_pred : ∀ (i : Fin (n + 1)) (h : i ≠ 0), (i.pred h).succ = i", "start": [ 521, 1 ], "end": [ 523, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_succ", "code": "@[simp]\ntheorem pred_succ (i : Fin n) {h : i.succ ≠ 0} : i.succ.pred h = i", "start": [ 525, 1 ], "end": [ 528, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_eq_iff_eq_succ", "code": "theorem pred_eq_iff_eq_succ {n : Nat} (i : Fin (n + 1)) (hi : i ≠ 0) (j : Fin n) :\n i.pred hi = j ↔ i = j.succ", "start": [ 530, 1 ], "end": [ 532, 89 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_mk_succ", "code": "theorem pred_mk_succ (i : Nat) (h : i < n + 1) :\n Fin.pred ⟨i + 1, Nat.add_lt_add_right h 1⟩ (ne_of_val_ne (Nat.ne_of_gt (mk_succ_pos i h))) =\n ⟨i, h⟩", "start": [ 534, 1 ], "end": [ 537, 52 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_mk_succ'", "code": "@[simp] theorem pred_mk_succ' (i : Nat) (h₁ : i + 1 < n + 1 + 1) (h₂) :\n Fin.pred ⟨i + 1, h₁⟩ h₂ = ⟨i, Nat.lt_of_succ_lt_succ h₁⟩", "start": [ 539, 1 ], "end": [ 540, 81 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_mk", "code": "theorem pred_mk {n : Nat} (i : Nat) (h : i < n + 1) (w) : Fin.pred ⟨i, h⟩ w =\n ⟨i - 1, Nat.sub_lt_right_of_lt_add (Nat.pos_iff_ne_zero.2 (Fin.val_ne_of_ne w)) h⟩", "start": [ 543, 1 ], "end": [ 545, 6 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_le_pred_iff", "code": "@[simp] theorem pred_le_pred_iff {n : Nat} {a b : Fin n.succ} {ha : a ≠ 0} {hb : b ≠ 0} :\n a.pred ha ≤ b.pred hb ↔ a ≤ b", "start": [ 547, 1 ], "end": [ 548, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_lt_pred_iff", "code": "@[simp] theorem pred_lt_pred_iff {n : Nat} {a b : Fin n.succ} {ha : a ≠ 0} {hb : b ≠ 0} :\n a.pred ha < b.pred hb ↔ a < b", "start": [ 550, 1 ], "end": [ 551, 86 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_inj", "code": "@[simp] theorem pred_inj :\n ∀ {a b : Fin (n + 1)} {ha : a ≠ 0} {hb : b ≠ 0}, a.pred ha = b.pred hb ↔ a = b", "start": [ 553, 1 ], "end": [ 557, 74 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_one", "code": "@[simp] theorem pred_one {n : Nat} :\n Fin.pred (1 : Fin (n + 2)) (Ne.symm (Fin.ne_of_lt one_pos)) = 0", "start": [ 559, 1 ], "end": [ 560, 75 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_add_one", "code": "theorem pred_add_one (i : Fin (n + 2)) (h : (i : Nat) < n + 1) :\n pred (i + 1) (Fin.ne_of_gt (add_one_pos _ (lt_def.2 h))) = castLT i h", "start": [ 562, 1 ], "end": [ 565, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_subNat", "code": "@[simp] theorem coe_subNat (i : Fin (n + m)) (h : m ≤ i) : (i.subNat m h : Nat) = i - m", "start": [ 567, 1 ], "end": [ 567, 95 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subNat_mk", "code": "@[simp] theorem subNat_mk {i : Nat} (h₁ : i < n + m) (h₂ : m ≤ i) :\n subNat m ⟨i, h₁⟩ h₂ = ⟨i - m, Nat.sub_lt_right_of_lt_add h₂ h₁⟩", "start": [ 569, 1 ], "end": [ 570, 75 ], "kind": "commanddeclaration" }, { "full_name": "Fin.pred_castSucc_succ", "code": "@[simp] theorem pred_castSucc_succ (i : Fin n) :\n pred (castSucc i.succ) (Fin.ne_of_gt (castSucc_pos i.succ_pos)) = castSucc i", "start": [ 572, 1 ], "end": [ 573, 88 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addNat_subNat", "code": "@[simp] theorem addNat_subNat {i : Fin (n + m)} (h : m ≤ i) : addNat (subNat m i h) m = i", "start": [ 575, 1 ], "end": [ 576, 30 ], "kind": "commanddeclaration" }, { "full_name": "Fin.subNat_addNat", "code": "@[simp] theorem subNat_addNat (i : Fin n) (m : Nat) (h : m ≤ addNat i m := le_coe_addNat m i) :\n subNat m (addNat i m) h = i", "start": [ 578, 1 ], "end": [ 579, 65 ], "kind": "commanddeclaration" }, { "full_name": "Fin.natAdd_subNat_cast", "code": "@[simp] theorem natAdd_subNat_cast {i : Fin (n + m)} (h : n ≤ i) :\n natAdd n (subNat n (cast (Nat.add_comm ..) i) h) = i", "start": [ 581, 1 ], "end": [ 582, 89 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succRec", "code": "@[elab_as_elim] def succRec {motive : ∀ n, Fin n → Sort _}\n (zero : ∀ n, motive n.succ (0 : Fin (n + 1)))\n (succ : ∀ n i, motive n i → motive n.succ i.succ) : ∀ {n : Nat} (i : Fin n), motive n i\n | 0, i => i.elim0\n | Nat.succ n, ⟨0, _⟩ => by rw [mk_zero]; exact zero n\n | Nat.succ _, ⟨Nat.succ i, h⟩ => succ _ _ (succRec zero succ ⟨i, Nat.lt_of_succ_lt_succ h⟩)", "start": [ 586, 1 ], "end": [ 596, 94 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succRecOn", "code": "@[elab_as_elim] def succRecOn {n : Nat} (i : Fin n) {motive : ∀ n, Fin n → Sort _}\n (zero : ∀ n, motive (n + 1) 0) (succ : ∀ n i, motive n i → motive (Nat.succ n) i.succ) :\n motive n i := i.succRec zero succ", "start": [ 598, 1 ], "end": [ 608, 38 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succRecOn_zero", "code": "@[simp] theorem succRecOn_zero {motive : ∀ n, Fin n → Sort _} {zero succ} (n) :\n @Fin.succRecOn (n + 1) 0 motive zero succ = zero n", "start": [ 610, 1 ], "end": [ 612, 18 ], "kind": "commanddeclaration" }, { "full_name": "Fin.succRecOn_succ", "code": "@[simp] theorem succRecOn_succ {motive : ∀ n, Fin n → Sort _} {zero succ} {n} (i : Fin n) :\n @Fin.succRecOn (n + 1) i.succ motive zero succ = succ n i (Fin.succRecOn i zero succ)", "start": [ 614, 1 ], "end": [ 616, 15 ], "kind": "commanddeclaration" }, { "full_name": "Fin.induction", "code": "@[elab_as_elim] def induction {motive : Fin (n + 1) → Sort _} (zero : motive 0)\n (succ : ∀ i : Fin n, motive (castSucc i) → motive i.succ) :\n ∀ i : Fin (n + 1), motive i\n | ⟨i, hi⟩ => go i hi\nwhere\n go : ∀ (i : Nat) (hi : i < n + 1), motive ⟨i, hi⟩\n | 0, hi => by rwa [Fin.mk_zero]\n | i+1, hi => succ ⟨i, Nat.lt_of_succ_lt_succ hi⟩ (go i (Nat.lt_of_succ_lt hi))", "start": [ 619, 1 ], "end": [ 632, 81 ], "kind": "commanddeclaration" }, { "full_name": "Fin.induction_zero", "code": "@[simp] theorem induction_zero {motive : Fin (n + 1) → Sort _} (zero : motive 0)\n (hs : ∀ i : Fin n, motive (castSucc i) → motive i.succ) :\n (induction zero hs : ∀ i : Fin (n + 1), motive i) 0 = zero", "start": [ 634, 1 ], "end": [ 636, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.induction_succ", "code": "@[simp] theorem induction_succ {motive : Fin (n + 1) → Sort _} (zero : motive 0)\n (succ : ∀ i : Fin n, motive (castSucc i) → motive i.succ) (i : Fin n) :\n induction (motive := motive) zero succ i.succ = succ i (induction zero succ (castSucc i))", "start": [ 638, 1 ], "end": [ 640, 101 ], "kind": "commanddeclaration" }, { "full_name": "Fin.inductionOn", "code": "@[elab_as_elim] def inductionOn (i : Fin (n + 1)) {motive : Fin (n + 1) → Sort _} (zero : motive 0)\n (succ : ∀ i : Fin n, motive (castSucc i) → motive i.succ) : motive i := induction zero succ i", "start": [ 642, 1 ], "end": [ 650, 98 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cases", "code": "@[elab_as_elim] def cases {motive : Fin (n + 1) → Sort _}\n (zero : motive 0) (succ : ∀ i : Fin n, motive i.succ) :\n ∀ i : Fin (n + 1), motive i := induction zero fun i _ => succ i", "start": [ 652, 1 ], "end": [ 656, 68 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cases_zero", "code": "@[simp] theorem cases_zero {n} {motive : Fin (n + 1) → Sort _} {zero succ} :\n @Fin.cases n motive zero succ 0 = zero", "start": [ 658, 1 ], "end": [ 659, 50 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cases_succ", "code": "@[simp] theorem cases_succ {n} {motive : Fin (n + 1) → Sort _} {zero succ} (i : Fin n) :\n @Fin.cases n motive zero succ i.succ = succ i", "start": [ 661, 1 ], "end": [ 662, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.cases_succ'", "code": "@[simp] theorem cases_succ' {n} {motive : Fin (n + 1) → Sort _} {zero succ}\n {i : Nat} (h : i + 1 < n + 1) :\n @Fin.cases n motive zero succ ⟨i.succ, h⟩ = succ ⟨i, Nat.lt_of_succ_lt_succ h⟩", "start": [ 664, 1 ], "end": [ 666, 90 ], "kind": "commanddeclaration" }, { "full_name": "Fin.forall_fin_succ", "code": "theorem forall_fin_succ {P : Fin (n + 1) → Prop} : (∀ i, P i) ↔ P 0 ∧ ∀ i : Fin n, P i.succ", "start": [ 668, 1 ], "end": [ 669, 70 ], "kind": "commanddeclaration" }, { "full_name": "Fin.exists_fin_succ", "code": "theorem exists_fin_succ {P : Fin (n + 1) → Prop} : (∃ i, P i) ↔ P 0 ∨ ∃ i : Fin n, P i.succ", "start": [ 671, 1 ], "end": [ 673, 58 ], "kind": "commanddeclaration" }, { "full_name": "Fin.forall_fin_one", "code": "theorem forall_fin_one {p : Fin 1 → Prop} : (∀ i, p i) ↔ p 0", "start": [ 675, 1 ], "end": [ 676, 55 ], "kind": "commanddeclaration" }, { "full_name": "Fin.exists_fin_one", "code": "theorem exists_fin_one {p : Fin 1 → Prop} : (∃ i, p i) ↔ p 0", "start": [ 678, 1 ], "end": [ 679, 61 ], "kind": "commanddeclaration" }, { "full_name": "Fin.forall_fin_two", "code": "theorem forall_fin_two {p : Fin 2 → Prop} : (∀ i, p i) ↔ p 0 ∧ p 1", "start": [ 681, 1 ], "end": [ 682, 67 ], "kind": "commanddeclaration" }, { "full_name": "Fin.exists_fin_two", "code": "theorem exists_fin_two {p : Fin 2 → Prop} : (∃ i, p i) ↔ p 0 ∨ p 1", "start": [ 684, 1 ], "end": [ 685, 57 ], "kind": "commanddeclaration" }, { "full_name": "Fin.fin_two_eq_of_eq_zero_iff", "code": "theorem fin_two_eq_of_eq_zero_iff : ∀ {a b : Fin 2}, (a = 0 ↔ b = 0) → a = b", "start": [ 687, 1 ], "end": [ 688, 37 ], "kind": "commanddeclaration" }, { "full_name": "Fin.reverseInduction", "code": "@[elab_as_elim] def reverseInduction {motive : Fin (n + 1) → Sort _} (last : motive (Fin.last n))\n (cast : ∀ i : Fin n, motive i.succ → motive (castSucc i)) (i : Fin (n + 1)) : motive i :=\n if hi : i = Fin.last n then _root_.cast (congrArg motive hi.symm) last\n else\n let j : Fin n := ⟨i, Nat.lt_of_le_of_ne (Nat.le_of_lt_succ i.2) fun h => hi (Fin.ext h)⟩\n cast _ (reverseInduction last cast j.succ)\ntermination_by n + 1 - i\ndecreasing_by decreasing_with\n try simp only [Nat.succ_sub_succ_eq_sub]\n exact Nat.add_sub_add_right .. ▸ Nat.sub_lt_sub_left i.2 (Nat.lt_succ_self i)", "start": [ 690, 1 ], "end": [ 705, 80 ], "kind": "commanddeclaration" }, { "full_name": "Fin.reverseInduction_last", "code": "@[simp] theorem reverseInduction_last {n : Nat} {motive : Fin (n + 1) → Sort _} {zero succ} :\n (reverseInduction zero succ (Fin.last n) : motive (Fin.last n)) = zero", "start": [ 707, 1 ], "end": [ 709, 30 ], "kind": "commanddeclaration" }, { "full_name": "Fin.reverseInduction_castSucc", "code": "@[simp] theorem reverseInduction_castSucc {n : Nat} {motive : Fin (n + 1) → Sort _} {zero succ}\n (i : Fin n) : reverseInduction (motive := motive) zero succ (castSucc i) =\n succ i (reverseInduction zero succ i.succ)", "start": [ 711, 1 ], "end": [ 714, 78 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lastCases", "code": "@[elab_as_elim] def lastCases {n : Nat} {motive : Fin (n + 1) → Sort _} (last : motive (Fin.last n))\n (cast : ∀ i : Fin n, motive (castSucc i)) (i : Fin (n + 1)) : motive i :=\n reverseInduction last (fun i _ => cast i) i", "start": [ 716, 1 ], "end": [ 720, 46 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lastCases_last", "code": "@[simp] theorem lastCases_last {n : Nat} {motive : Fin (n + 1) → Sort _} {last cast} :\n (Fin.lastCases last cast (Fin.last n) : motive (Fin.last n)) = last", "start": [ 722, 1 ], "end": [ 724, 27 ], "kind": "commanddeclaration" }, { "full_name": "Fin.lastCases_castSucc", "code": "@[simp] theorem lastCases_castSucc {n : Nat} {motive : Fin (n + 1) → Sort _} {last cast}\n (i : Fin n) : (Fin.lastCases last cast (Fin.castSucc i) : motive (Fin.castSucc i)) = cast i", "start": [ 726, 1 ], "end": [ 728, 31 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addCases", "code": "@[elab_as_elim] def addCases {m n : Nat} {motive : Fin (m + n) → Sort u}\n (left : ∀ i, motive (castAdd n i)) (right : ∀ i, motive (natAdd m i))\n (i : Fin (m + n)) : motive i :=\n if hi : (i : Nat) < m then (castAdd_castLT n i hi) ▸ (left (castLT i hi))\n else (natAdd_subNat_cast (Nat.le_of_not_lt hi)) ▸ (right _)", "start": [ 730, 1 ], "end": [ 736, 62 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addCases_left", "code": "@[simp] theorem addCases_left {m n : Nat} {motive : Fin (m + n) → Sort _} {left right} (i : Fin m) :\n addCases (motive := motive) left right (Fin.castAdd n i) = left i", "start": [ 738, 1 ], "end": [ 740, 47 ], "kind": "commanddeclaration" }, { "full_name": "Fin.addCases_right", "code": "@[simp]\ntheorem addCases_right {m n : Nat} {motive : Fin (m + n) → Sort _} {left right} (i : Fin n) :\n addCases (motive := motive) left right (natAdd m i) = right i", "start": [ 742, 1 ], "end": [ 746, 91 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ofNat'_add", "code": "@[simp] theorem ofNat'_add (x : Nat) (lt : 0 < n) (y : Fin n) :\n Fin.ofNat' x lt + y = Fin.ofNat' (x + y.val) lt", "start": [ 750, 1 ], "end": [ 753, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.add_ofNat'", "code": "@[simp] theorem add_ofNat' (x : Fin n) (y : Nat) (lt : 0 < n) :\n x + Fin.ofNat' y lt = Fin.ofNat' (x.val + y) lt", "start": [ 755, 1 ], "end": [ 758, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_sub", "code": "protected theorem coe_sub (a b : Fin n) : ((a - b : Fin n) : Nat) = ((n - b) + a) % n", "start": [ 762, 1 ], "end": [ 763, 24 ], "kind": "commanddeclaration" }, { "full_name": "Fin.ofNat'_sub", "code": "@[simp] theorem ofNat'_sub (x : Nat) (lt : 0 < n) (y : Fin n) :\n Fin.ofNat' x lt - y = Fin.ofNat' ((n - y.val) + x) lt", "start": [ 765, 1 ], "end": [ 768, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.sub_ofNat'", "code": "@[simp] theorem sub_ofNat' (x : Fin n) (y : Nat) (lt : 0 < n) :\n x - Fin.ofNat' y lt = Fin.ofNat' ((n - y % n) + x.val) lt", "start": [ 770, 1 ], "end": [ 773, 33 ], "kind": "commanddeclaration" }, { "full_name": "Nat.mod_eq_sub_of_lt_two_mul", "code": "private theorem _root_.Nat.mod_eq_sub_of_lt_two_mul {x n} (h₁ : n ≤ x) (h₂ : x < 2 * n) :\n x % n = x - n", "start": [ 775, 1 ], "end": [ 777, 66 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_sub_iff_le", "code": "theorem coe_sub_iff_le {a b : Fin n} : (↑(a - b) : Nat) = a - b ↔ b ≤ a", "start": [ 779, 1 ], "end": [ 787, 20 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_sub_iff_lt", "code": "theorem coe_sub_iff_lt {a b : Fin n} : (↑(a - b) : Nat) = n + a - b ↔ a < b", "start": [ 789, 1 ], "end": [ 797, 20 ], "kind": "commanddeclaration" }, { "full_name": "Fin.val_mul", "code": "theorem val_mul {n : Nat} : ∀ a b : Fin n, (a * b).val = a.val * b.val % n", "start": [ 801, 1 ], "end": [ 802, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.coe_mul", "code": "theorem coe_mul {n : Nat} : ∀ a b : Fin n, ((a * b : Fin n) : Nat) = a * b % n", "start": [ 804, 1 ], "end": [ 805, 26 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul_one", "code": "protected theorem mul_one (k : Fin (n + 1)) : k * 1 = k", "start": [ 807, 1 ], "end": [ 810, 63 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul_comm", "code": "protected theorem mul_comm (a b : Fin n) : a * b = b * a", "start": [ 812, 1 ], "end": [ 813, 48 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul_assoc", "code": "protected theorem mul_assoc (a b c : Fin n) : a * b * c = a * (b * c)", "start": [ 816, 1 ], "end": [ 820, 43 ], "kind": "commanddeclaration" }, { "full_name": "Fin.one_mul", "code": "protected theorem one_mul (k : Fin (n + 1)) : (1 : Fin (n + 1)) * k = k", "start": [ 823, 1 ], "end": [ 824, 33 ], "kind": "commanddeclaration" }, { "full_name": "Fin.mul_zero", "code": "protected theorem mul_zero (k : Fin (n + 1)) : k * 0 = 0", "start": [ 829, 1 ], "end": [ 829, 87 ], "kind": "commanddeclaration" }, { "full_name": "Fin.zero_mul", "code": "protected theorem zero_mul (k : Fin (n + 1)) : (0 : Fin (n + 1)) * k = 0", "start": [ 831, 1 ], "end": [ 832, 26 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/ByteArray/Basic.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Array/Subarray.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Option/Basic.lean" ]
[ { "full_name": "ByteArray", "code": "structure ByteArray where\n data : Array UInt8", "start": [ 13, 1 ], "end": [ 14, 21 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.mkEmpty", "code": "@[extern \"lean_mk_empty_byte_array\"]\ndef mkEmpty (c : @& Nat) : ByteArray :=\n { data := #[] }", "start": [ 20, 1 ], "end": [ 22, 18 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.empty", "code": "def empty : ByteArray := mkEmpty 0", "start": [ 24, 1 ], "end": [ 24, 35 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.push", "code": "@[extern \"lean_byte_array_push\"]\ndef push : ByteArray → UInt8 → ByteArray\n | ⟨bs⟩, b => ⟨bs.push b⟩", "start": [ 32, 1 ], "end": [ 34, 27 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.size", "code": "@[extern \"lean_byte_array_size\"]\ndef size : (@& ByteArray) → Nat\n | ⟨bs⟩ => bs.size", "start": [ 36, 1 ], "end": [ 38, 20 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.uget", "code": "@[extern \"lean_byte_array_uget\"]\ndef uget : (a : @& ByteArray) → (i : USize) → i.toNat < a.size → UInt8\n | ⟨bs⟩, i, h => bs[i]", "start": [ 40, 1 ], "end": [ 42, 24 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.get!", "code": "@[extern \"lean_byte_array_get\"]\ndef get! : (@& ByteArray) → (@& Nat) → UInt8\n | ⟨bs⟩, i => bs.get! i", "start": [ 44, 1 ], "end": [ 46, 25 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.get", "code": "@[extern \"lean_byte_array_fget\"]\ndef get : (a : @& ByteArray) → (@& Fin a.size) → UInt8\n | ⟨bs⟩, i => bs.get i", "start": [ 48, 1 ], "end": [ 50, 24 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.set!", "code": "@[extern \"lean_byte_array_set\"]\ndef set! : ByteArray → (@& Nat) → UInt8 → ByteArray\n | ⟨bs⟩, i, b => ⟨bs.set! i b⟩", "start": [ 58, 1 ], "end": [ 60, 32 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.set", "code": "@[extern \"lean_byte_array_fset\"]\ndef set : (a : ByteArray) → (@& Fin a.size) → UInt8 → ByteArray\n | ⟨bs⟩, i, b => ⟨bs.set i b⟩", "start": [ 62, 1 ], "end": [ 64, 31 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.uset", "code": "@[extern \"lean_byte_array_uset\"]\ndef uset : (a : ByteArray) → (i : USize) → UInt8 → i.toNat < a.size → ByteArray\n | ⟨bs⟩, i, v, h => ⟨bs.uset i v h⟩", "start": [ 66, 1 ], "end": [ 68, 37 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.hash", "code": "@[extern \"lean_byte_array_hash\"]\nprotected opaque hash (a : @& ByteArray) : UInt64", "start": [ 70, 1 ], "end": [ 71, 50 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.isEmpty", "code": "def isEmpty (s : ByteArray) : Bool :=\n s.size == 0", "start": [ 76, 1 ], "end": [ 77, 14 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.copySlice", "code": "@[extern \"lean_byte_array_copy_slice\"]\ndef copySlice (src : @& ByteArray) (srcOff : Nat) (dest : ByteArray) (destOff len : Nat) (exact : Bool := true) : ByteArray :=\n ⟨dest.data.extract 0 destOff ++ src.data.extract srcOff (srcOff + len) ++ dest.data.extract (destOff + min len (src.data.size - srcOff)) dest.data.size⟩", "start": [ 79, 1 ], "end": [ 84, 155 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.extract", "code": "def extract (a : ByteArray) (b e : Nat) : ByteArray :=\n a.copySlice b empty 0 (e - b)", "start": [ 86, 1 ], "end": [ 87, 32 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.append", "code": "protected def append (a : ByteArray) (b : ByteArray) : ByteArray :=\n b.copySlice 0 a a.size b.size false", "start": [ 89, 1 ], "end": [ 91, 38 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.toList", "code": "partial def toList (bs : ByteArray) : List UInt8 :=\n let rec loop (i : Nat) (r : List UInt8) :=\n if i < bs.size then\n loop (i+1) (bs.get! i :: r)\n else\n r.reverse\n loop 0 []", "start": [ 95, 1 ], "end": [ 101, 12 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.findIdx?", "code": "@[inline] partial def findIdx? (a : ByteArray) (p : UInt8 → Bool) (start := 0) : Option Nat :=\n let rec @[specialize] loop (i : Nat) :=\n if i < a.size then\n if p (a.get! i) then some i else loop (i+1)\n else\n none\n loop start", "start": [ 103, 1 ], "end": [ 109, 13 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.forInUnsafe", "code": "@[inline] unsafe def forInUnsafe {β : Type v} {m : Type v → Type w} [Monad m] (as : ByteArray) (b : β) (f : UInt8 → β → m (ForInStep β)) : m β :=\n let sz := USize.ofNat as.size\n let rec @[specialize] loop (i : USize) (b : β) : m β := do\n if i < sz then\n let a := as.uget i lcProof\n match (← f a b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop (i+1) b\n else\n pure b\n loop 0 b", "start": [ 111, 1 ], "end": [ 127, 11 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.forIn", "code": "@[implemented_by ByteArray.forInUnsafe]\nprotected def forIn {β : Type v} {m : Type v → Type w} [Monad m] (as : ByteArray) (b : β) (f : UInt8 → β → m (ForInStep β)) : m β :=\n let rec loop (i : Nat) (h : i ≤ as.size) (b : β) : m β := do\n match i, h with\n | 0, _ => pure b\n | i+1, h =>\n have h' : i < as.size := Nat.lt_of_lt_of_le (Nat.lt_succ_self i) h\n have : as.size - 1 < as.size := Nat.sub_lt (Nat.zero_lt_of_lt h') (by decide)\n have : as.size - 1 - i < as.size := Nat.lt_of_le_of_lt (Nat.sub_le (as.size - 1) i) this\n match (← f (as.get ⟨as.size - 1 - i, this⟩) b) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => loop i (Nat.le_of_lt h') b\n loop as.size (Nat.le_refl _) b", "start": [ 129, 1 ], "end": [ 142, 33 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.foldlMUnsafe", "code": "@[inline]\nunsafe def foldlMUnsafe {β : Type v} {m : Type v → Type w} [Monad m] (f : β → UInt8 → m β) (init : β) (as : ByteArray) (start := 0) (stop := as.size) : m β :=\n let rec @[specialize] fold (i : USize) (stop : USize) (b : β) : m β := do\n if i == stop then\n pure b\n else\n fold (i+1) stop (← f b (as.uget i lcProof))\n if start < stop then\n if stop ≤ as.size then\n fold (USize.ofNat start) (USize.ofNat stop) init\n else\n pure init\n else\n pure init", "start": [ 147, 1 ], "end": [ 162, 14 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.foldlM", "code": "@[implemented_by foldlMUnsafe]\ndef foldlM {β : Type v} {m : Type v → Type w} [Monad m] (f : β → UInt8 → m β) (init : β) (as : ByteArray) (start := 0) (stop := as.size) : m β :=\n let fold (stop : Nat) (h : stop ≤ as.size) :=\n let rec loop (i : Nat) (j : Nat) (b : β) : m β := do\n if hlt : j < stop then\n match i with\n | 0 => pure b\n | i'+1 =>\n loop i' (j+1) (← f b (as.get ⟨j, Nat.lt_of_lt_of_le hlt h⟩))\n else\n pure b\n loop (stop - start) start init\n if h : stop ≤ as.size then\n fold stop h\n else\n fold as.size (Nat.le_refl _)", "start": [ 164, 1 ], "end": [ 180, 33 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.foldl", "code": "@[inline]\ndef foldl {β : Type v} (f : β → UInt8 → β) (init : β) (as : ByteArray) (start := 0) (stop := as.size) : β :=\n Id.run <| as.foldlM f init start stop", "start": [ 182, 1 ], "end": [ 184, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.toByteArray", "code": "def List.toByteArray (bs : List UInt8) : ByteArray :=\n let rec loop\n | [], r => r\n | b::bs, r => loop bs (r.push b)\n loop bs ByteArray.empty", "start": [ 188, 1 ], "end": [ 192, 26 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.toUInt64LE!", "code": "def ByteArray.toUInt64LE! (bs : ByteArray) : UInt64 :=\n assert! bs.size == 8\n (bs.get! 7).toUInt64 <<< 0x38 |||\n (bs.get! 6).toUInt64 <<< 0x30 |||\n (bs.get! 5).toUInt64 <<< 0x28 |||\n (bs.get! 4).toUInt64 <<< 0x20 |||\n (bs.get! 3).toUInt64 <<< 0x18 |||\n (bs.get! 2).toUInt64 <<< 0x10 |||\n (bs.get! 1).toUInt64 <<< 0x8 |||\n (bs.get! 0).toUInt64", "start": [ 196, 1 ], "end": [ 206, 23 ], "kind": "commanddeclaration" }, { "full_name": "ByteArray.toUInt64BE!", "code": "def ByteArray.toUInt64BE! (bs : ByteArray) : UInt64 :=\n assert! bs.size == 8\n (bs.get! 0).toUInt64 <<< 0x38 |||\n (bs.get! 1).toUInt64 <<< 0x30 |||\n (bs.get! 2).toUInt64 <<< 0x28 |||\n (bs.get! 3).toUInt64 <<< 0x20 |||\n (bs.get! 4).toUInt64 <<< 0x18 |||\n (bs.get! 5).toUInt64 <<< 0x10 |||\n (bs.get! 6).toUInt64 <<< 0x8 |||\n (bs.get! 7).toUInt64", "start": [ 208, 1 ], "end": [ 218, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/UInt/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Fin/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean" ]
[ { "full_name": "zero_def", "code": "theorem zero_def : (0 : $typeName) = ⟨0⟩", "start": [ 18, 1 ], "end": [ 18, 48 ], "kind": "commanddeclaration" }, { "full_name": "one_def", "code": "theorem one_def : (1 : $typeName) = ⟨1⟩", "start": [ 19, 1 ], "end": [ 19, 47 ], "kind": "commanddeclaration" }, { "full_name": "sub_def", "code": "theorem sub_def (a b : $typeName) : a - b = ⟨a.val - b.val⟩", "start": [ 20, 1 ], "end": [ 20, 67 ], "kind": "commanddeclaration" }, { "full_name": "mul_def", "code": "theorem mul_def (a b : $typeName) : a * b = ⟨a.val * b.val⟩", "start": [ 21, 1 ], "end": [ 21, 67 ], "kind": "commanddeclaration" }, { "full_name": "mod_def", "code": "theorem mod_def (a b : $typeName) : a % b = ⟨a.val % b.val⟩", "start": [ 22, 1 ], "end": [ 22, 67 ], "kind": "commanddeclaration" }, { "full_name": "add_def", "code": "theorem add_def (a b : $typeName) : a + b = ⟨a.val + b.val⟩", "start": [ 23, 1 ], "end": [ 23, 67 ], "kind": "commanddeclaration" }, { "full_name": "mk_val_eq", "code": "@[simp] theorem mk_val_eq : ∀ (a : $typeName), mk a.val = a", "start": [ 25, 1 ], "end": [ 26, 18 ], "kind": "commanddeclaration" }, { "full_name": "val_eq_of_lt", "code": "theorem val_eq_of_lt {a : Nat} : a < size → ((ofNat a).val : Nat) = a", "start": [ 27, 1 ], "end": [ 28, 19 ], "kind": "commanddeclaration" }, { "full_name": "le_def", "code": "theorem le_def {a b : $typeName} : a ≤ b ↔ a.1 ≤ b.1", "start": [ 30, 1 ], "end": [ 30, 61 ], "kind": "commanddeclaration" }, { "full_name": "lt_def", "code": "theorem lt_def {a b : $typeName} : a < b ↔ a.1 < b.1", "start": [ 31, 1 ], "end": [ 31, 61 ], "kind": "commanddeclaration" }, { "full_name": "lt_iff_val_lt_val", "code": "theorem lt_iff_val_lt_val {a b : $typeName} : a < b ↔ a.val < b.val", "start": [ 32, 1 ], "end": [ 32, 76 ], "kind": "commanddeclaration" }, { "full_name": "not_le", "code": "@[simp] protected theorem not_le {a b : $typeName} : ¬ a ≤ b ↔ b < a", "start": [ 33, 1 ], "end": [ 33, 83 ], "kind": "commanddeclaration" }, { "full_name": "not_lt", "code": "@[simp] protected theorem not_lt {a b : $typeName} : ¬ a < b ↔ b ≤ a", "start": [ 34, 1 ], "end": [ 34, 83 ], "kind": "commanddeclaration" }, { "full_name": "le_refl", "code": "@[simp] protected theorem le_refl (a : $typeName) : a ≤ a", "start": [ 35, 1 ], "end": [ 35, 78 ], "kind": "commanddeclaration" }, { "full_name": "lt_irrefl", "code": "@[simp] protected theorem lt_irrefl (a : $typeName) : ¬ a < a", "start": [ 36, 1 ], "end": [ 36, 73 ], "kind": "commanddeclaration" }, { "full_name": "le_trans", "code": "protected theorem le_trans {a b c : $typeName} : a ≤ b → b ≤ c → a ≤ c", "start": [ 37, 1 ], "end": [ 37, 87 ], "kind": "commanddeclaration" }, { "full_name": "lt_trans", "code": "protected theorem lt_trans {a b c : $typeName} : a < b → b < c → a < c", "start": [ 38, 1 ], "end": [ 38, 87 ], "kind": "commanddeclaration" }, { "full_name": "le_total", "code": "protected theorem le_total (a b : $typeName) : a ≤ b ∨ b ≤ a", "start": [ 39, 1 ], "end": [ 39, 85 ], "kind": "commanddeclaration" }, { "full_name": "lt_asymm", "code": "protected theorem lt_asymm {a b : $typeName} (h : a < b) : ¬ b < a", "start": [ 40, 1 ], "end": [ 40, 85 ], "kind": "commanddeclaration" }, { "full_name": "val_eq_of_eq", "code": "protected theorem val_eq_of_eq {a b : $typeName} (h : a = b) : a.val = b.val", "start": [ 41, 1 ], "end": [ 41, 88 ], "kind": "commanddeclaration" }, { "full_name": "eq_of_val_eq", "code": "protected theorem eq_of_val_eq {a b : $typeName} (h : a.val = b.val) : a = b", "start": [ 42, 1 ], "end": [ 42, 121 ], "kind": "commanddeclaration" }, { "full_name": "ne_of_val_ne", "code": "protected theorem ne_of_val_ne {a b : $typeName} (h : a.val ≠ b.val) : a ≠ b", "start": [ 44, 1 ], "end": [ 44, 117 ], "kind": "commanddeclaration" }, { "full_name": "ne_of_lt", "code": "protected theorem ne_of_lt {a b : $typeName} (h : a < b) : a ≠ b", "start": [ 46, 1 ], "end": [ 46, 98 ], "kind": "commanddeclaration" }, { "full_name": "zero_toNat", "code": "@[simp] protected theorem zero_toNat : (0 : $typeName).toNat = 0", "start": [ 48, 1 ], "end": [ 48, 83 ], "kind": "commanddeclaration" }, { "full_name": "mod_toNat", "code": "@[simp] protected theorem mod_toNat (a b : $typeName) : (a % b).toNat = a.toNat % b.toNat", "start": [ 49, 1 ], "end": [ 49, 108 ], "kind": "commanddeclaration" }, { "full_name": "div_toNat", "code": "@[simp] protected theorem div_toNat (a b : $typeName) : (a / b).toNat = a.toNat / b.toNat", "start": [ 50, 1 ], "end": [ 50, 108 ], "kind": "commanddeclaration" }, { "full_name": "modn_toNat", "code": "@[simp] protected theorem modn_toNat (a : $typeName) (b : Nat) : (a.modn b).toNat = a.toNat % b", "start": [ 51, 1 ], "end": [ 51, 115 ], "kind": "commanddeclaration" }, { "full_name": "modn_lt", "code": "protected theorem modn_lt {m : Nat} : ∀ (u : $typeName), m > 0 → toNat (u % m) < m", "start": [ 52, 1 ], "end": [ 53, 30 ], "kind": "commanddeclaration" }, { "full_name": "mod_lt", "code": "protected theorem mod_lt (a b : $typeName) (h : 0 < b) : a % b < b", "start": [ 55, 1 ], "end": [ 55, 113 ], "kind": "commanddeclaration" }, { "full_name": "toNat.inj", "code": "protected theorem toNat.inj : ∀ {a b : $typeName}, a.toNat = b.toNat → a = b", "start": [ 56, 1 ], "end": [ 57, 31 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/ByteArray.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ByteArray/Basic.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Char/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Char/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Lemmas.lean" ]
[ { "full_name": "Char.le_def", "code": "theorem le_def {a b : Char} : a ≤ b ↔ a.1 ≤ b.1", "start": [ 12, 1 ], "end": [ 12, 56 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt_def", "code": "theorem lt_def {a b : Char} : a < b ↔ a.1 < b.1", "start": [ 13, 1 ], "end": [ 13, 56 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt_iff_val_lt_val", "code": "theorem lt_iff_val_lt_val {a b : Char} : a < b ↔ a.val < b.val", "start": [ 14, 1 ], "end": [ 14, 74 ], "kind": "commanddeclaration" }, { "full_name": "Char.not_le", "code": "@[simp] protected theorem not_le {a b : Char} : ¬ a ≤ b ↔ b < a", "start": [ 15, 1 ], "end": [ 15, 81 ], "kind": "commanddeclaration" }, { "full_name": "Char.not_lt", "code": "@[simp] protected theorem not_lt {a b : Char} : ¬ a < b ↔ b ≤ a", "start": [ 16, 1 ], "end": [ 16, 81 ], "kind": "commanddeclaration" }, { "full_name": "Char.le_refl", "code": "@[simp] protected theorem le_refl (a : Char) : a ≤ a", "start": [ 17, 1 ], "end": [ 17, 73 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt_irrefl", "code": "@[simp] protected theorem lt_irrefl (a : Char) : ¬ a < a", "start": [ 18, 1 ], "end": [ 18, 68 ], "kind": "commanddeclaration" }, { "full_name": "Char.le_trans", "code": "protected theorem le_trans {a b c : Char} : a ≤ b → b ≤ c → a ≤ c", "start": [ 19, 1 ], "end": [ 19, 85 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt_trans", "code": "protected theorem lt_trans {a b c : Char} : a < b → b < c → a < c", "start": [ 20, 1 ], "end": [ 20, 85 ], "kind": "commanddeclaration" }, { "full_name": "Char.le_total", "code": "protected theorem le_total (a b : Char) : a ≤ b ∨ b ≤ a", "start": [ 21, 1 ], "end": [ 21, 83 ], "kind": "commanddeclaration" }, { "full_name": "Char.lt_asymm", "code": "protected theorem lt_asymm {a b : Char} (h : a < b) : ¬ b < a", "start": [ 22, 1 ], "end": [ 22, 83 ], "kind": "commanddeclaration" }, { "full_name": "Char.ne_of_lt", "code": "protected theorem ne_of_lt {a b : Char} (h : a < b) : a ≠ b", "start": [ 23, 1 ], "end": [ 23, 101 ], "kind": "commanddeclaration" }, { "full_name": "Char.utf8Size_eq", "code": "theorem utf8Size_eq (c : Char) : c.utf8Size = 1 ∨ c.utf8Size = 2 ∨ c.utf8Size = 3 ∨ c.utf8Size = 4", "start": [ 25, 1 ], "end": [ 28, 8 ], "kind": "commanddeclaration" }, { "full_name": "Char.ofNat_toNat", "code": "@[simp] theorem ofNat_toNat (c : Char) : Char.ofNat c.toNat = c", "start": [ 30, 1 ], "end": [ 32, 6 ], "kind": "commanddeclaration" }, { "full_name": "Char.Char.ext", "code": "@[ext] theorem Char.ext : {a b : Char} → a.val = b.val → a = b", "start": [ 34, 1 ], "end": [ 35, 29 ], "kind": "commanddeclaration" }, { "full_name": "Char.Char.ext_iff", "code": "theorem Char.ext_iff {x y : Char} : x = y ↔ x.val = y.val", "start": [ 37, 1 ], "end": [ 37, 84 ], "kind": "commanddeclaration" }, { "full_name": "String.csize", "code": "@[deprecated Char.utf8Size (since := \"2024-06-04\")] abbrev String.csize := Char.utf8Size", "start": [ 41, 1 ], "end": [ 41, 89 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/String/Extra.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ByteArray.lean" ]
[ { "full_name": "String.toNat!", "code": "def toNat! (s : String) : Nat :=\n if s.isNat then\n s.foldl (fun n c => n*10 + (c.toNat - '0'.toNat)) 0\n else\n panic! \"Nat expected\"", "start": [ 11, 1 ], "end": [ 18, 26 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8DecodeChar?", "code": "def utf8DecodeChar? (a : ByteArray) (i : Nat) : Option Char := do\n let c ← a[i]?\n if c &&& 0x80 == 0 then\n some ⟨c.toUInt32, .inl (Nat.lt_trans c.1.2 (by decide))⟩\n else if c &&& 0xe0 == 0xc0 then\n let c1 ← a[i+1]?\n guard (c1 &&& 0xc0 == 0x80)\n let r := ((c &&& 0x1f).toUInt32 <<< 6) ||| (c1 &&& 0x3f).toUInt32\n guard (0x80 ≤ r)\n if h : r < 0xd800 then some ⟨r, .inl h⟩ else none\n else if c &&& 0xf0 == 0xe0 then\n let c1 ← a[i+1]?\n let c2 ← a[i+2]?\n guard (c1 &&& 0xc0 == 0x80 && c2 &&& 0xc0 == 0x80)\n let r :=\n ((c &&& 0x0f).toUInt32 <<< 12) |||\n ((c1 &&& 0x3f).toUInt32 <<< 6) |||\n (c2 &&& 0x3f).toUInt32\n guard (0x800 ≤ r)\n if h : r < 0xd800 ∨ 0xdfff < r ∧ r < 0x110000 then some ⟨r, h⟩ else none\n else if c &&& 0xf8 == 0xf0 then\n let c1 ← a[i+1]?\n let c2 ← a[i+2]?\n let c3 ← a[i+3]?\n guard (c1 &&& 0xc0 == 0x80 && c2 &&& 0xc0 == 0x80 && c3 &&& 0xc0 == 0x80)\n let r :=\n ((c &&& 0x07).toUInt32 <<< 18) |||\n ((c1 &&& 0x3f).toUInt32 <<< 12) |||\n ((c2 &&& 0x3f).toUInt32 <<< 6) |||\n (c3 &&& 0x3f).toUInt32\n if h : 0x10000 ≤ r ∧ r < 0x110000 then\n some ⟨r, .inr ⟨Nat.lt_of_lt_of_le (by decide) h.1, h.2⟩⟩\n else none\n else\n none", "start": [ 20, 1 ], "end": [ 56, 9 ], "kind": "commanddeclaration" }, { "full_name": "String.validateUTF8", "code": "@[extern \"lean_string_validate_utf8\"]\ndef validateUTF8 (a : @& ByteArray) : Bool :=\n (loop 0).isSome\nwhere\n loop (i : Nat) : Option Unit := do\n if i < a.size then\n let c ← utf8DecodeChar? a i\n loop (i + c.utf8Size)\n else pure ()\n termination_by a.size - i\n decreasing_by exact Nat.sub_lt_sub_left ‹_› (Nat.lt_add_of_pos_right c.utf8Size_pos)", "start": [ 58, 1 ], "end": [ 69, 87 ], "kind": "commanddeclaration" }, { "full_name": "String.fromUTF8", "code": "@[extern \"lean_string_from_utf8_unchecked\"]\ndef fromUTF8 (a : @& ByteArray) (h : validateUTF8 a) : String :=\n loop 0 \"\"\nwhere\n loop (i : Nat) (acc : String) : String :=\n if i < a.size then\n let c := (utf8DecodeChar? a i).getD default\n loop (i + c.utf8Size) (acc.push c)\n else acc\n termination_by a.size - i\n decreasing_by exact Nat.sub_lt_sub_left ‹_› (Nat.lt_add_of_pos_right c.utf8Size_pos)", "start": [ 71, 1 ], "end": [ 82, 87 ], "kind": "commanddeclaration" }, { "full_name": "String.fromUTF8?", "code": "@[inline] def fromUTF8? (a : ByteArray) : Option String :=\n if h : validateUTF8 a then fromUTF8 a h else none", "start": [ 84, 1 ], "end": [ 87, 52 ], "kind": "commanddeclaration" }, { "full_name": "String.fromUTF8!", "code": "@[inline] def fromUTF8! (a : ByteArray) : String :=\n if h : validateUTF8 a then fromUTF8 a h else panic! \"invalid UTF-8 string\"", "start": [ 89, 1 ], "end": [ 92, 77 ], "kind": "commanddeclaration" }, { "full_name": "String.utf8EncodeChar", "code": "def utf8EncodeChar (c : Char) : List UInt8 :=\n let v := c.val\n if v ≤ 0x7f then\n [v.toUInt8]\n else if v ≤ 0x7ff then\n [(v >>> 6).toUInt8 &&& 0x1f ||| 0xc0,\n v.toUInt8 &&& 0x3f ||| 0x80]\n else if v ≤ 0xffff then\n [(v >>> 12).toUInt8 &&& 0x0f ||| 0xe0,\n (v >>> 6).toUInt8 &&& 0x3f ||| 0x80,\n v.toUInt8 &&& 0x3f ||| 0x80]\n else\n [(v >>> 18).toUInt8 &&& 0x07 ||| 0xf0,\n (v >>> 12).toUInt8 &&& 0x3f ||| 0x80,\n (v >>> 6).toUInt8 &&& 0x3f ||| 0x80,\n v.toUInt8 &&& 0x3f ||| 0x80]", "start": [ 94, 1 ], "end": [ 109, 43 ], "kind": "commanddeclaration" }, { "full_name": "String.length_utf8EncodeChar", "code": "@[simp] theorem length_utf8EncodeChar (c : Char) : (utf8EncodeChar c).length = c.utf8Size", "start": [ 111, 1 ], "end": [ 115, 51 ], "kind": "commanddeclaration" }, { "full_name": "String.toUTF8", "code": "@[extern \"lean_string_to_utf8\"]\ndef toUTF8 (a : @& String) : ByteArray :=\n ⟨⟨a.data.bind utf8EncodeChar⟩⟩", "start": [ 117, 1 ], "end": [ 120, 33 ], "kind": "commanddeclaration" }, { "full_name": "String.size_toUTF8", "code": "@[simp] theorem size_toUTF8 (s : String) : s.toUTF8.size = s.utf8ByteSize", "start": [ 122, 1 ], "end": [ 124, 84 ], "kind": "commanddeclaration" }, { "full_name": "String.getUtf8Byte", "code": "@[extern \"lean_string_get_byte_fast\"]\ndef getUtf8Byte (s : @& String) (n : Nat) (h : n < s.utf8ByteSize) : UInt8 :=\n (toUTF8 s).get ⟨n, size_toUTF8 _ ▸ h⟩", "start": [ 126, 1 ], "end": [ 129, 40 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.sizeOf_next_lt_of_hasNext", "code": "theorem Iterator.sizeOf_next_lt_of_hasNext (i : String.Iterator) (h : i.hasNext) : sizeOf i.next < sizeOf i", "start": [ 131, 1 ], "end": [ 133, 53 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.sizeOf_next_lt_of_atEnd", "code": "theorem Iterator.sizeOf_next_lt_of_atEnd (i : String.Iterator) (h : ¬ i.atEnd = true) : sizeOf i.next < sizeOf i", "start": [ 139, 1 ], "end": [ 141, 32 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.find", "code": "@[specialize] def find (it : Iterator) (p : Char → Bool) : Iterator :=\n if it.atEnd then it\n else if p it.curr then it\n else find it.next p", "start": [ 149, 1 ], "end": [ 153, 22 ], "kind": "commanddeclaration" }, { "full_name": "String.Iterator.foldUntil", "code": "@[specialize] def foldUntil (it : Iterator) (init : α) (f : α → Char → Option α) : α × Iterator :=\n if it.atEnd then\n (init, it)\n else if let some a := f init it.curr then\n foldUntil it.next a f\n else\n (init, it)", "start": [ 155, 1 ], "end": [ 161, 15 ], "kind": "commanddeclaration" }, { "full_name": "String.findLeadingSpacesSize", "code": "private def findLeadingSpacesSize (s : String) : Nat :=\n let it := s.iter\n let it := it.find (· == '\\n') |>.next\n consumeSpaces it 0 s.length\nwhere\n consumeSpaces (it : String.Iterator) (curr min : Nat) : Nat :=\n if it.atEnd then min\n else if it.curr == ' ' || it.curr == '\\t' then consumeSpaces it.next (curr + 1) min\n else if it.curr == '\\n' then findNextLine it.next min\n else findNextLine it.next (Nat.min curr min)\n findNextLine (it : String.Iterator) (min : Nat) : Nat :=\n if it.atEnd then min\n else if it.curr == '\\n' then consumeSpaces it.next 0 min\n else findNextLine it.next min", "start": [ 165, 1 ], "end": [ 178, 34 ], "kind": "commanddeclaration" }, { "full_name": "String.removeNumLeadingSpaces", "code": "private def removeNumLeadingSpaces (n : Nat) (s : String) : String :=\n consumeSpaces n s.iter \"\"\nwhere\n consumeSpaces (n : Nat) (it : String.Iterator) (r : String) : String :=\n match n with\n | 0 => saveLine it r\n | n+1 =>\n if it.atEnd then r\n else if it.curr == ' ' || it.curr == '\\t' then consumeSpaces n it.next r\n else saveLine it r\n termination_by (it, 1)\n saveLine (it : String.Iterator) (r : String) : String :=\n if it.atEnd then r\n else if it.curr == '\\n' then consumeSpaces n it.next (r.push '\\n')\n else saveLine it.next (r.push it.curr)\n termination_by (it, 0)", "start": [ 180, 1 ], "end": [ 195, 25 ], "kind": "commanddeclaration" }, { "full_name": "String.removeLeadingSpaces", "code": "def removeLeadingSpaces (s : String) : String :=\n let n := findLeadingSpacesSize s\n if n == 0 then s else removeNumLeadingSpaces n s", "start": [ 197, 1 ], "end": [ 199, 51 ], "kind": "commanddeclaration" }, { "full_name": "String.crlfToLf", "code": "def crlfToLf (text : String) : String :=\n go \"\" 0 0\nwhere\n go (acc : String) (accStop pos : String.Pos) : String :=\n if h : text.atEnd pos then\n if accStop = 0 then text else acc ++ text.extract accStop pos\n else\n let c := text.get' pos h\n let pos' := text.next' pos h\n if h' : ¬ text.atEnd pos' ∧ c == '\\r' ∧ text.get pos' == '\\n' then\n let acc := acc ++ text.extract accStop pos\n go acc pos' (text.next' pos' h'.1)\n else\n go acc accStop pos'\n termination_by text.utf8ByteSize - pos.byteIdx\n decreasing_by\n decreasing_with\n show text.utf8ByteSize - (text.next (text.next pos)).byteIdx < text.utf8ByteSize - pos.byteIdx\n have k := Nat.gt_of_not_le <| mt decide_eq_true h\n exact Nat.sub_lt_sub_left k (Nat.lt_trans (String.lt_next text pos) (String.lt_next _ _))\n decreasing_with\n show text.utf8ByteSize - (text.next pos).byteIdx < text.utf8ByteSize - pos.byteIdx\n have k := Nat.gt_of_not_le <| mt decide_eq_true h\n exact Nat.sub_lt_sub_left k (String.lt_next _ _)", "start": [ 201, 1 ], "end": [ 230, 55 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/String/Lemmas.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Char/Lemmas.lean" ]
[ { "full_name": "String.data_eq_of_eq", "code": "protected theorem data_eq_of_eq {a b : String} (h : a = b) : a.data = b.data", "start": [ 11, 1 ], "end": [ 12, 10 ], "kind": "commanddeclaration" }, { "full_name": "String.ne_of_data_ne", "code": "protected theorem ne_of_data_ne {a b : String} (h : a.data ≠ b.data) : a ≠ b", "start": [ 13, 1 ], "end": [ 14, 47 ], "kind": "commanddeclaration" }, { "full_name": "String.lt_irrefl", "code": "@[simp] protected theorem lt_irrefl (s : String) : ¬ s < s", "start": [ 15, 1 ], "end": [ 16, 40 ], "kind": "commanddeclaration" }, { "full_name": "String.ne_of_lt", "code": "protected theorem ne_of_lt {a b : String} (h : a < b) : a ≠ b", "start": [ 17, 1 ], "end": [ 19, 34 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/AssocList.lean
[ ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Data/List/Basic.lean" ]
[ { "full_name": "Lean.AssocList", "code": "inductive AssocList (α : Type u) (β : Type v) where\n | nil : AssocList α β\n | cons (key : α) (value : β) (tail : AssocList α β) : AssocList α β\n deriving Inhabited", "start": [ 12, 1 ], "end": [ 16, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.empty", "code": "abbrev empty : AssocList α β :=\n nil", "start": [ 21, 1 ], "end": [ 22, 6 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.insert", "code": "abbrev insert (m : AssocList α β) (k : α) (v : β) : AssocList α β :=\n m.cons k v", "start": [ 26, 1 ], "end": [ 27, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.isEmpty", "code": "def isEmpty : AssocList α β → Bool\n | nil => true\n | _ => false", "start": [ 29, 1 ], "end": [ 31, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.foldlM", "code": "@[specialize] def foldlM (f : δ → α → β → m δ) : (init : δ) → AssocList α β → m δ\n | d, nil => pure d\n | d, cons a b es => do\n let d ← f d a b\n foldlM f d es", "start": [ 33, 1 ], "end": [ 37, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.foldl", "code": "@[inline] def foldl (f : δ → α → β → δ) (init : δ) (as : AssocList α β) : δ :=\n Id.run (foldlM f init as)", "start": [ 39, 1 ], "end": [ 40, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.toList", "code": "def toList (as : AssocList α β) : List (α × β) :=\n as.foldl (init := []) (fun r a b => (a, b)::r) |>.reverse", "start": [ 42, 1 ], "end": [ 43, 60 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.forM", "code": "@[specialize] def forM (f : α → β → m PUnit) : AssocList α β → m PUnit\n | nil => pure ⟨⟩\n | cons a b es => do f a b; forM f es", "start": [ 45, 1 ], "end": [ 47, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.mapKey", "code": "def mapKey (f : α → δ) : AssocList α β → AssocList δ β\n | nil => nil\n | cons k v t => cons (f k) v (mapKey f t)", "start": [ 49, 1 ], "end": [ 51, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.mapVal", "code": "def mapVal (f : β → δ) : AssocList α β → AssocList α δ\n | nil => nil\n | cons k v t => cons k (f v) (mapVal f t)", "start": [ 53, 1 ], "end": [ 55, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.findEntry?", "code": "def findEntry? [BEq α] (a : α) : AssocList α β → Option (α × β)\n | nil => none\n | cons k v es => match k == a with\n | true => some (k, v)\n | false => findEntry? a es", "start": [ 57, 1 ], "end": [ 61, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.find?", "code": "def find? [BEq α] (a : α) : AssocList α β → Option β\n | nil => none\n | cons k v es => match k == a with\n | true => some v\n | false => find? a es", "start": [ 63, 1 ], "end": [ 67, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.contains", "code": "def contains [BEq α] (a : α) : AssocList α β → Bool\n | nil => false\n | cons k _ es => k == a || contains a es", "start": [ 69, 1 ], "end": [ 71, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.replace", "code": "def replace [BEq α] (a : α) (b : β) : AssocList α β → AssocList α β\n | nil => nil\n | cons k v es => match k == a with\n | true => cons a b es\n | false => cons k v (replace a b es)", "start": [ 73, 1 ], "end": [ 77, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.erase", "code": "def erase [BEq α] (a : α) : AssocList α β → AssocList α β\n | nil => nil\n | cons k v es => match k == a with\n | true => es\n | false => cons k v (erase a es)", "start": [ 79, 1 ], "end": [ 83, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.any", "code": "def any (p : α → β → Bool) : AssocList α β → Bool\n | nil => false\n | cons k v es => p k v || any p es", "start": [ 85, 1 ], "end": [ 87, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.all", "code": "def all (p : α → β → Bool) : AssocList α β → Bool\n | nil => true\n | cons k v es => p k v && all p es", "start": [ 89, 1 ], "end": [ 91, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.AssocList.forIn", "code": "@[inline] protected def forIn {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w'} [Monad m]\n (as : AssocList α β) (init : δ) (f : (α × β) → δ → m (ForInStep δ)) : m δ :=\n let rec @[specialize] loop\n | d, nil => pure d\n | d, cons k v es => do\n match (← f (k, v) d) with\n | ForInStep.done d => pure d\n | ForInStep.yield d => loop d es\n loop init as", "start": [ 93, 1 ], "end": [ 101, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.List.toAssocList'", "code": "def List.toAssocList' {α : Type u} {β : Type v} : List (α × β) → Lean.AssocList α β\n | [] => Lean.AssocList.nil\n | (a,b) :: es => Lean.AssocList.cons a b (toAssocList' es)", "start": [ 108, 1 ], "end": [ 110, 61 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Array/BasicAux.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean", ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean", ".lake/packages/lean4/src/lean/Init/NotationExtra.lean" ]
[ { "full_name": "Array.of_push_eq_push", "code": "theorem Array.of_push_eq_push {as bs : Array α} (h : as.push a = bs.push b) : as = bs ∧ a = b", "start": [ 11, 1 ], "end": [ 15, 11 ], "kind": "commanddeclaration" }, { "full_name": "List.size_toArrayAux", "code": "private theorem List.size_toArrayAux (as : List α) (bs : Array α) : (as.toArrayAux bs).size = as.length + bs.size", "start": [ 17, 1 ], "end": [ 20, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.of_toArrayAux_eq_toArrayAux", "code": "private theorem List.of_toArrayAux_eq_toArrayAux {as bs : List α} {cs ds : Array α} (h : as.toArrayAux cs = bs.toArrayAux ds) (hlen : cs.size = ds.size) : as = bs ∧ cs = ds", "start": [ 22, 1 ], "end": [ 33, 16 ], "kind": "commanddeclaration" }, { "full_name": "List.toArray_eq_toArray_eq", "code": "@[simp] theorem List.toArray_eq_toArray_eq (as bs : List α) : (as.toArray = bs.toArray) = (as = bs)", "start": [ 35, 1 ], "end": [ 38, 20 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapM'", "code": "def Array.mapM' [Monad m] (f : α → m β) (as : Array α) : m { bs : Array β // bs.size = as.size } :=\n go 0 ⟨mkEmpty as.size, rfl⟩ (by simp_arith)\nwhere\n go (i : Nat) (acc : { bs : Array β // bs.size = i }) (hle : i ≤ as.size) : m { bs : Array β // bs.size = as.size } := do\n if h : i = as.size then\n return h ▸ acc\n else\n have hlt : i < as.size := Nat.lt_of_le_of_ne hle h\n let b ← f as[i]\n go (i+1) ⟨acc.val.push b, by simp [acc.property]⟩ hlt\n termination_by as.size - i\n decreasing_by decreasing_trivial_pre_omega", "start": [ 40, 1 ], "end": [ 51, 45 ], "kind": "commanddeclaration" }, { "full_name": "mapMonoMImp", "code": "@[inline] private unsafe def mapMonoMImp [Monad m] (as : Array α) (f : α → m α) : m (Array α) :=\n go 0 as\nwhere\n @[specialize] go (i : Nat) (as : Array α) : m (Array α) := do\n if h : i < as.size then\n let a := as[i]\n let b ← f a\n if ptrEq a b then\n go (i+1) as\n else\n go (i+1) (as.set ⟨i, h⟩ b)\n else\n return as", "start": [ 53, 1 ], "end": [ 65, 16 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapMonoM", "code": "@[implemented_by mapMonoMImp] def Array.mapMonoM [Monad m] (as : Array α) (f : α → m α) : m (Array α) :=\n as.mapM f", "start": [ 67, 1 ], "end": [ 72, 12 ], "kind": "commanddeclaration" }, { "full_name": "Array.mapMono", "code": "@[inline] def Array.mapMono (as : Array α) (f : α → α) : Array α :=\n Id.run <| as.mapMonoM f", "start": [ 74, 1 ], "end": [ 75, 26 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/String.lean
[ ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Lemmas.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Extra.lean" ]
[]
.lake/packages/lean4/src/lean/Lean/Data/HashMap.lean
[ ".lake/packages/lean4/src/lean/Lean/Data/AssocList.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Power2.lean" ]
[ { "full_name": "Lean.HashMapBucket", "code": "def HashMapBucket (α : Type u) (β : Type v) :=\n { b : Array (AssocList α β) // b.size.isPowerOfTwo }", "start": [ 11, 1 ], "end": [ 12, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapBucket.update", "code": "def HashMapBucket.update {α : Type u} {β : Type v} (data : HashMapBucket α β) (i : USize) (d : AssocList α β) (h : i.toNat < data.val.size) : HashMapBucket α β :=\n ⟨ data.val.uset i d h,\n by erw [Array.size_set]; apply data.property ⟩", "start": [ 14, 1 ], "end": [ 16, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapBucket.size_update", "code": "@[simp] theorem HashMapBucket.size_update {α : Type u} {β : Type v} (data : HashMapBucket α β) (i : USize) (d : AssocList α β)\n (h : i.toNat < data.val.size) : (data.update i d h).val.size = data.val.size", "start": [ 18, 1 ], "end": [ 20, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp", "code": "structure HashMapImp (α : Type u) (β : Type v) where\n size : Nat\n buckets : HashMapBucket α β", "start": [ 22, 1 ], "end": [ 24, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.numBucketsForCapacity", "code": "private def numBucketsForCapacity (capacity : Nat) : Nat :=\n capacity * 4 / 3", "start": [ 26, 1 ], "end": [ 28, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkHashMapImp", "code": "def mkHashMapImp {α : Type u} {β : Type v} (capacity := 8) : HashMapImp α β :=\n { size := 0\n buckets :=\n ⟨mkArray (numBucketsForCapacity capacity).nextPowerOfTwo AssocList.nil,\n by simp; apply Nat.isPowerOfTwo_nextPowerOfTwo⟩ }", "start": [ 30, 1 ], "end": [ 34, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.mkIdx", "code": "@[extern \"lean_hashmap_mk_idx\"]\nprivate def mkIdx {sz : Nat} (hash : UInt64) (h : sz.isPowerOfTwo) : { u : USize // u.toNat < sz } :=\n let u := hash.toUSize &&& (sz.toUSize - 1)\n if h' : u.toNat < sz then\n ⟨u, h'⟩\n else\n ⟨0, by simp [USize.toNat, OfNat.ofNat, USize.ofNat, Fin.ofNat']; apply Nat.pos_of_isPowerOfTwo h⟩", "start": [ 40, 1 ], "end": [ 47, 102 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.reinsertAux", "code": "@[inline] def reinsertAux (hashFn : α → UInt64) (data : HashMapBucket α β) (a : α) (b : β) : HashMapBucket α β :=\n let ⟨i, h⟩ := mkIdx (hashFn a) data.property\n data.update i (AssocList.cons a b data.val[i]) h", "start": [ 49, 1 ], "end": [ 51, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.foldBucketsM", "code": "@[inline] def foldBucketsM {δ : Type w} {m : Type w → Type w} [Monad m] (data : HashMapBucket α β) (d : δ) (f : δ → α → β → m δ) : m δ :=\n data.val.foldlM (init := d) fun d b => b.foldlM f d", "start": [ 53, 1 ], "end": [ 54, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.foldBuckets", "code": "@[inline] def foldBuckets {δ : Type w} (data : HashMapBucket α β) (d : δ) (f : δ → α → β → δ) : δ :=\n Id.run $ foldBucketsM data d f", "start": [ 56, 1 ], "end": [ 57, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.foldM", "code": "@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → β → m δ) (d : δ) (h : HashMapImp α β) : m δ :=\n foldBucketsM h.buckets d f", "start": [ 59, 1 ], "end": [ 60, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.fold", "code": "@[inline] def fold {δ : Type w} (f : δ → α → β → δ) (d : δ) (m : HashMapImp α β) : δ :=\n foldBuckets m.buckets d f", "start": [ 62, 1 ], "end": [ 63, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.forBucketsM", "code": "@[inline] def forBucketsM {m : Type w → Type w} [Monad m] (data : HashMapBucket α β) (f : α → β → m PUnit) : m PUnit :=\n data.val.forM fun b => b.forM f", "start": [ 65, 1 ], "end": [ 66, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.forM", "code": "@[inline] def forM {m : Type w → Type w} [Monad m] (f : α → β → m PUnit) (h : HashMapImp α β) : m PUnit :=\n forBucketsM h.buckets f", "start": [ 68, 1 ], "end": [ 69, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.findEntry?", "code": "def findEntry? [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Option (α × β) :=\n match m with\n | ⟨_, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n buckets.val[i].findEntry? a", "start": [ 71, 1 ], "end": [ 75, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.find?", "code": "def find? [beq : BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Option β :=\n match m with\n | ⟨_, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n buckets.val[i].find? a", "start": [ 77, 1 ], "end": [ 81, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.contains", "code": "def contains [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : Bool :=\n match m with\n | ⟨_, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n buckets.val[i].contains a", "start": [ 83, 1 ], "end": [ 87, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.moveEntries", "code": "def moveEntries [Hashable α] (i : Nat) (source : Array (AssocList α β)) (target : HashMapBucket α β) : HashMapBucket α β :=\n if h : i < source.size then\n let idx : Fin source.size := ⟨i, h⟩\n let es : AssocList α β := source.get idx\n let source := source.set idx AssocList.nil\n let target := es.foldl (reinsertAux hash) target\n moveEntries (i+1) source target\n else target\ntermination_by source.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 89, 1 ], "end": [ 99, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.expand", "code": "def expand [Hashable α] (size : Nat) (buckets : HashMapBucket α β) : HashMapImp α β :=\n let bucketsNew : HashMapBucket α β := ⟨\n mkArray (buckets.val.size * 2) AssocList.nil,\n by simp; apply Nat.mul2_isPowerOfTwo_of_isPowerOfTwo buckets.property\n ⟩\n { size := size,\n buckets := moveEntries 0 buckets.val bucketsNew }", "start": [ 101, 1 ], "end": [ 107, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.insert", "code": "@[inline] def insert [beq : BEq α] [Hashable α] (m : HashMapImp α β) (a : α) (b : β) : HashMapImp α β × Bool :=\n match m with\n | ⟨size, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n let bkt := buckets.val[i]\n if bkt.contains a then\n let buckets' := buckets.update i .nil h\n (⟨size, buckets'.update i (bkt.replace a b) (by simpa [buckets'])⟩, true)\n else\n let size' := size + 1\n let buckets' := buckets.update i (AssocList.cons a b bkt) h\n if numBucketsForCapacity size' ≤ buckets.val.size then\n ({ size := size', buckets := buckets' }, false)\n else\n (expand size' buckets', false)", "start": [ 109, 1 ], "end": [ 124, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.insertIfNew", "code": "@[inline] def insertIfNew [beq : BEq α] [Hashable α] (m : HashMapImp α β) (a : α) (b : β) : HashMapImp α β × Option β :=\n match m with\n | ⟨size, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n let bkt := buckets.val[i]\n if let some b := bkt.find? a then\n (⟨size, buckets⟩, some b)\n else\n let size' := size + 1\n let buckets' := buckets.update i (AssocList.cons a b bkt) h\n if numBucketsForCapacity size' ≤ buckets.val.size then\n ({ size := size', buckets := buckets' }, none)\n else\n (expand size' buckets', none)", "start": [ 126, 1 ], "end": [ 139, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.erase", "code": "def erase [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : HashMapImp α β :=\n match m with\n | ⟨ size, buckets ⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n let bkt := buckets.val[i]\n if bkt.contains a then\n let buckets' := buckets.update i .nil h\n ⟨size - 1, buckets'.update i (bkt.erase a) (by simpa [buckets'])⟩\n else\n ⟨size, buckets⟩", "start": [ 142, 1 ], "end": [ 152, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMapImp.WellFormed", "code": "inductive WellFormed [BEq α] [Hashable α] : HashMapImp α β → Prop where\n | mkWff : ∀ n, WellFormed (mkHashMapImp n)\n | insertWff : ∀ m a b, WellFormed m → WellFormed (insert m a b |>.1)\n | insertIfNewWff : ∀ m a b, WellFormed m → WellFormed (insertIfNew m a b |>.1)\n | eraseWff : ∀ m a, WellFormed m → WellFormed (erase m a)", "start": [ 154, 1 ], "end": [ 158, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap", "code": "def HashMap (α : Type u) (β : Type v) [BEq α] [Hashable α] :=\n { m : HashMapImp α β // m.WellFormed }", "start": [ 162, 1 ], "end": [ 163, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkHashMap", "code": "def mkHashMap {α : Type u} {β : Type v} [BEq α] [Hashable α] (capacity := 8) : HashMap α β :=\n ⟨ mkHashMapImp capacity, WellFormed.mkWff capacity ⟩", "start": [ 167, 1 ], "end": [ 168, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.empty", "code": "@[inline] def empty [BEq α] [Hashable α] : HashMap α β :=\n mkHashMap", "start": [ 176, 1 ], "end": [ 177, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.insert", "code": "def insert (m : HashMap α β) (a : α) (b : β) : HashMap α β :=\n match m with\n | ⟨ m, hw ⟩ =>\n match h:m.insert a b with\n | (m', _) => ⟨ m', by have aux := WellFormed.insertWff m a b hw; rw [h] at aux; assumption ⟩", "start": [ 181, 1 ], "end": [ 185, 97 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.insert'", "code": "def insert' (m : HashMap α β) (a : α) (b : β) : HashMap α β × Bool :=\n match m with\n | ⟨ m, hw ⟩ =>\n match h:m.insert a b with\n | (m', replaced) => (⟨ m', by have aux := WellFormed.insertWff m a b hw; rw [h] at aux; assumption ⟩, replaced)", "start": [ 187, 1 ], "end": [ 192, 116 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.insertIfNew", "code": "def insertIfNew (m : HashMap α β) (a : α) (b : β) : HashMap α β × Option β :=\n match m with\n | ⟨ m, hw ⟩ =>\n match h:m.insertIfNew a b with\n | (m', old) => (⟨ m', by have aux := WellFormed.insertIfNewWff m a b hw; rw [h] at aux; assumption ⟩, old)", "start": [ 194, 1 ], "end": [ 201, 111 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.erase", "code": "@[inline] def erase (m : HashMap α β) (a : α) : HashMap α β :=\n match m with\n | ⟨ m, hw ⟩ => ⟨ m.erase a, WellFormed.eraseWff m a hw ⟩", "start": [ 203, 1 ], "end": [ 205, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.findEntry?", "code": "@[inline] def findEntry? (m : HashMap α β) (a : α) : Option (α × β) :=\n match m with\n | ⟨ m, _ ⟩ => m.findEntry? a", "start": [ 207, 1 ], "end": [ 209, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.find?", "code": "@[inline] def find? (m : HashMap α β) (a : α) : Option β :=\n match m with\n | ⟨ m, _ ⟩ => m.find? a", "start": [ 211, 1 ], "end": [ 213, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.findD", "code": "@[inline] def findD (m : HashMap α β) (a : α) (b₀ : β) : β :=\n (m.find? a).getD b₀", "start": [ 215, 1 ], "end": [ 216, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.find!", "code": "@[inline] def find! [Inhabited β] (m : HashMap α β) (a : α) : β :=\n match m.find? a with\n | some b => b\n | none => panic! \"key is not in the map\"", "start": [ 218, 1 ], "end": [ 221, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.contains", "code": "@[inline] def contains (m : HashMap α β) (a : α) : Bool :=\n match m with\n | ⟨ m, _ ⟩ => m.contains a", "start": [ 226, 1 ], "end": [ 228, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.foldM", "code": "@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → β → m δ) (init : δ) (h : HashMap α β) : m δ :=\n match h with\n | ⟨ h, _ ⟩ => h.foldM f init", "start": [ 230, 1 ], "end": [ 232, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.fold", "code": "@[inline] def fold {δ : Type w} (f : δ → α → β → δ) (init : δ) (m : HashMap α β) : δ :=\n match m with\n | ⟨ m, _ ⟩ => m.fold f init", "start": [ 234, 1 ], "end": [ 236, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.forM", "code": "@[inline] def forM {m : Type w → Type w} [Monad m] (f : α → β → m PUnit) (h : HashMap α β) : m PUnit :=\n match h with\n | ⟨ h, _ ⟩ => h.forM f", "start": [ 238, 1 ], "end": [ 240, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.size", "code": "@[inline] def size (m : HashMap α β) : Nat :=\n match m with\n | ⟨ {size := sz, ..}, _ ⟩ => sz", "start": [ 242, 1 ], "end": [ 244, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.isEmpty", "code": "@[inline] def isEmpty (m : HashMap α β) : Bool :=\n m.size = 0", "start": [ 246, 1 ], "end": [ 247, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.toList", "code": "def toList (m : HashMap α β) : List (α × β) :=\n m.fold (init := []) fun r k v => (k, v)::r", "start": [ 249, 1 ], "end": [ 250, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.toArray", "code": "def toArray (m : HashMap α β) : Array (α × β) :=\n m.fold (init := #[]) fun r k v => r.push (k, v)", "start": [ 252, 1 ], "end": [ 253, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.numBuckets", "code": "def numBuckets (m : HashMap α β) : Nat :=\n m.val.buckets.val.size", "start": [ 255, 1 ], "end": [ 256, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.ofList", "code": "def ofList (l : List (α × β)) : HashMap α β :=\n l.foldl (init := HashMap.empty) (fun m p => m.insert p.fst p.snd)", "start": [ 260, 1 ], "end": [ 262, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashMap.ofListWith", "code": "def ofListWith (l : List (α × β)) (f : β → β → β) : HashMap α β :=\n l.foldl (init := HashMap.empty)\n (fun m p =>\n match m.find? p.fst with\n | none => m.insert p.fst p.snd\n | some v => m.insert p.fst $ f v p.snd)", "start": [ 264, 1 ], "end": [ 270, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Array.groupByKey", "code": "def Array.groupByKey [BEq α] [Hashable α] (key : β → α) (xs : Array β)\n : Lean.HashMap α (Array β) := Id.run do\n let mut groups := ∅\n for x in xs do\n let group := groups.findD (key x) #[]\n groups := groups.erase (key x) groups := groups.insert (key x) (group.push x)\n return groups", "start": [ 274, 1 ], "end": [ 285, 16 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/PersistentHashMap.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Array/BasicAux.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Macro.lean" ]
[ { "full_name": "Lean.PersistentHashMap.Entry", "code": "inductive Entry (α : Type u) (β : Type v) (σ : Type w) where\n | entry (key : α) (val : β) : Entry α β σ\n | ref (node : σ) : Entry α β σ\n | null : Entry α β σ", "start": [ 15, 1 ], "end": [ 18, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.Node", "code": "inductive Node (α : Type u) (β : Type v) : Type (max u v) where\n | entries (es : Array (Entry α β (Node α β))) : Node α β\n | collision (ks : Array α) (vs : Array β) (h : ks.size = vs.size) : Node α β", "start": [ 22, 1 ], "end": [ 24, 79 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.Node.isEmpty", "code": "partial def Node.isEmpty : Node α β → Bool\n | .collision .. => false\n | .entries es => es.all fun\n | .entry .. => false\n | .ref n => n.isEmpty\n | .null => true", "start": [ 26, 1 ], "end": [ 31, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.shift", "code": "abbrev shift : USize := 5", "start": [ 35, 1 ], "end": [ 35, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.branching", "code": "abbrev branching : USize := USize.ofNat (2 ^ shift.toNat)", "start": [ 36, 1 ], "end": [ 36, 63 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.maxDepth", "code": "abbrev maxDepth : USize := 7", "start": [ 37, 1 ], "end": [ 37, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.maxCollisions", "code": "abbrev maxCollisions : Nat := 4", "start": [ 38, 1 ], "end": [ 38, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mkEmptyEntriesArray", "code": "def mkEmptyEntriesArray {α β} : Array (Entry α β (Node α β)) :=\n (Array.mkArray PersistentHashMap.branching.toNat PersistentHashMap.Entry.null)", "start": [ 40, 1 ], "end": [ 41, 81 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap", "code": "structure PersistentHashMap (α : Type u) (β : Type v) [BEq α] [Hashable α] where\n root : PersistentHashMap.Node α β := PersistentHashMap.Node.entries PersistentHashMap.mkEmptyEntriesArray", "start": [ 45, 1 ], "end": [ 46, 108 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PHashMap", "code": "abbrev PHashMap (α : Type u) (β : Type v) [BEq α] [Hashable α] := PersistentHashMap α β", "start": [ 48, 1 ], "end": [ 48, 88 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.empty", "code": "def empty [BEq α] [Hashable α] : PersistentHashMap α β := {}", "start": [ 52, 1 ], "end": [ 52, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.isEmpty", "code": "def isEmpty {_ : BEq α} {_ : Hashable α} : PersistentHashMap α β → Bool\n | { root } => root.isEmpty", "start": [ 54, 1 ], "end": [ 55, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mkEmptyEntries", "code": "def mkEmptyEntries {α β} : Node α β :=\n Node.entries mkEmptyEntriesArray", "start": [ 59, 1 ], "end": [ 60, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mul2Shift", "code": "abbrev mul2Shift (i : USize) (shift : USize) : USize := i.shiftLeft shift", "start": [ 62, 1 ], "end": [ 62, 74 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.div2Shift", "code": "abbrev div2Shift (i : USize) (shift : USize) : USize := i.shiftRight shift", "start": [ 63, 1 ], "end": [ 63, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mod2Shift", "code": "abbrev mod2Shift (i : USize) (shift : USize) : USize := USize.land i ((USize.shiftLeft 1 shift) - 1)", "start": [ 64, 1 ], "end": [ 64, 101 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.IsCollisionNode", "code": "inductive IsCollisionNode : Node α β → Prop where\n | mk (keys : Array α) (vals : Array β) (h : keys.size = vals.size) : IsCollisionNode (Node.collision keys vals h)", "start": [ 66, 1 ], "end": [ 67, 116 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.CollisionNode", "code": "abbrev CollisionNode (α β) := { n : Node α β // IsCollisionNode n }", "start": [ 69, 1 ], "end": [ 69, 68 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.IsEntriesNode", "code": "inductive IsEntriesNode : Node α β → Prop where\n | mk (entries : Array (Entry α β (Node α β))) : IsEntriesNode (Node.entries entries)", "start": [ 71, 1 ], "end": [ 72, 87 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.EntriesNode", "code": "abbrev EntriesNode (α β) := { n : Node α β // IsEntriesNode n }", "start": [ 74, 1 ], "end": [ 74, 64 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.size_set", "code": "private theorem size_set {ks : Array α} {vs : Array β} (h : ks.size = vs.size) (i : Fin ks.size) (j : Fin vs.size) (k : α) (v : β)\n : (ks.set i k).size = (vs.set j v).size", "start": [ 76, 1 ], "end": [ 78, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.size_push", "code": "private theorem size_push {ks : Array α} {vs : Array β} (h : ks.size = vs.size) (k : α) (v : β) : (ks.push k).size = (vs.push v).size", "start": [ 80, 1 ], "end": [ 81, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.insertAtCollisionNodeAux", "code": "partial def insertAtCollisionNodeAux [BEq α] : CollisionNode α β → Nat → α → β → CollisionNode α β\n | n@⟨Node.collision keys vals heq, _⟩, i, k, v =>\n if h : i < keys.size then\n let idx : Fin keys.size := ⟨i, h⟩;\n let k' := keys.get idx;\n if k == k' then\n let j : Fin vals.size := ⟨i, by rw [←heq]; assumption⟩\n ⟨Node.collision (keys.set idx k) (vals.set j v) (size_set heq idx j k v), IsCollisionNode.mk _ _ _⟩\n else insertAtCollisionNodeAux n (i+1) k v\n else\n ⟨Node.collision (keys.push k) (vals.push v) (size_push heq k v), IsCollisionNode.mk _ _ _⟩\n | ⟨Node.entries _, h⟩, _, _, _ => nomatch h", "start": [ 83, 1 ], "end": [ 94, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.insertAtCollisionNode", "code": "def insertAtCollisionNode [BEq α] : CollisionNode α β → α → β → CollisionNode α β :=\n fun n k v => insertAtCollisionNodeAux n 0 k v", "start": [ 96, 1 ], "end": [ 97, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.getCollisionNodeSize", "code": "def getCollisionNodeSize : CollisionNode α β → Nat\n | ⟨Node.collision keys _ _, _⟩ => keys.size\n | ⟨Node.entries _, h⟩ => nomatch h", "start": [ 99, 1 ], "end": [ 101, 46 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mkCollisionNode", "code": "def mkCollisionNode (k₁ : α) (v₁ : β) (k₂ : α) (v₂ : β) : Node α β :=\n let ks : Array α := Array.mkEmpty maxCollisions\n let ks := (ks.push k₁).push k₂\n let vs : Array β := Array.mkEmpty maxCollisions\n let vs := (vs.push v₁).push v₂\n Node.collision ks vs rfl", "start": [ 103, 1 ], "end": [ 108, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.insertAux", "code": "partial def insertAux [BEq α] [Hashable α] : Node α β → USize → USize → α → β → Node α β\n | Node.collision keys vals heq, _, depth, k, v =>\n let newNode := insertAtCollisionNode ⟨Node.collision keys vals heq, IsCollisionNode.mk _ _ _⟩ k v\n if depth >= maxDepth || getCollisionNodeSize newNode < maxCollisions then newNode.val\n else match newNode with\n | ⟨Node.entries _, h⟩ => nomatch h\n | ⟨Node.collision keys vals heq, _⟩ =>\n let rec traverse (i : Nat) (entries : Node α β) : Node α β :=\n if h : i < keys.size then\n let k := keys[i]\n have : i < vals.size := heq ▸ h\n let v := vals[i]\n let h := hash k |>.toUSize\n let h := div2Shift h (shift * (depth - 1))\n traverse (i+1) (insertAux entries h depth k v)\n else\n entries\n traverse 0 mkEmptyEntries\n | Node.entries entries, h, depth, k, v =>\n let j := (mod2Shift h shift).toNat\n Node.entries $ entries.modify j fun entry =>\n match entry with\n | Entry.null => Entry.entry k v\n | Entry.ref node => Entry.ref $ insertAux node (div2Shift h shift) (depth+1) k v\n | Entry.entry k' v' =>\n if k == k' then Entry.entry k v\n else Entry.ref $ mkCollisionNode k' v' k v", "start": [ 110, 1 ], "end": [ 136, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.insert", "code": "def insert {_ : BEq α} {_ : Hashable α} : PersistentHashMap α β → α → β → PersistentHashMap α β\n | { root }, k, v => { root := insertAux root (hash k |>.toUSize) 1 k v }", "start": [ 138, 1 ], "end": [ 139, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findAtAux", "code": "partial def findAtAux [BEq α] (keys : Array α) (vals : Array β) (heq : keys.size = vals.size) (i : Nat) (k : α) : Option β :=\n if h : i < keys.size then\n let k' := keys[i]\n have : i < vals.size := by rw [←heq]; assumption\n if k == k' then some vals[i]\n else findAtAux keys vals heq (i+1) k\n else none", "start": [ 141, 1 ], "end": [ 147, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findAux", "code": "partial def findAux [BEq α] : Node α β → USize → α → Option β\n | Node.entries entries, h, k =>\n let j := (mod2Shift h shift).toNat\n match entries.get! j with\n | Entry.null => none\n | Entry.ref node => findAux node (div2Shift h shift) k\n | Entry.entry k' v => if k == k' then some v else none\n | Node.collision keys vals heq, _, k => findAtAux keys vals heq 0 k", "start": [ 149, 1 ], "end": [ 156, 70 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.find?", "code": "def find? {_ : BEq α} {_ : Hashable α} : PersistentHashMap α β → α → Option β\n | { root }, k => findAux root (hash k |>.toUSize) k", "start": [ 158, 1 ], "end": [ 159, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findD", "code": "@[inline] def findD {_ : BEq α} {_ : Hashable α} (m : PersistentHashMap α β) (a : α) (b₀ : β) : β :=\n (m.find? a).getD b₀", "start": [ 164, 1 ], "end": [ 165, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.find!", "code": "@[inline] def find! {_ : BEq α} {_ : Hashable α} [Inhabited β] (m : PersistentHashMap α β) (a : α) : β :=\n match m.find? a with\n | some b => b\n | none => panic! \"key is not in the map\"", "start": [ 167, 1 ], "end": [ 170, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findEntryAtAux", "code": "partial def findEntryAtAux [BEq α] (keys : Array α) (vals : Array β) (heq : keys.size = vals.size) (i : Nat) (k : α) : Option (α × β) :=\n if h : i < keys.size then\n let k' := keys[i]\n have : i < vals.size := by rw [←heq]; assumption\n if k == k' then some (k', vals[i])\n else findEntryAtAux keys vals heq (i+1) k\n else none", "start": [ 172, 1 ], "end": [ 178, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findEntryAux", "code": "partial def findEntryAux [BEq α] : Node α β → USize → α → Option (α × β)\n | Node.entries entries, h, k =>\n let j := (mod2Shift h shift).toNat\n match entries.get! j with\n | Entry.null => none\n | Entry.ref node => findEntryAux node (div2Shift h shift) k\n | Entry.entry k' v => if k == k' then some (k', v) else none\n | Node.collision keys vals heq, _, k => findEntryAtAux keys vals heq 0 k", "start": [ 180, 1 ], "end": [ 187, 75 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.findEntry?", "code": "def findEntry? {_ : BEq α} {_ : Hashable α} : PersistentHashMap α β → α → Option (α × β)\n | { root }, k => findEntryAux root (hash k |>.toUSize) k", "start": [ 189, 1 ], "end": [ 190, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.containsAtAux", "code": "partial def containsAtAux [BEq α] (keys : Array α) (vals : Array β) (heq : keys.size = vals.size) (i : Nat) (k : α) : Bool :=\n if h : i < keys.size then\n let k' := keys[i]\n if k == k' then true\n else containsAtAux keys vals heq (i+1) k\n else false", "start": [ 192, 1 ], "end": [ 197, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.containsAux", "code": "partial def containsAux [BEq α] : Node α β → USize → α → Bool\n | Node.entries entries, h, k =>\n let j := (mod2Shift h shift).toNat\n match entries.get! j with\n | Entry.null => false\n | Entry.ref node => containsAux node (div2Shift h shift) k\n | Entry.entry k' _ => k == k'\n | Node.collision keys vals heq, _, k => containsAtAux keys vals heq 0 k", "start": [ 199, 1 ], "end": [ 206, 74 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.contains", "code": "def contains [BEq α] [Hashable α] : PersistentHashMap α β → α → Bool\n | { root }, k => containsAux root (hash k |>.toUSize) k", "start": [ 208, 1 ], "end": [ 209, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.isUnaryEntries", "code": "partial def isUnaryEntries (a : Array (Entry α β (Node α β))) (i : Nat) (acc : Option (α × β)) : Option (α × β) :=\n if h : i < a.size then\n match a[i] with\n | Entry.null => isUnaryEntries a (i+1) acc\n | Entry.ref _ => none\n | Entry.entry k v =>\n match acc with\n | none => isUnaryEntries a (i+1) (some (k, v))\n | some _ => none\n else acc", "start": [ 211, 1 ], "end": [ 220, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.isUnaryNode", "code": "def isUnaryNode : Node α β → Option (α × β)\n | Node.entries entries => isUnaryEntries entries 0 none\n | Node.collision keys vals heq =>\n if h : 1 = keys.size then\n have : 0 < keys.size := by rw [←h]; decide\n have : 0 < vals.size := by rw [←heq]; assumption\n some (keys[0], vals[0])\n else\n none", "start": [ 222, 1 ], "end": [ 230, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.eraseAux", "code": "partial def eraseAux [BEq α] : Node α β → USize → α → Node α β\n | n@(Node.collision keys vals heq), _, k =>\n match keys.indexOf? k with\n | some idx =>\n let keys' := keys.feraseIdx idx\n have keq := keys.size_feraseIdx idx\n let vals' := vals.feraseIdx (Eq.ndrec idx heq)\n have veq := vals.size_feraseIdx (Eq.ndrec idx heq)\n have : keys.size - 1 = vals.size - 1 := by rw [heq]\n Node.collision keys' vals' (keq.trans (this.trans veq.symm))\n | none => n\n | n@(Node.entries entries), h, k =>\n let j := (mod2Shift h shift).toNat\n let entry := entries.get! j\n match entry with\n | Entry.null => n\n | Entry.entry k' _ =>\n if k == k' then Node.entries (entries.set! j Entry.null) else n\n | Entry.ref node =>\n let entries := entries.set! j Entry.null\n let newNode := eraseAux node (div2Shift h shift) k\n match isUnaryNode newNode with\n | none => Node.entries (entries.set! j (Entry.ref newNode))\n | some (k, v) => Node.entries (entries.set! j (Entry.entry k v))", "start": [ 232, 1 ], "end": [ 255, 71 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.erase", "code": "def erase {_ : BEq α} {_ : Hashable α} : PersistentHashMap α β → α → PersistentHashMap α β\n | { root }, k =>\n let h := hash k |>.toUSize\n { root := eraseAux root h k }", "start": [ 257, 1 ], "end": [ 260, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.foldlMAux", "code": "partial def foldlMAux (f : σ → α → β → m σ) : Node α β → σ → m σ\n | Node.collision keys vals heq, acc =>\n let rec traverse (i : Nat) (acc : σ) : m σ := do\n if h : i < keys.size then\n let k := keys[i]\n have : i < vals.size := heq ▸ h\n let v := vals[i]\n traverse (i+1) (← f acc k v)\n else\n pure acc\n traverse 0 acc\n | Node.entries entries, acc => entries.foldlM (fun acc entry =>\n match entry with\n | Entry.null => pure acc\n | Entry.entry k v => f acc k v\n | Entry.ref node => foldlMAux f node acc)\n acc", "start": [ 266, 1 ], "end": [ 282, 8 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.foldlM", "code": "def foldlM {_ : BEq α} {_ : Hashable α} (map : PersistentHashMap α β) (f : σ → α → β → m σ) (init : σ) : m σ :=\n foldlMAux f map.root init", "start": [ 284, 1 ], "end": [ 285, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.forM", "code": "def forM {_ : BEq α} {_ : Hashable α} (map : PersistentHashMap α β) (f : α → β → m PUnit) : m PUnit :=\n map.foldlM (fun _ => f) ⟨⟩", "start": [ 287, 1 ], "end": [ 288, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.foldl", "code": "def foldl {_ : BEq α} {_ : Hashable α} (map : PersistentHashMap α β) (f : σ → α → β → σ) (init : σ) : σ :=\n Id.run <| map.foldlM f init", "start": [ 290, 1 ], "end": [ 291, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.forIn", "code": "protected def forIn {_ : BEq α} {_ : Hashable α} [Monad m]\n (map : PersistentHashMap α β) (init : σ) (f : α × β → σ → m (ForInStep σ)) : m σ := do\n let intoError : ForInStep σ → Except σ σ\n | .done s => .error s\n | .yield s => .ok s\n let result ← foldlM (m := ExceptT σ m) map (init := init) fun s a b =>\n (intoError <$> f (a, b) s : m _)\n match result with\n | .ok s | .error s => pure s", "start": [ 293, 1 ], "end": [ 301, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mapMAux", "code": "partial def mapMAux {α : Type u} {β : Type v} {σ : Type u} {m : Type u → Type w} [Monad m] (f : β → m σ) (n : Node α β) : m (Node α σ) := do\n match n with\n | .collision keys vals heq =>\n let ⟨vals', h⟩ ← vals.mapM' f\n return .collision keys vals' (h ▸ heq)\n | .entries entries =>\n let entries' ← entries.mapM fun\n | .null => return .null\n | .entry k v => return .entry k (← f v)\n | .ref node => return .ref (← mapMAux f node)\n return .entries entries'", "start": [ 308, 1 ], "end": [ 318, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.mapM", "code": "def mapM {α : Type u} {β : Type v} {σ : Type u} {m : Type u → Type w} [Monad m] {_ : BEq α} {_ : Hashable α} (pm : PersistentHashMap α β) (f : β → m σ) : m (PersistentHashMap α σ) := do\n let root ← mapMAux f pm.root\n return { root }", "start": [ 320, 1 ], "end": [ 322, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.map", "code": "def map {α : Type u} {β : Type v} {σ : Type u} {_ : BEq α} {_ : Hashable α} (pm : PersistentHashMap α β) (f : β → σ) : PersistentHashMap α σ :=\n Id.run <| pm.mapM f", "start": [ 324, 1 ], "end": [ 325, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.toList", "code": "def toList {_ : BEq α} {_ : Hashable α} (m : PersistentHashMap α β) : List (α × β) :=\n m.foldl (init := []) fun ps k v => (k, v) :: ps", "start": [ 327, 1 ], "end": [ 328, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.toArray", "code": "def toArray {_ : BEq α} {_ : Hashable α} (m : PersistentHashMap α β) : Array (α × β) :=\n m.foldl (init := #[]) fun ps k v => ps.push (k, v)", "start": [ 330, 1 ], "end": [ 331, 53 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.Stats", "code": "structure Stats where\n numNodes : Nat := 0\n numNull : Nat := 0\n numCollisions : Nat := 0\n maxDepth : Nat := 0", "start": [ 333, 1 ], "end": [ 337, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.collectStats", "code": "partial def collectStats : Node α β → Stats → Nat → Stats\n | Node.collision keys _ _, stats, depth =>\n { stats with\n numNodes := stats.numNodes + 1,\n numCollisions := stats.numCollisions + keys.size - 1,\n maxDepth := Nat.max stats.maxDepth depth }\n | Node.entries entries, stats, depth =>\n let stats :=\n { stats with\n numNodes := stats.numNodes + 1,\n maxDepth := Nat.max stats.maxDepth depth }\n entries.foldl (fun stats entry =>\n match entry with\n | Entry.null => { stats with numNull := stats.numNull + 1 }\n | Entry.ref node => collectStats node stats (depth + 1)\n | Entry.entry _ _ => stats)\n stats", "start": [ 339, 1 ], "end": [ 355, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.stats", "code": "def stats {_ : BEq α} {_ : Hashable α} (m : PersistentHashMap α β) : Stats :=\n collectStats m.root {} 1", "start": [ 357, 1 ], "end": [ 358, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.PersistentHashMap.Stats.toString", "code": "def Stats.toString (s : Stats) : String :=\n s!\"\\{ nodes := {s.numNodes}, null := {s.numNull}, collisions := {s.numCollisions}, depth := {s.maxDepth}}\"", "start": [ 360, 1 ], "end": [ 361, 109 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Ord.lean
[ ".lake/packages/lean4/src/lean/Init/Data/String.lean", ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean" ]
[ { "full_name": "Ordering", "code": "inductive Ordering where\n | lt | eq | gt\nderiving Inhabited, BEq", "start": [ 11, 1 ], "end": [ 13, 24 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.swap", "code": "def swap : Ordering → Ordering\n | .lt => .gt\n | .eq => .eq\n | .gt => .lt", "start": [ 19, 1 ], "end": [ 23, 15 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.then", "code": "@[macro_inline] def «then» : Ordering → Ordering → Ordering\n | .eq, f => f\n | o, _ => o", "start": [ 25, 1 ], "end": [ 45, 14 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isEq", "code": "def isEq : Ordering → Bool\n | eq => true\n | _ => false", "start": [ 47, 1 ], "end": [ 52, 15 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isNe", "code": "def isNe : Ordering → Bool\n | eq => false\n | _ => true", "start": [ 54, 1 ], "end": [ 59, 14 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isLE", "code": "def isLE : Ordering → Bool\n | gt => false\n | _ => true", "start": [ 61, 1 ], "end": [ 66, 14 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isLT", "code": "def isLT : Ordering → Bool\n | lt => true\n | _ => false", "start": [ 68, 1 ], "end": [ 73, 15 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isGT", "code": "def isGT : Ordering → Bool\n | gt => true\n | _ => false", "start": [ 75, 1 ], "end": [ 80, 15 ], "kind": "commanddeclaration" }, { "full_name": "Ordering.isGE", "code": "def isGE : Ordering → Bool\n | lt => false\n | _ => true", "start": [ 82, 1 ], "end": [ 87, 14 ], "kind": "commanddeclaration" }, { "full_name": "compareOfLessAndEq", "code": "@[inline] def compareOfLessAndEq {α} (x y : α) [LT α] [Decidable (x < y)] [DecidableEq α] : Ordering :=\n if x < y then Ordering.lt\n else if x = y then Ordering.eq\n else Ordering.gt", "start": [ 91, 1 ], "end": [ 98, 19 ], "kind": "commanddeclaration" }, { "full_name": "compareOfLessAndBEq", "code": "@[inline] def compareOfLessAndBEq {α} (x y : α) [LT α] [Decidable (x < y)] [BEq α] : Ordering :=\n if x < y then .lt\n else if x == y then .eq\n else .gt", "start": [ 100, 1 ], "end": [ 107, 11 ], "kind": "commanddeclaration" }, { "full_name": "compareLex", "code": "@[inline] def compareLex (cmp₁ cmp₂ : α → β → Ordering) (a : α) (b : β) : Ordering :=\n (cmp₁ a b).then (cmp₂ a b)", "start": [ 109, 1 ], "end": [ 115, 29 ], "kind": "commanddeclaration" }, { "full_name": "Ord", "code": "class Ord (α : Type u) where\n \n compare : α → α → Ordering", "start": [ 117, 1 ], "end": [ 129, 29 ], "kind": "commanddeclaration" }, { "full_name": "compareOn", "code": "@[inline] def compareOn [ord : Ord β] (f : α → β) (x y : α) : Ordering :=\n compare (f x) (f y)", "start": [ 134, 1 ], "end": [ 138, 22 ], "kind": "commanddeclaration" }, { "full_name": "lexOrd", "code": "def lexOrd [Ord α] [Ord β] : Ord (α × β) where\n compare := compareLex (compareOn (·.1)) (compareOn (·.2))", "start": [ 183, 1 ], "end": [ 185, 60 ], "kind": "commanddeclaration" }, { "full_name": "ltOfOrd", "code": "def ltOfOrd [Ord α] : LT α where\n lt a b := compare a b = Ordering.lt", "start": [ 187, 1 ], "end": [ 188, 38 ], "kind": "commanddeclaration" }, { "full_name": "leOfOrd", "code": "def leOfOrd [Ord α] : LE α where\n le a b := (compare a b).isLE", "start": [ 193, 1 ], "end": [ 194, 31 ], "kind": "commanddeclaration" }, { "full_name": "Ord.toBEq", "code": "protected def toBEq (ord : Ord α) : BEq α where\n beq x y := ord.compare x y == .eq", "start": [ 201, 1 ], "end": [ 205, 36 ], "kind": "commanddeclaration" }, { "full_name": "Ord.toLT", "code": "protected def toLT (_ : Ord α) : LT α :=\n ltOfOrd", "start": [ 207, 1 ], "end": [ 211, 10 ], "kind": "commanddeclaration" }, { "full_name": "Ord.toLE", "code": "protected def toLE (_ : Ord α) : LE α :=\n leOfOrd", "start": [ 213, 1 ], "end": [ 217, 10 ], "kind": "commanddeclaration" }, { "full_name": "Ord.opposite", "code": "protected def opposite (ord : Ord α) : Ord α where\n compare x y := ord.compare y x", "start": [ 219, 1 ], "end": [ 223, 33 ], "kind": "commanddeclaration" }, { "full_name": "Ord.on", "code": "protected def on (_ : Ord β) (f : α → β) : Ord α where\n compare := compareOn f", "start": [ 225, 1 ], "end": [ 229, 25 ], "kind": "commanddeclaration" }, { "full_name": "Ord.lex", "code": "protected def lex (_ : Ord α) (_ : Ord β) : Ord (α × β) :=\n lexOrd", "start": [ 231, 1 ], "end": [ 235, 9 ], "kind": "commanddeclaration" }, { "full_name": "Ord.lex'", "code": "protected def lex' (ord₁ ord₂ : Ord α) : Ord α where\n compare := compareLex ord₁.compare ord₂.compare", "start": [ 237, 1 ], "end": [ 242, 50 ], "kind": "commanddeclaration" }, { "full_name": "Ord.arrayOrd", "code": "protected def arrayOrd [a : Ord α] : Ord (Array α) where\n compare x y :=\n let _ : LT α := a.toLT\n let _ : BEq α := a.toBEq\n compareOfLessAndBEq x.toList y.toList", "start": [ 244, 1 ], "end": [ 251, 42 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/EState.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/State.lean", ".lake/packages/lean4/src/lean/Init/Control/Except.lean" ]
[ { "full_name": "EStateM.orElse'", "code": "@[always_inline, inline]\nprotected def orElse' {δ} [Backtrackable δ σ] (x₁ x₂ : EStateM ε σ α) (useFirstEx := true) : EStateM ε σ α := fun s =>\n let d := Backtrackable.save s;\n match x₁ s with\n | Result.error e₁ s₁ =>\n match x₂ (Backtrackable.restore s₁ d) with\n | Result.error e₂ s₂ => Result.error (if useFirstEx then e₁ else e₂) s₂\n | ok => ok\n | ok => ok", "start": [ 32, 1 ], "end": [ 42, 29 ], "kind": "commanddeclaration" }, { "full_name": "EStateM.fromStateM", "code": "@[always_inline, inline] def fromStateM {ε σ α : Type} (x : StateM σ α) : EStateM ε σ α := fun s =>\n match x.run s with\n | (a, s') => EStateM.Result.ok a s'", "start": [ 57, 1 ], "end": [ 59, 38 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Control/Reader.lean
[ ".lake/packages/lean4/src/lean/Init/Control/Id.lean", ".lake/packages/lean4/src/lean/Init/Control/Basic.lean", ".lake/packages/lean4/src/lean/Init/Control/Except.lean" ]
[ { "full_name": "ReaderT.orElse", "code": "@[always_inline, inline]\nprotected def orElse [Alternative m] (x₁ : ReaderT ρ m α) (x₂ : Unit → ReaderT ρ m α) : ReaderT ρ m α :=\n fun s => x₁ s <|> x₂ () s", "start": [ 15, 1 ], "end": [ 17, 28 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.failure", "code": "@[always_inline, inline]\nprotected def failure [Alternative m] : ReaderT ρ m α :=\n fun _ => failure", "start": [ 19, 1 ], "end": [ 21, 19 ], "kind": "commanddeclaration" }, { "full_name": "ReaderT.tryFinally", "code": "@[always_inline]\ninstance ReaderT.tryFinally [MonadFinally m] : MonadFinally (ReaderT ρ m) where\n tryFinally' x h ctx := tryFinally' (x ctx) (fun a? => h a? ctx)", "start": [ 34, 1 ], "end": [ 36, 66 ], "kind": "commanddeclaration" }, { "full_name": "ReaderM", "code": "@[reducible] def ReaderM (ρ : Type u) := ReaderT ρ Id", "start": [ 38, 1 ], "end": [ 38, 54 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/System/Platform.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean" ]
[ { "full_name": "System.Platform.getIsWindows", "code": "@[extern \"lean_system_platform_windows\"] opaque getIsWindows : Unit → Bool", "start": [ 13, 1 ], "end": [ 13, 75 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.getIsOSX", "code": "@[extern \"lean_system_platform_osx\"] opaque getIsOSX : Unit → Bool", "start": [ 14, 1 ], "end": [ 14, 67 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.getIsEmscripten", "code": "@[extern \"lean_system_platform_emscripten\"] opaque getIsEmscripten : Unit → Bool", "start": [ 15, 1 ], "end": [ 15, 81 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.isWindows", "code": "def isWindows : Bool := getIsWindows ()", "start": [ 17, 1 ], "end": [ 17, 40 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.isOSX", "code": "def isOSX : Bool := getIsOSX ()", "start": [ 18, 1 ], "end": [ 18, 32 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.isEmscripten", "code": "def isEmscripten : Bool := getIsEmscripten ()", "start": [ 19, 1 ], "end": [ 19, 46 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.getTarget", "code": "@[extern \"lean_system_platform_target\"] opaque getTarget : Unit → String", "start": [ 21, 1 ], "end": [ 21, 73 ], "kind": "commanddeclaration" }, { "full_name": "System.Platform.target", "code": "def target : String := getTarget ()", "start": [ 23, 1 ], "end": [ 24, 36 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/SMap.lean
[ ".lake/packages/lean4/src/lean/Lean/Data/PersistentHashMap.lean", ".lake/packages/lean4/src/lean/Lean/Data/HashMap.lean" ]
[ { "full_name": "Lean.SMap", "code": "structure SMap (α : Type u) (β : Type v) [BEq α] [Hashable α] where\n stage₁ : Bool := true\n map₁ : HashMap α β := {}\n map₂ : PHashMap α β := {}", "start": [ 13, 1 ], "end": [ 32, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.empty", "code": "def empty : SMap α β := {}", "start": [ 38, 1 ], "end": [ 38, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.fromHashMap", "code": "@[inline] def fromHashMap (m : HashMap α β) (stage₁ := true) : SMap α β :=\n { map₁ := m, stage₁ := stage₁ }", "start": [ 40, 1 ], "end": [ 41, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.insert", "code": "@[specialize] def insert : SMap α β → α → β → SMap α β\n | ⟨true, m₁, m₂⟩, k, v => ⟨true, m₁.insert k v, m₂⟩\n | ⟨false, m₁, m₂⟩, k, v => ⟨false, m₁, m₂.insert k v⟩", "start": [ 43, 1 ], "end": [ 45, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.insert'", "code": "@[specialize] def insert' : SMap α β → α → β → SMap α β\n | ⟨true, m₁, m₂⟩, k, v => ⟨true, m₁.insert k v, m₂⟩\n | ⟨false, m₁, m₂⟩, k, v => ⟨false, m₁, m₂.insert k v⟩", "start": [ 47, 1 ], "end": [ 49, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.find?", "code": "@[specialize] def find? : SMap α β → α → Option β\n | ⟨true, m₁, _⟩, k => m₁.find? k\n | ⟨false, m₁, m₂⟩, k => (m₂.find? k).orElse fun _ => m₁.find? k", "start": [ 51, 1 ], "end": [ 53, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.findD", "code": "@[inline] def findD (m : SMap α β) (a : α) (b₀ : β) : β :=\n (m.find? a).getD b₀", "start": [ 55, 1 ], "end": [ 56, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.find!", "code": "@[inline] def find! [Inhabited β] (m : SMap α β) (a : α) : β :=\n match m.find? a with\n | some b => b\n | none => panic! \"key is not in the map\"", "start": [ 58, 1 ], "end": [ 61, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.contains", "code": "@[specialize] def contains : SMap α β → α → Bool\n | ⟨true, m₁, _⟩, k => m₁.contains k\n | ⟨false, m₁, m₂⟩, k => m₁.contains k || m₂.contains k", "start": [ 63, 1 ], "end": [ 65, 57 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.find?'", "code": "@[specialize] def find?' : SMap α β → α → Option β\n | ⟨true, m₁, _⟩, k => m₁.find? k\n | ⟨false, m₁, m₂⟩, k => (m₁.find? k).orElse fun _ => m₂.find? k", "start": [ 67, 1 ], "end": [ 71, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.forM", "code": "def forM [Monad m] (s : SMap α β) (f : α → β → m PUnit) : m PUnit := do\n s.map₁.forM f\n s.map₂.forM f", "start": [ 73, 1 ], "end": [ 75, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.switch", "code": "def switch (m : SMap α β) : SMap α β :=\n if m.stage₁ then { m with stage₁ := false } else m", "start": [ 83, 1 ], "end": [ 85, 53 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.foldStage2", "code": "@[inline] def foldStage2 {σ : Type w} (f : σ → α → β → σ) (s : σ) (m : SMap α β) : σ :=\n m.map₂.foldl f s", "start": [ 87, 1 ], "end": [ 88, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.fold", "code": "def fold {σ : Type w} (f : σ → α → β → σ) (init : σ) (m : SMap α β) : σ :=\n m.map₂.foldl f $ m.map₁.fold f init", "start": [ 90, 1 ], "end": [ 91, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.numBuckets", "code": "def numBuckets (m : SMap α β) : Nat :=\n m.map₁.numBuckets", "start": [ 93, 1 ], "end": [ 94, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SMap.toList", "code": "def toList (m : SMap α β) : List (α × β) :=\n m.fold (init := []) fun es a b => (a, b)::es", "start": [ 96, 1 ], "end": [ 97, 47 ], "kind": "commanddeclaration" }, { "full_name": "List.toSMap", "code": "def _root_.List.toSMap [BEq α] [Hashable α] (es : List (α × β)) : SMap α β :=\n es.foldl (init := {}) fun s (a, b) => s.insert a b", "start": [ 101, 1 ], "end": [ 102, 53 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/RBMap.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Nat/Linear.lean", ".lake/packages/lean4/src/lean/Init/Data/Ord.lean" ]
[ { "full_name": "Lean.RBColor", "code": "inductive RBColor where\n | red | black", "start": [ 13, 1 ], "end": [ 14, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode", "code": "inductive RBNode (α : Type u) (β : α → Type v) where\n | leaf : RBNode α β\n | node (color : RBColor) (lchild : RBNode α β) (key : α) (val : β key) (rchild : RBNode α β) : RBNode α β", "start": [ 16, 1 ], "end": [ 18, 109 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.depth", "code": "def depth (f : Nat → Nat → Nat) : RBNode α β → Nat\n | leaf => 0\n | node _ l _ _ r => succ (f (depth f l) (depth f r))", "start": [ 25, 1 ], "end": [ 27, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.min", "code": "protected def min : RBNode α β → Option (Sigma (fun k => β k))\n | leaf => none\n | node _ leaf k v _ => some ⟨k, v⟩\n | node _ l _ _ _ => RBNode.min l", "start": [ 29, 1 ], "end": [ 32, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.max", "code": "protected def max : RBNode α β → Option (Sigma (fun k => β k))\n | leaf => none\n | node _ _ k v leaf => some ⟨k, v⟩\n | node _ _ _ _ r => RBNode.max r", "start": [ 34, 1 ], "end": [ 37, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.fold", "code": "@[specialize] def fold (f : σ → (k : α) → β k → σ) : (init : σ) → RBNode α β → σ\n | b, leaf => b\n | b, node _ l k v r => fold f (f (fold f b l) k v) r", "start": [ 39, 1 ], "end": [ 41, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.forM", "code": "@[specialize] def forM [Monad m] (f : (k : α) → β k → m Unit) : RBNode α β → m Unit\n | leaf => pure ()\n | node _ l k v r => do forM f l; f k v; forM f r", "start": [ 43, 1 ], "end": [ 45, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.foldM", "code": "@[specialize] def foldM [Monad m] (f : σ → (k : α) → β k → m σ) : (init : σ) → RBNode α β → m σ\n | b, leaf => pure b\n | b, node _ l k v r => do\n let b ← foldM f b l\n let b ← f b k v\n foldM f b r", "start": [ 47, 1 ], "end": [ 52, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.forIn", "code": "@[inline] protected def forIn [Monad m] (as : RBNode α β) (init : σ) (f : (k : α) → β k → σ → m (ForInStep σ)) : m σ := do\n let rec @[specialize] visit : RBNode α β → σ → m (ForInStep σ)\n | leaf, b => return ForInStep.yield b\n | node _ l k v r, b => do\n match (← visit l b) with\n | r@(ForInStep.done _) => return r\n | ForInStep.yield b =>\n match (← f k v b) with\n | r@(ForInStep.done _) => return r\n | ForInStep.yield b => visit r b\n match (← visit as init) with\n | ForInStep.done b => pure b\n | ForInStep.yield b => pure b", "start": [ 54, 1 ], "end": [ 66, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.revFold", "code": "@[specialize] def revFold (f : σ → (k : α) → β k → σ) : (init : σ) → RBNode α β → σ\n | b, leaf => b\n | b, node _ l k v r => revFold f (f (revFold f b r) k v) l", "start": [ 68, 1 ], "end": [ 70, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.all", "code": "@[specialize] def all (p : (k : α) → β k → Bool) : RBNode α β → Bool\n | leaf => true\n | node _ l k v r => p k v && all p l && all p r", "start": [ 72, 1 ], "end": [ 74, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.any", "code": "@[specialize] def any (p : (k : α) → β k → Bool) : RBNode α β → Bool\n | leaf => false\n | node _ l k v r => p k v || any p l || any p r", "start": [ 76, 1 ], "end": [ 78, 50 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.singleton", "code": "def singleton (k : α) (v : β k) : RBNode α β :=\n node red leaf k v leaf", "start": [ 80, 1 ], "end": [ 81, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.balance1", "code": "@[inline] def balance1 : RBNode α β → (a : α) → β a → RBNode α β → RBNode α β\n | node red (node red a kx vx b) ky vy c, kz, vz, d\n | node red a kx vx (node red b ky vy c), kz, vz, d => node red (node black a kx vx b) ky vy (node black c kz vz d)\n | a, kx, vx, b => node black a kx vx b", "start": [ 84, 1 ], "end": [ 87, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.balance2", "code": "@[inline] def balance2 : RBNode α β → (a : α) → β a → RBNode α β → RBNode α β\n | a, kx, vx, node red (node red b ky vy c) kz vz d\n | a, kx, vx, node red b ky vy (node red c kz vz d) => node red (node black a kx vx b) ky vy (node black c kz vz d)\n | a, kx, vx, b => node black a kx vx b", "start": [ 90, 1 ], "end": [ 93, 77 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.isRed", "code": "def isRed : RBNode α β → Bool\n | node red .. => true\n | _ => false", "start": [ 95, 1 ], "end": [ 97, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.isBlack", "code": "def isBlack : RBNode α β → Bool\n | node black .. => true\n | _ => false", "start": [ 99, 1 ], "end": [ 101, 27 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.ins", "code": "@[specialize] def ins : RBNode α β → (k : α) → β k → RBNode α β\n | leaf, kx, vx => node red leaf kx vx leaf\n | node red a ky vy b, kx, vx =>\n match cmp kx ky with\n | Ordering.lt => node red (ins a kx vx) ky vy b\n | Ordering.gt => node red a ky vy (ins b kx vx)\n | Ordering.eq => node red a kx vx b\n | node black a ky vy b, kx, vx =>\n match cmp kx ky with\n | Ordering.lt => balance1 (ins a kx vx) ky vy b\n | Ordering.gt => balance2 a ky vy (ins b kx vx)\n | Ordering.eq => node black a kx vx b", "start": [ 107, 1 ], "end": [ 118, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.setBlack", "code": "def setBlack : RBNode α β → RBNode α β\n | node _ l k v r => node black l k v r\n | e => e", "start": [ 120, 1 ], "end": [ 122, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.insert", "code": "@[specialize] def insert (t : RBNode α β) (k : α) (v : β k) : RBNode α β :=\n if isRed t then setBlack (ins cmp t k v)\n else ins cmp t k v", "start": [ 124, 1 ], "end": [ 126, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.setRed", "code": "def setRed : RBNode α β → RBNode α β\n | node _ a k v b => node red a k v b\n | e => e", "start": [ 130, 1 ], "end": [ 132, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.balLeft", "code": "def balLeft : RBNode α β → (k : α) → β k → RBNode α β → RBNode α β\n | node red a kx vx b, k, v, r => node red (node black a kx vx b) k v r\n | l, k, v, node black a ky vy b => balance2 l k v (node red a ky vy b)\n | l, k, v, node red (node black a ky vy b) kz vz c => node red (node black l k v a) ky vy (balance2 b kz vz (setRed c))\n | l, k, v, r => node red l k v r", "start": [ 134, 1 ], "end": [ 138, 73 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.balRight", "code": "def balRight (l : RBNode α β) (k : α) (v : β k) (r : RBNode α β) : RBNode α β :=\n match r with\n | (node red b ky vy c) => node red l k v (node black b ky vy c)\n | _ => match l with\n | node black a kx vx b => balance1 (node red a kx vx b) k v r\n | node red a kx vx (node black b ky vy c) => node red (balance1 (setRed a) kx vx b) ky vy (node black c k v r)\n | _ => node red l k v r", "start": [ 140, 1 ], "end": [ 146, 66 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.size", "code": "@[local simp] def size : RBNode α β → Nat\n | leaf => 0\n | node _ x _ _ y => x.size + y.size + 1", "start": [ 148, 1 ], "end": [ 151, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.appendTrees", "code": "def appendTrees : RBNode α β → RBNode α β → RBNode α β\n | leaf, x => x\n | x, leaf => x\n | node red a kx vx b, node red c ky vy d =>\n match appendTrees b c with\n | node red b' kz vz c' => node red (node red a kx vx b') kz vz (node red c' ky vy d)\n | bc => node red a kx vx (node red bc ky vy d)\n | node black a kx vx b, node black c ky vy d =>\n match appendTrees b c with\n | node red b' kz vz c' => node red (node black a kx vx b') kz vz (node black c' ky vy d)\n | bc => balLeft a kx vx (node black bc ky vy d)\n | a, node red b kx vx c => node red (appendTrees a b) kx vx c\n | node red a kx vx b, c => node red a kx vx (appendTrees b c)\ntermination_by x y => x.size + y.size", "start": [ 153, 1 ], "end": [ 166, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.del", "code": "@[specialize] def del (x : α) : RBNode α β → RBNode α β\n | leaf => leaf\n | node _ a y v b =>\n match cmp x y with\n | Ordering.lt =>\n if a.isBlack then balLeft (del x a) y v b\n else node red (del x a) y v b\n | Ordering.gt =>\n if b.isBlack then balRight a y v (del x b)\n else node red a y v (del x b)\n | Ordering.eq => appendTrees a b", "start": [ 172, 1 ], "end": [ 182, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.erase", "code": "@[specialize] def erase (x : α) (t : RBNode α β) : RBNode α β :=\n let t := del cmp x t;\n t.setBlack", "start": [ 184, 1 ], "end": [ 186, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.findCore", "code": "@[specialize] def findCore : RBNode α β → (k : α) → Option (Sigma (fun k => β k))\n | leaf, _ => none\n | node _ a ky vy b, x =>\n match cmp x ky with\n | Ordering.lt => findCore a x\n | Ordering.gt => findCore b x\n | Ordering.eq => some ⟨ky, vy⟩", "start": [ 193, 1 ], "end": [ 199, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.find", "code": "@[specialize] def find {β : Type v} : RBNode α (fun _ => β) → α → Option β\n | leaf, _ => none\n | node _ a ky vy b, x =>\n match cmp x ky with\n | Ordering.lt => find a x\n | Ordering.gt => find b x\n | Ordering.eq => some vy", "start": [ 201, 1 ], "end": [ 207, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.lowerBound", "code": "@[specialize] def lowerBound : RBNode α β → α → Option (Sigma β) → Option (Sigma β)\n | leaf, _, lb => lb\n | node _ a ky vy b, x, lb =>\n match cmp x ky with\n | Ordering.lt => lowerBound a x lb\n | Ordering.gt => lowerBound b x (some ⟨ky, vy⟩)\n | Ordering.eq => some ⟨ky, vy⟩", "start": [ 209, 1 ], "end": [ 215, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.WellFormed", "code": "inductive WellFormed (cmp : α → α → Ordering) : RBNode α β → Prop where\n | leafWff : WellFormed cmp leaf\n | insertWff {n n' : RBNode α β} {k : α} {v : β k} : WellFormed cmp n → n' = insert cmp n k v → WellFormed cmp n'\n | eraseWff {n n' : RBNode α β} {k : α} : WellFormed cmp n → n' = erase cmp k n → WellFormed cmp n'", "start": [ 219, 1 ], "end": [ 222, 101 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.mapM", "code": "@[specialize] def mapM {α : Type v} {β γ : α → Type v} {M : Type v → Type v} [Applicative M]\n (f : (a : α) → β a → M (γ a))\n : RBNode α β → M (RBNode α γ)\n | leaf => pure leaf\n | node color lchild key val rchild =>\n pure (node color · key · ·) <*> lchild.mapM f <*> f _ val <*> rchild.mapM f", "start": [ 226, 1 ], "end": [ 231, 80 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.map", "code": "@[specialize] def map {α : Type u} {β γ : α → Type v}\n (f : (a : α) → β a → γ a)\n : RBNode α β → RBNode α γ\n | leaf => leaf\n | node color lchild key val rchild => node color (lchild.map f) key (f key val) (rchild.map f)", "start": [ 233, 1 ], "end": [ 237, 97 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBNode.toArray", "code": "def toArray (n : RBNode α β) : Array (Sigma β) :=\n n.fold (init := ∅) fun acc k v => acc.push ⟨k,v⟩", "start": [ 241, 1 ], "end": [ 242, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap", "code": "def RBMap (α : Type u) (β : Type v) (cmp : α → α → Ordering) : Type (max u v) :=\n {t : RBNode α (fun _ => β) // t.WellFormed cmp }", "start": [ 252, 1 ], "end": [ 253, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkRBMap", "code": "@[inline] def mkRBMap (α : Type u) (β : Type v) (cmp : α → α → Ordering) : RBMap α β cmp :=\n ⟨leaf, WellFormed.leafWff⟩", "start": [ 255, 1 ], "end": [ 256, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.empty", "code": "@[inline] def RBMap.empty {α : Type u} {β : Type v} {cmp : α → α → Ordering} : RBMap α β cmp :=\n mkRBMap ..", "start": [ 258, 1 ], "end": [ 259, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.depth", "code": "def depth (f : Nat → Nat → Nat) (t : RBMap α β cmp) : Nat :=\n t.val.depth f", "start": [ 269, 1 ], "end": [ 270, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.fold", "code": "@[inline] def fold (f : σ → α → β → σ) : (init : σ) → RBMap α β cmp → σ\n | b, ⟨t, _⟩ => t.fold f b", "start": [ 272, 1 ], "end": [ 273, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.revFold", "code": "@[inline] def revFold (f : σ → α → β → σ) : (init : σ) → RBMap α β cmp → σ\n | b, ⟨t, _⟩ => t.revFold f b", "start": [ 275, 1 ], "end": [ 276, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.foldM", "code": "@[inline] def foldM [Monad m] (f : σ → α → β → m σ) : (init : σ) → RBMap α β cmp → m σ\n | b, ⟨t, _⟩ => t.foldM f b", "start": [ 278, 1 ], "end": [ 279, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.forM", "code": "@[inline] def forM [Monad m] (f : α → β → m PUnit) (t : RBMap α β cmp) : m PUnit :=\n t.foldM (fun _ k v => f k v) ⟨⟩", "start": [ 281, 1 ], "end": [ 282, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.forIn", "code": "@[inline] protected def forIn [Monad m] (t : RBMap α β cmp) (init : σ) (f : (α × β) → σ → m (ForInStep σ)) : m σ :=\n t.val.forIn init (fun a b acc => f (a, b) acc)", "start": [ 284, 1 ], "end": [ 285, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.isEmpty", "code": "@[inline] def isEmpty : RBMap α β cmp → Bool\n | ⟨leaf, _⟩ => true\n | _ => false", "start": [ 290, 1 ], "end": [ 292, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.toList", "code": "@[specialize] def toList : RBMap α β cmp → List (α × β)\n | ⟨t, _⟩ => t.revFold (fun ps k v => (k, v)::ps) []", "start": [ 294, 1 ], "end": [ 295, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.min", "code": "@[inline] protected def min : RBMap α β cmp → Option (α × β)\n | ⟨t, _⟩ =>\n match t.min with\n | some ⟨k, v⟩ => some (k, v)\n | none => none", "start": [ 297, 1 ], "end": [ 302, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.max", "code": "@[inline] protected def max : RBMap α β cmp → Option (α × β)\n | ⟨t, _⟩ =>\n match t.max with\n | some ⟨k, v⟩ => some (k, v)\n | none => none", "start": [ 304, 1 ], "end": [ 309, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.insert", "code": "@[inline] def insert : RBMap α β cmp → α → β → RBMap α β cmp\n | ⟨t, w⟩, k, v => ⟨t.insert cmp k v, WellFormed.insertWff w rfl⟩", "start": [ 314, 1 ], "end": [ 315, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.erase", "code": "@[inline] def erase : RBMap α β cmp → α → RBMap α β cmp\n | ⟨t, w⟩, k => ⟨t.erase cmp k, WellFormed.eraseWff w rfl⟩", "start": [ 317, 1 ], "end": [ 318, 60 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.ofList", "code": "@[specialize] def ofList : List (α × β) → RBMap α β cmp\n | [] => mkRBMap ..\n | ⟨k,v⟩::xs => (ofList xs).insert k v", "start": [ 320, 1 ], "end": [ 322, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.findCore?", "code": "@[inline] def findCore? : RBMap α β cmp → α → Option (Sigma (fun (_ : α) => β))\n | ⟨t, _⟩, x => t.findCore cmp x", "start": [ 324, 1 ], "end": [ 325, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.find?", "code": "@[inline] def find? : RBMap α β cmp → α → Option β\n | ⟨t, _⟩, x => t.find cmp x", "start": [ 327, 1 ], "end": [ 328, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.findD", "code": "@[inline] def findD (t : RBMap α β cmp) (k : α) (v₀ : β) : β :=\n (t.find? k).getD v₀", "start": [ 330, 1 ], "end": [ 331, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.lowerBound", "code": "@[inline] def lowerBound : RBMap α β cmp → α → Option (Sigma (fun (_ : α) => β))\n | ⟨t, _⟩, x => t.lowerBound cmp x none", "start": [ 333, 1 ], "end": [ 336, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.contains", "code": "@[inline] def contains (t : RBMap α β cmp) (a : α) : Bool :=\n (t.find? a).isSome", "start": [ 338, 1 ], "end": [ 340, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.fromList", "code": "@[inline] def fromList (l : List (α × β)) (cmp : α → α → Ordering) : RBMap α β cmp :=\n l.foldl (fun r p => r.insert p.1 p.2) (mkRBMap α β cmp)", "start": [ 342, 1 ], "end": [ 343, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.fromArray", "code": "@[inline] def fromArray (l : Array (α × β)) (cmp : α → α → Ordering) : RBMap α β cmp :=\n l.foldl (fun r p => r.insert p.1 p.2) (mkRBMap α β cmp)", "start": [ 345, 1 ], "end": [ 346, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.all", "code": "@[inline] def all : RBMap α β cmp → (α → β → Bool) → Bool\n | ⟨t, _⟩, p => t.all p", "start": [ 348, 1 ], "end": [ 350, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.any", "code": "@[inline] def any : RBMap α β cmp → (α → β → Bool) → Bool\n | ⟨t, _⟩, p => t.any p", "start": [ 352, 1 ], "end": [ 354, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.size", "code": "def size (m : RBMap α β cmp) : Nat :=\n m.fold (fun sz _ _ => sz+1) 0", "start": [ 356, 1 ], "end": [ 358, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.maxDepth", "code": "def maxDepth (t : RBMap α β cmp) : Nat :=\n t.val.depth Nat.max", "start": [ 360, 1 ], "end": [ 361, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.min!", "code": "@[inline] def min! [Inhabited α] [Inhabited β] (t : RBMap α β cmp) : α × β :=\n match t.min with\n | some p => p\n | none => panic! \"map is empty\"", "start": [ 363, 1 ], "end": [ 366, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.max!", "code": "@[inline] def max! [Inhabited α] [Inhabited β] (t : RBMap α β cmp) : α × β :=\n match t.max with\n | some p => p\n | none => panic! \"map is empty\"", "start": [ 368, 1 ], "end": [ 371, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.find!", "code": "@[inline] def find! [Inhabited β] (t : RBMap α β cmp) (k : α) : β :=\n match t.find? k with\n | some b => b\n | none => panic! \"key is not in the map\"", "start": [ 373, 1 ], "end": [ 377, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.mergeBy", "code": "def mergeBy (mergeFn : α → β → β → β) (t₁ t₂ : RBMap α β cmp) : RBMap α β cmp :=\n t₂.fold (init := t₁) fun t₁ a b₂ =>\n t₁.insert a <|\n match t₁.find? a with\n | some b₁ => mergeFn a b₁ b₂\n | none => b₂", "start": [ 379, 1 ], "end": [ 386, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBMap.intersectBy", "code": "def intersectBy {γ : Type v₁} {δ : Type v₂} (mergeFn : α → β → γ → δ) (t₁ : RBMap α β cmp) (t₂ : RBMap α γ cmp) : RBMap α δ cmp :=\n t₁.fold (init := ∅) fun acc a b₁ =>\n match t₂.find? a with\n | some b₂ => acc.insert a <| mergeFn a b₁ b₂\n | none => acc", "start": [ 388, 1 ], "end": [ 393, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.rbmapOf", "code": "def rbmapOf {α : Type u} {β : Type v} (l : List (α × β)) (cmp : α → α → Ordering) : RBMap α β cmp :=\n RBMap.fromList l cmp", "start": [ 397, 1 ], "end": [ 398, 23 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/System/ST.lean
[ ".lake/packages/lean4/src/lean/Init/Control/Reader.lean", ".lake/packages/lean4/src/lean/Init/Classical.lean", ".lake/packages/lean4/src/lean/Init/Control/EState.lean" ]
[ { "full_name": "EST", "code": "def EST (ε : Type) (σ : Type) : Type → Type := EStateM ε σ", "start": [ 11, 1 ], "end": [ 11, 59 ], "kind": "commanddeclaration" }, { "full_name": "ST", "code": "abbrev ST (σ : Type) := EST Empty σ", "start": [ 12, 1 ], "end": [ 12, 36 ], "kind": "commanddeclaration" }, { "full_name": "STWorld", "code": "class STWorld (σ : outParam Type) (m : Type → Type)", "start": [ 20, 1 ], "end": [ 20, 52 ], "kind": "commanddeclaration" }, { "full_name": "runEST", "code": "@[noinline, nospecialize]\ndef runEST {ε α : Type} (x : (σ : Type) → EST ε σ α) : Except ε α :=\n match x Unit () with\n | EStateM.Result.ok a _ => Except.ok a\n | EStateM.Result.error ex _ => Except.error ex", "start": [ 25, 1 ], "end": [ 29, 49 ], "kind": "commanddeclaration" }, { "full_name": "runST", "code": "@[noinline, nospecialize]\ndef runST {α : Type} (x : (σ : Type) → ST σ α) : α :=\n match x Unit () with\n | EStateM.Result.ok a _ => a\n | EStateM.Result.error ex _ => nomatch ex", "start": [ 31, 1 ], "end": [ 35, 44 ], "kind": "commanddeclaration" }, { "full_name": "ST.RefPointed", "code": "opaque RefPointed : NonemptyType.{0}", "start": [ 45, 1 ], "end": [ 46, 37 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref", "code": "structure Ref (σ : Type) (α : Type) : Type where\n ref : RefPointed.type\n h : Nonempty α", "start": [ 48, 1 ], "end": [ 50, 19 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.inhabitedFromRef", "code": "private noncomputable def inhabitedFromRef {σ α} (r : Ref σ α) : ST σ α :=\n let _ : Inhabited α := Classical.inhabited_of_nonempty r.h\n pure default", "start": [ 57, 1 ], "end": [ 60, 15 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.mkRef", "code": "@[extern \"lean_st_mk_ref\"]\nopaque mkRef {σ α} (a : α) : ST σ (Ref σ α) := pure { ref := Classical.choice RefPointed.property, h := Nonempty.intro a }", "start": [ 62, 1 ], "end": [ 63, 123 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.get", "code": "@[extern \"lean_st_ref_get\"]\nopaque Ref.get {σ α} (r : @& Ref σ α) : ST σ α := inhabitedFromRef r", "start": [ 64, 1 ], "end": [ 65, 69 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.set", "code": "@[extern \"lean_st_ref_set\"]\nopaque Ref.set {σ α} (r : @& Ref σ α) (a : α) : ST σ Unit", "start": [ 66, 1 ], "end": [ 67, 58 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.swap", "code": "@[extern \"lean_st_ref_swap\"]\nopaque Ref.swap {σ α} (r : @& Ref σ α) (a : α) : ST σ α := inhabitedFromRef r", "start": [ 68, 1 ], "end": [ 69, 78 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.take", "code": "@[extern \"lean_st_ref_take\"]\nunsafe opaque Ref.take {σ α} (r : @& Ref σ α) : ST σ α := inhabitedFromRef r", "start": [ 70, 1 ], "end": [ 71, 77 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.ptrEq", "code": "@[extern \"lean_st_ref_ptr_eq\"]\nopaque Ref.ptrEq {σ α} (r1 r2 : @& Ref σ α) : ST σ Bool", "start": [ 72, 1 ], "end": [ 73, 56 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.modifyUnsafe", "code": "@[inline] unsafe def Ref.modifyUnsafe {σ α : Type} (r : Ref σ α) (f : α → α) : ST σ Unit := do\n let v ← Ref.take r\n Ref.set r (f v)", "start": [ 75, 1 ], "end": [ 77, 18 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.modifyGetUnsafe", "code": "@[inline] unsafe def Ref.modifyGetUnsafe {σ α β : Type} (r : Ref σ α) (f : α → β × α) : ST σ β := do\n let v ← Ref.take r\n let (b, a) := f v\n Ref.set r a\n pure b", "start": [ 79, 1 ], "end": [ 83, 9 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.modify", "code": "@[implemented_by Ref.modifyUnsafe]\ndef Ref.modify {σ α : Type} (r : Ref σ α) (f : α → α) : ST σ Unit := do\n let v ← Ref.get r\n Ref.set r (f v)", "start": [ 85, 1 ], "end": [ 88, 18 ], "kind": "commanddeclaration" }, { "full_name": "ST.Prim.Ref.modifyGet", "code": "@[implemented_by Ref.modifyGetUnsafe]\ndef Ref.modifyGet {σ α β : Type} (r : Ref σ α) (f : α → β × α) : ST σ β := do\n let v ← Ref.get r\n let (b, a) := f v\n Ref.set r a\n pure b", "start": [ 90, 1 ], "end": [ 95, 9 ], "kind": "commanddeclaration" }, { "full_name": "ST.mkRef", "code": "@[inline] def mkRef {α : Type} (a : α) : m (Ref σ α) := liftM <| Prim.mkRef a", "start": [ 102, 1 ], "end": [ 102, 79 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.get", "code": "@[inline] def Ref.get {α : Type} (r : Ref σ α) : m α := liftM <| Prim.Ref.get r", "start": [ 103, 1 ], "end": [ 103, 80 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.set", "code": "@[inline] def Ref.set {α : Type} (r : Ref σ α) (a : α) : m Unit := liftM <| Prim.Ref.set r a", "start": [ 104, 1 ], "end": [ 104, 93 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.swap", "code": "@[inline] def Ref.swap {α : Type} (r : Ref σ α) (a : α) : m α := liftM <| Prim.Ref.swap r a", "start": [ 105, 1 ], "end": [ 105, 92 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.take", "code": "@[inline] unsafe def Ref.take {α : Type} (r : Ref σ α) : m α := liftM <| Prim.Ref.take r", "start": [ 106, 1 ], "end": [ 106, 89 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.ptrEq", "code": "@[inline] def Ref.ptrEq {α : Type} (r1 r2 : Ref σ α) : m Bool := liftM <| Prim.Ref.ptrEq r1 r2", "start": [ 107, 1 ], "end": [ 107, 95 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.modify", "code": "@[inline] def Ref.modify {α : Type} (r : Ref σ α) (f : α → α) : m Unit := liftM <| Prim.Ref.modify r f", "start": [ 108, 1 ], "end": [ 108, 103 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.modifyGet", "code": "@[inline] def Ref.modifyGet {α : Type} {β : Type} (r : Ref σ α) (f : α → β × α) : m β := liftM <| Prim.Ref.modifyGet r f", "start": [ 109, 1 ], "end": [ 109, 121 ], "kind": "commanddeclaration" }, { "full_name": "ST.Ref.toMonadStateOf", "code": "def Ref.toMonadStateOf (r : Ref σ α) : MonadStateOf α m where\n get := r.get\n set := r.set\n modifyGet := r.modifyGet", "start": [ 111, 1 ], "end": [ 114, 27 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/System/FilePath.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/System/Platform.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Repr.lean" ]
[ { "full_name": "System.FilePath", "code": "structure FilePath where\n toString : String\n deriving Inhabited, DecidableEq, Hashable", "start": [ 15, 1 ], "end": [ 17, 44 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.pathSeparator", "code": "def pathSeparator : Char :=\n if isWindows then '\\\\' else '/'", "start": [ 27, 1 ], "end": [ 29, 34 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.pathSeparators", "code": "def pathSeparators : List Char :=\n if isWindows then ['\\\\', '/'] else ['/']", "start": [ 31, 1 ], "end": [ 33, 43 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.extSeparator", "code": "def extSeparator : Char := '.'", "start": [ 35, 1 ], "end": [ 36, 31 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.exeExtension", "code": "def exeExtension : String :=\n if isWindows then \"exe\" else \"\"", "start": [ 38, 1 ], "end": [ 39, 34 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.normalize", "code": "def normalize (p : FilePath) : FilePath := Id.run do\n let mut p := p\n if isWindows && p.toString.length >= 2 && (p.toString.get 0).isLower && p.toString.get ⟨1⟩ == ':' then\n p := ⟨p.toString.set 0 (p.toString.get 0).toUpper⟩\n unless pathSeparators.length == 1 do\n p := ⟨p.toString.map fun c => if pathSeparators.contains c then pathSeparator else c⟩\n return p", "start": [ 42, 1 ], "end": [ 50, 11 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.isAbsolute", "code": "def isAbsolute (p : FilePath) : Bool :=\n pathSeparators.contains p.toString.front || (isWindows && p.toString.length > 1 && p.toString.iter.next.curr == ':')", "start": [ 54, 1 ], "end": [ 55, 119 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.isRelative", "code": "def isRelative (p : FilePath) : Bool :=\n !p.isAbsolute", "start": [ 57, 1 ], "end": [ 58, 16 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.join", "code": "def join (p sub : FilePath) : FilePath :=\n if sub.isAbsolute then\n sub\n else\n ⟨p.toString ++ pathSeparator.toString ++ sub.toString⟩", "start": [ 60, 1 ], "end": [ 64, 59 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.posOfLastSep", "code": "private def posOfLastSep (p : FilePath) : Option String.Pos :=\n p.toString.revFind pathSeparators.contains", "start": [ 72, 1 ], "end": [ 73, 45 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.parent", "code": "def parent (p : FilePath) : Option FilePath :=\n let extractParentPath := FilePath.mk <$> p.toString.extract {} <$> posOfLastSep p\n if p.isAbsolute then\n let lengthOfRootDirectory := if pathSeparators.contains p.toString.front then 1 else 3\n if p.toString.length == lengthOfRootDirectory then\n none\n else if posOfLastSep p == String.Pos.mk (lengthOfRootDirectory - 1) then\n some ⟨p.toString.extract 0 ⟨lengthOfRootDirectory⟩⟩\n else\n extractParentPath\n else\n extractParentPath", "start": [ 75, 1 ], "end": [ 90, 22 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.fileName", "code": "def fileName (p : FilePath) : Option String :=\n let lastPart := match posOfLastSep p with\n | some sepPos => p.toString.extract (sepPos + '/') p.toString.endPos\n | none => p.toString\n if lastPart.isEmpty || lastPart == \".\" || lastPart == \"..\" then none else some lastPart", "start": [ 92, 1 ], "end": [ 96, 90 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.fileStem", "code": "def fileStem (p : FilePath) : Option String :=\n p.fileName.map fun fname =>\n match fname.revPosOf '.' with\n | some ⟨0⟩ => fname\n | some pos => fname.extract 0 pos\n | none => fname", "start": [ 98, 1 ], "end": [ 104, 24 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.extension", "code": "def extension (p : FilePath) : Option String :=\n p.fileName.bind fun fname =>\n match fname.revPosOf '.' with\n | some 0 => none\n | some pos => fname.extract (pos + '.') fname.endPos\n | none => none", "start": [ 106, 1 ], "end": [ 111, 23 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.withFileName", "code": "def withFileName (p : FilePath) (fname : String) : FilePath :=\n match p.parent with\n | none => ⟨fname⟩\n | some p => p / fname", "start": [ 113, 1 ], "end": [ 116, 24 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.addExtension", "code": "def addExtension (p : FilePath) (ext : String) : FilePath :=\n match p.fileName with\n | none => p\n | some fname => p.withFileName (if ext.isEmpty then fname else fname ++ \".\" ++ ext)", "start": [ 118, 1 ], "end": [ 127, 86 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.withExtension", "code": "def withExtension (p : FilePath) (ext : String) : FilePath :=\n match p.fileStem with\n | none => p\n | some stem => p.withFileName (if ext.isEmpty then stem else stem ++ \".\" ++ ext)", "start": [ 129, 1 ], "end": [ 136, 83 ], "kind": "commanddeclaration" }, { "full_name": "System.FilePath.components", "code": "def components (p : FilePath) : List String :=\n p.normalize |>.toString.splitOn pathSeparator.toString", "start": [ 138, 1 ], "end": [ 139, 57 ], "kind": "commanddeclaration" }, { "full_name": "System.mkFilePath", "code": "def mkFilePath (parts : List String) : FilePath :=\n ⟨String.intercalate FilePath.pathSeparator.toString parts⟩", "start": [ 143, 1 ], "end": [ 144, 61 ], "kind": "commanddeclaration" }, { "full_name": "System.SearchPath", "code": "abbrev SearchPath := List FilePath", "start": [ 149, 1 ], "end": [ 149, 35 ], "kind": "commanddeclaration" }, { "full_name": "System.SearchPath.separator", "code": "protected def separator : Char :=\n if isWindows then ';' else ':'", "start": [ 153, 1 ], "end": [ 155, 33 ], "kind": "commanddeclaration" }, { "full_name": "System.SearchPath.parse", "code": "def parse (s : String) : SearchPath :=\n s.split (fun c => SearchPath.separator == c) |>.map FilePath.mk", "start": [ 157, 1 ], "end": [ 158, 66 ], "kind": "commanddeclaration" }, { "full_name": "System.SearchPath.toString", "code": "def toString (path : SearchPath) : String :=\n SearchPath.separator.toString.intercalate (path.map FilePath.toString)", "start": [ 160, 1 ], "end": [ 161, 73 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/System/IOError.lean
[ ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/UInt/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/String/Basic.lean", ".lake/packages/lean4/src/lean/Init/Core.lean" ]
[ { "full_name": "IO.Error", "code": "inductive IO.Error where\n | alreadyExists (filename : Option String) (osCode : UInt32) (details : String) | otherError (osCode : UInt32) (details : String) | resourceBusy (osCode : UInt32) (details : String)\n | resourceVanished (osCode : UInt32) (details : String)\n | unsupportedOperation (osCode : UInt32) (details : String)\n | hardwareFault (osCode : UInt32) (details : String) | unsatisfiedConstraints (osCode : UInt32) (details : String) | illegalOperation (osCode : UInt32) (details : String) | protocolError (osCode : UInt32) (details : String)\n | timeExpired (osCode : UInt32) (details : String)\n | interrupted (filename : String) (osCode : UInt32) (details : String) | noFileOrDirectory (filename : String) (osCode : UInt32) (details : String) | invalidArgument (filename : Option String) (osCode : UInt32) (details : String)\n | permissionDenied (filename : Option String) (osCode : UInt32) (details : String)\n | resourceExhausted (filename : Option String) (osCode : UInt32) (details : String)\n | inappropriateType (filename : Option String) (osCode : UInt32) (details : String)\n | noSuchThing (filename : Option String) (osCode : UInt32) (details : String)\n | unexpectedEof\n | userError (msg : String)\n deriving Inhabited", "start": [ 13, 1 ], "end": [ 54, 21 ], "kind": "commanddeclaration" }, { "full_name": "IO.userError", "code": "@[export lean_mk_io_user_error]\ndef IO.userError (s : String) : IO.Error :=\n IO.Error.userError s", "start": [ 56, 1 ], "end": [ 58, 23 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkAlreadyExistsFile", "code": "@[export lean_mk_io_error_already_exists_file]\ndef mkAlreadyExistsFile : String → UInt32 → String → IO.Error :=\n alreadyExists ∘ some", "start": [ 64, 1 ], "end": [ 66, 23 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkEofError", "code": "@[export lean_mk_io_error_eof]\ndef mkEofError : Unit → IO.Error := fun _ =>\n unexpectedEof", "start": [ 68, 1 ], "end": [ 70, 16 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkInappropriateTypeFile", "code": "@[export lean_mk_io_error_inappropriate_type_file]\ndef mkInappropriateTypeFile : String → UInt32 → String → IO.Error :=\n inappropriateType ∘ some", "start": [ 72, 1 ], "end": [ 74, 27 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkInterrupted", "code": "@[export lean_mk_io_error_interrupted]\ndef mkInterrupted : String → UInt32 → String → IO.Error :=\n interrupted", "start": [ 76, 1 ], "end": [ 78, 14 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkInvalidArgumentFile", "code": "@[export lean_mk_io_error_invalid_argument_file]\ndef mkInvalidArgumentFile : String → UInt32 → String → IO.Error :=\n invalidArgument ∘ some", "start": [ 80, 1 ], "end": [ 82, 25 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkNoFileOrDirectory", "code": "@[export lean_mk_io_error_no_file_or_directory]\ndef mkNoFileOrDirectory : String → UInt32 → String → IO.Error :=\n noFileOrDirectory", "start": [ 84, 1 ], "end": [ 86, 20 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkNoSuchThingFile", "code": "@[export lean_mk_io_error_no_such_thing_file]\ndef mkNoSuchThingFile : String → UInt32 → String → IO.Error :=\n noSuchThing ∘ some", "start": [ 88, 1 ], "end": [ 90, 21 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkPermissionDeniedFile", "code": "@[export lean_mk_io_error_permission_denied_file]\ndef mkPermissionDeniedFile : String → UInt32 → String → IO.Error :=\n permissionDenied ∘ some", "start": [ 92, 1 ], "end": [ 94, 26 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkResourceExhaustedFile", "code": "@[export lean_mk_io_error_resource_exhausted_file]\ndef mkResourceExhaustedFile : String → UInt32 → String → IO.Error :=\n resourceExhausted ∘ some", "start": [ 96, 1 ], "end": [ 98, 27 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkUnsupportedOperation", "code": "@[export lean_mk_io_error_unsupported_operation]\ndef mkUnsupportedOperation : UInt32 → String → IO.Error :=\n unsupportedOperation", "start": [ 100, 1 ], "end": [ 102, 23 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkResourceExhausted", "code": "@[export lean_mk_io_error_resource_exhausted]\ndef mkResourceExhausted : UInt32 → String → IO.Error :=\n resourceExhausted none", "start": [ 104, 1 ], "end": [ 106, 25 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkAlreadyExists", "code": "@[export lean_mk_io_error_already_exists]\ndef mkAlreadyExists : UInt32 → String → IO.Error :=\n alreadyExists none", "start": [ 108, 1 ], "end": [ 110, 21 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkInappropriateType", "code": "@[export lean_mk_io_error_inappropriate_type]\ndef mkInappropriateType : UInt32 → String → IO.Error :=\n inappropriateType none", "start": [ 112, 1 ], "end": [ 114, 25 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkNoSuchThing", "code": "@[export lean_mk_io_error_no_such_thing]\ndef mkNoSuchThing : UInt32 → String → IO.Error :=\n noSuchThing none", "start": [ 116, 1 ], "end": [ 118, 19 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkResourceVanished", "code": "@[export lean_mk_io_error_resource_vanished]\ndef mkResourceVanished : UInt32 → String → IO.Error :=\n resourceVanished", "start": [ 120, 1 ], "end": [ 122, 19 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkResourceBusy", "code": "@[export lean_mk_io_error_resource_busy]\ndef mkResourceBusy : UInt32 → String → IO.Error :=\n resourceBusy", "start": [ 124, 1 ], "end": [ 126, 15 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkInvalidArgument", "code": "@[export lean_mk_io_error_invalid_argument]\ndef mkInvalidArgument : UInt32 → String → IO.Error :=\n invalidArgument none", "start": [ 128, 1 ], "end": [ 130, 23 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkOtherError", "code": "@[export lean_mk_io_error_other_error]\ndef mkOtherError : UInt32 → String → IO.Error :=\n otherError", "start": [ 132, 1 ], "end": [ 134, 13 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkPermissionDenied", "code": "@[export lean_mk_io_error_permission_denied]\ndef mkPermissionDenied : UInt32 → String → IO.Error :=\n permissionDenied none", "start": [ 136, 1 ], "end": [ 138, 24 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkHardwareFault", "code": "@[export lean_mk_io_error_hardware_fault]\ndef mkHardwareFault : UInt32 → String → IO.Error :=\n hardwareFault", "start": [ 140, 1 ], "end": [ 142, 16 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkUnsatisfiedConstraints", "code": "@[export lean_mk_io_error_unsatisfied_constraints]\ndef mkUnsatisfiedConstraints : UInt32 → String → IO.Error :=\n unsatisfiedConstraints", "start": [ 144, 1 ], "end": [ 146, 25 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkIllegalOperation", "code": "@[export lean_mk_io_error_illegal_operation]\ndef mkIllegalOperation : UInt32 → String → IO.Error :=\n illegalOperation", "start": [ 148, 1 ], "end": [ 150, 19 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkProtocolError", "code": "@[export lean_mk_io_error_protocol_error]\ndef mkProtocolError : UInt32 → String → IO.Error :=\n protocolError", "start": [ 152, 1 ], "end": [ 154, 16 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.mkTimeExpired", "code": "@[export lean_mk_io_error_time_expired]\ndef mkTimeExpired : UInt32 → String → IO.Error :=\n timeExpired", "start": [ 156, 1 ], "end": [ 158, 14 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.downCaseFirst", "code": "private def downCaseFirst (s : String) : String := s.modify 0 Char.toLower", "start": [ 160, 1 ], "end": [ 160, 75 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.fopenErrorToString", "code": "def fopenErrorToString (gist fn : String) (code : UInt32) : Option String → String\n | some details => downCaseFirst gist ++ \" (error code: \" ++ toString code ++ \", \" ++ downCaseFirst details ++ \")\\n file: \" ++ fn\n | none => downCaseFirst gist ++ \" (error code: \" ++ toString code ++ \")\\n file: \" ++ fn", "start": [ 162, 1 ], "end": [ 164, 91 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.otherErrorToString", "code": "def otherErrorToString (gist : String) (code : UInt32) : Option String → String\n | some details => downCaseFirst gist ++ \" (error code: \" ++ toString code ++ \", \" ++ downCaseFirst details ++ \")\"\n | none => downCaseFirst gist ++ \" (error code: \" ++ toString code ++ \")\"", "start": [ 166, 1 ], "end": [ 168, 75 ], "kind": "commanddeclaration" }, { "full_name": "IO.Error.toString", "code": "@[export lean_io_error_to_string]\ndef toString : IO.Error → String\n | unexpectedEof => \"end of file\"\n | inappropriateType (some fn) code details => fopenErrorToString \"inappropriate type\" fn code details\n | inappropriateType none code details => otherErrorToString \"inappropriate type\" code details\n | interrupted fn code details => fopenErrorToString \"interrupted system call\" fn code details\n | invalidArgument (some fn) code details => fopenErrorToString \"invalid argument\" fn code details\n | invalidArgument none code details => otherErrorToString \"invalid argument\" code details\n | noFileOrDirectory fn code _ => fopenErrorToString \"no such file or directory\" fn code none\n | noSuchThing (some fn) code details => fopenErrorToString \"no such thing\" fn code details\n | noSuchThing none code details => otherErrorToString \"no such thing\" code details\n | permissionDenied (some fn) code details => fopenErrorToString details fn code none\n | permissionDenied none code details => otherErrorToString details code none\n | resourceExhausted (some fn) code details => fopenErrorToString \"resource exhausted\" fn code details\n | resourceExhausted none code details => otherErrorToString \"resource exhausted\" code details\n | alreadyExists none code details => otherErrorToString \"already exists\" code details\n | alreadyExists (some fn) code details => fopenErrorToString \"already exists\" fn code details\n | otherError code details => otherErrorToString details code none\n | resourceBusy code details => otherErrorToString \"resource busy\" code details\n | resourceVanished code details => otherErrorToString \"resource vanished\" code details\n | hardwareFault code _ => otherErrorToString \"hardware fault\" code none\n | illegalOperation code details => otherErrorToString \"illegal operation\" code details\n | protocolError code details => otherErrorToString \"protocol error\" code details\n | timeExpired code details => otherErrorToString \"time expired\" code details\n | unsatisfiedConstraints code _ => otherErrorToString \"directory not empty\" code none\n | unsupportedOperation code details => otherErrorToString \"unsupported operation\" code details\n | userError msg => msg", "start": [ 170, 1 ], "end": [ 196, 52 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Init/Data/Format/Macro.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Format/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Macro.lean" ]
[]
.lake/packages/lean4/src/lean/Init/Data/Format/Instances.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Format/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/Array/Basic.lean", ".lake/packages/lean4/src/lean/Init/Data/ToString/Basic.lean" ]
[ { "full_name": "List.format", "code": "def List.format [ToFormat α] : List α → Format\n | [] => \"[]\"\n | xs => Format.sbracket <| Format.joinSep xs (\",\" ++ Format.line)", "start": [ 16, 1 ], "end": [ 18, 68 ], "kind": "commanddeclaration" }, { "full_name": "Option.format", "code": "def Option.format {α : Type u} [ToFormat α] : Option α → Format\n | none => \"none\"\n | some a => \"some \" ++ Std.format a", "start": [ 26, 1 ], "end": [ 28, 38 ], "kind": "commanddeclaration" }, { "full_name": "String.toFormat", "code": "def String.toFormat (s : String) : Std.Format :=\n Std.Format.joinSep (s.splitOn \"\\n\") Std.Format.line", "start": [ 36, 1 ], "end": [ 37, 54 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/SSet.lean
[ ".lake/packages/lean4/src/lean/Lean/Data/SMap.lean" ]
[ { "full_name": "Lean.SSet", "code": "def SSet (α : Type u) [BEq α] [Hashable α] := SMap α Unit", "start": [ 11, 1 ], "end": [ 12, 58 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.empty", "code": "abbrev empty : SSet α := SMap.empty", "start": [ 19, 1 ], "end": [ 19, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.insert", "code": "abbrev insert (s : SSet α) (a : α) : SSet α :=\n SMap.insert s a ()", "start": [ 21, 1 ], "end": [ 22, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.contains", "code": "abbrev contains (s : SSet α) (a : α) : Bool :=\n SMap.contains s a", "start": [ 24, 1 ], "end": [ 25, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.forM", "code": "abbrev forM [Monad m] (s : SSet α) (f : α → m PUnit) : m PUnit :=\n SMap.forM s fun a _ => f a", "start": [ 27, 1 ], "end": [ 28, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.switch", "code": "abbrev switch (s : SSet α) : SSet α :=\n SMap.switch s", "start": [ 30, 1 ], "end": [ 32, 16 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.fold", "code": "abbrev fold (f : σ → α → σ) (init : σ) (s : SSet α) : σ :=\n SMap.fold (fun d a _ => f d a) init s", "start": [ 34, 1 ], "end": [ 35, 40 ], "kind": "commanddeclaration" }, { "full_name": "Lean.SSet.toList", "code": "def toList (m : SSet α) : List α :=\n m.fold (init := []) fun es a => a::es", "start": [ 37, 1 ], "end": [ 38, 40 ], "kind": "commanddeclaration" }, { "full_name": "List.toSSet", "code": "def List.toSSet [BEq α] [Hashable α] (es : List α) : Lean.SSet α :=\n es.foldl (init := {}) fun s a => s.insert a", "start": [ 44, 1 ], "end": [ 45, 46 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/RBTree.lean
[ ".lake/packages/lean4/src/lean/Lean/Data/RBMap.lean" ]
[ { "full_name": "Lean.RBTree", "code": "def RBTree (α : Type u) (cmp : α → α → Ordering) : Type u :=\n RBMap α Unit cmp", "start": [ 11, 1 ], "end": [ 12, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkRBTree", "code": "@[inline] def mkRBTree (α : Type u) (cmp : α → α → Ordering) : RBTree α cmp :=\n mkRBMap α Unit cmp", "start": [ 17, 1 ], "end": [ 18, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.empty", "code": "@[inline] def empty : RBTree α cmp :=\n RBMap.empty", "start": [ 26, 1 ], "end": [ 27, 14 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.depth", "code": "@[inline] def depth (f : Nat → Nat → Nat) (t : RBTree α cmp) : Nat :=\n RBMap.depth f t", "start": [ 29, 1 ], "end": [ 30, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.fold", "code": "@[inline] def fold (f : β → α → β) (init : β) (t : RBTree α cmp) : β :=\n RBMap.fold (fun r a _ => f r a) init t", "start": [ 32, 1 ], "end": [ 33, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.revFold", "code": "@[inline] def revFold (f : β → α → β) (init : β) (t : RBTree α cmp) : β :=\n RBMap.revFold (fun r a _ => f r a) init t", "start": [ 35, 1 ], "end": [ 36, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.foldM", "code": "@[inline] def foldM {m : Type v → Type w} [Monad m] (f : β → α → m β) (init : β) (t : RBTree α cmp) : m β :=\n RBMap.foldM (fun r a _ => f r a) init t", "start": [ 38, 1 ], "end": [ 39, 42 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.forM", "code": "@[inline] def forM {m : Type v → Type w} [Monad m] (f : α → m PUnit) (t : RBTree α cmp) : m PUnit :=\n t.foldM (fun _ a => f a) ⟨⟩", "start": [ 41, 1 ], "end": [ 42, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.forIn", "code": "@[inline] protected def forIn [Monad m] (t : RBTree α cmp) (init : σ) (f : α → σ → m (ForInStep σ)) : m σ :=\n t.val.forIn init (fun a _ acc => f a acc)", "start": [ 44, 1 ], "end": [ 45, 44 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.isEmpty", "code": "@[inline] def isEmpty (t : RBTree α cmp) : Bool :=\n RBMap.isEmpty t", "start": [ 50, 1 ], "end": [ 51, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.toList", "code": "@[specialize] def toList (t : RBTree α cmp) : List α :=\n t.revFold (fun as a => a::as) []", "start": [ 53, 1 ], "end": [ 54, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.toArray", "code": "@[specialize] def toArray (t : RBTree α cmp) : Array α :=\n t.fold (fun as a => as.push a) #[]", "start": [ 56, 1 ], "end": [ 57, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.min", "code": "@[inline] protected def min (t : RBTree α cmp) : Option α :=\n match RBMap.min t with\n | some ⟨a, _⟩ => some a\n | none => none", "start": [ 59, 1 ], "end": [ 62, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.max", "code": "@[inline] protected def max (t : RBTree α cmp) : Option α :=\n match RBMap.max t with\n | some ⟨a, _⟩ => some a\n | none => none", "start": [ 64, 1 ], "end": [ 67, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.insert", "code": "@[inline] def insert (t : RBTree α cmp) (a : α) : RBTree α cmp :=\n RBMap.insert t a ()", "start": [ 72, 1 ], "end": [ 73, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.erase", "code": "@[inline] def erase (t : RBTree α cmp) (a : α) : RBTree α cmp :=\n RBMap.erase t a", "start": [ 75, 1 ], "end": [ 76, 18 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.ofList", "code": "@[specialize] def ofList : List α → RBTree α cmp\n | [] => mkRBTree ..\n | x::xs => (ofList xs).insert x", "start": [ 78, 1 ], "end": [ 80, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.find?", "code": "@[inline] def find? (t : RBTree α cmp) (a : α) : Option α :=\n match RBMap.findCore? t a with\n | some ⟨a, _⟩ => some a\n | none => none", "start": [ 82, 1 ], "end": [ 85, 24 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.contains", "code": "@[inline] def contains (t : RBTree α cmp) (a : α) : Bool :=\n (t.find? a).isSome", "start": [ 87, 1 ], "end": [ 88, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.fromList", "code": "def fromList (l : List α) (cmp : α → α → Ordering) : RBTree α cmp :=\n l.foldl insert (mkRBTree α cmp)", "start": [ 90, 1 ], "end": [ 91, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.fromArray", "code": "def fromArray (l : Array α) (cmp : α → α → Ordering) : RBTree α cmp :=\n l.foldl insert (mkRBTree α cmp)", "start": [ 93, 1 ], "end": [ 94, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.all", "code": "@[inline] def all (t : RBTree α cmp) (p : α → Bool) : Bool :=\n RBMap.all t (fun a _ => p a)", "start": [ 96, 1 ], "end": [ 97, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.any", "code": "@[inline] def any (t : RBTree α cmp) (p : α → Bool) : Bool :=\n RBMap.any t (fun a _ => p a)", "start": [ 99, 1 ], "end": [ 100, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.subset", "code": "def subset (t₁ t₂ : RBTree α cmp) : Bool :=\n t₁.all fun a => (t₂.find? a).isSome", "start": [ 102, 1 ], "end": [ 103, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.seteq", "code": "def seteq (t₁ t₂ : RBTree α cmp) : Bool :=\n subset t₁ t₂ && subset t₂ t₁", "start": [ 105, 1 ], "end": [ 106, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.union", "code": "def union (t₁ t₂ : RBTree α cmp) : RBTree α cmp :=\n if t₁.isEmpty then\n t₂\n else\n t₂.fold .insert t₁", "start": [ 108, 1 ], "end": [ 112, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.RBTree.diff", "code": "def diff (t₁ t₂ : RBTree α cmp) : RBTree α cmp :=\n t₂.fold .erase t₁", "start": [ 114, 1 ], "end": [ 115, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.rbtreeOf", "code": "def rbtreeOf {α : Type u} (l : List α) (cmp : α → α → Ordering) : RBTree α cmp :=\n RBTree.fromList l cmp", "start": [ 119, 1 ], "end": [ 120, 24 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/HashSet.lean
[ ".lake/packages/lean4/src/lean/Init/Data/List/Control.lean", ".lake/packages/lean4/src/lean/Init/Data/Nat/Power2.lean" ]
[ { "full_name": "Lean.HashSetBucket", "code": "def HashSetBucket (α : Type u) :=\n { b : Array (List α) // b.size.isPowerOfTwo }", "start": [ 12, 1 ], "end": [ 13, 48 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetBucket.update", "code": "def HashSetBucket.update {α : Type u} (data : HashSetBucket α) (i : USize) (d : List α) (h : i.toNat < data.val.size) : HashSetBucket α :=\n ⟨ data.val.uset i d h,\n by erw [Array.size_set]; apply data.property ⟩", "start": [ 15, 1 ], "end": [ 17, 51 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetBucket.size_update", "code": "@[simp] theorem HashSetBucket.size_update {α : Type u} (data : HashSetBucket α) (i : USize) (d : List α) (h : i.toNat < data.val.size) :\n (data.update i d h).val.size = data.val.size", "start": [ 19, 1 ], "end": [ 21, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp", "code": "structure HashSetImp (α : Type u) where\n size : Nat\n buckets : HashSetBucket α", "start": [ 23, 1 ], "end": [ 25, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkHashSetImp", "code": "def mkHashSetImp {α : Type u} (capacity := 8) : HashSetImp α :=\n { size := 0\n buckets :=\n ⟨mkArray ((capacity * 4) / 3).nextPowerOfTwo [],\n by simp; apply Nat.isPowerOfTwo_nextPowerOfTwo⟩ }", "start": [ 27, 1 ], "end": [ 31, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.mkIdx", "code": "@[extern \"lean_hashset_mk_idx\"]\nprivate def mkIdx {sz : Nat} (hash : UInt64) (h : sz.isPowerOfTwo) : { u : USize // u.toNat < sz } :=\n let u := hash.toUSize &&& (sz.toUSize - 1)\n if h' : u.toNat < sz then\n ⟨u, h'⟩\n else\n ⟨0, by simp [USize.toNat, OfNat.ofNat, USize.ofNat, Fin.ofNat']; apply Nat.pos_of_isPowerOfTwo h⟩", "start": [ 37, 1 ], "end": [ 44, 102 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.reinsertAux", "code": "@[inline] def reinsertAux (hashFn : α → UInt64) (data : HashSetBucket α) (a : α) : HashSetBucket α :=\n let ⟨i, h⟩ := mkIdx (hashFn a) data.property\n data.update i (a :: data.val[i]) h", "start": [ 46, 1 ], "end": [ 48, 37 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.foldBucketsM", "code": "@[inline] def foldBucketsM {δ : Type w} {m : Type w → Type w} [Monad m] (data : HashSetBucket α) (d : δ) (f : δ → α → m δ) : m δ :=\n data.val.foldlM (init := d) fun d as => as.foldlM f d", "start": [ 50, 1 ], "end": [ 51, 56 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.foldBuckets", "code": "@[inline] def foldBuckets {δ : Type w} (data : HashSetBucket α) (d : δ) (f : δ → α → δ) : δ :=\n Id.run $ foldBucketsM data d f", "start": [ 53, 1 ], "end": [ 54, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.foldM", "code": "@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → m δ) (d : δ) (h : HashSetImp α) : m δ :=\n foldBucketsM h.buckets d f", "start": [ 56, 1 ], "end": [ 57, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.fold", "code": "@[inline] def fold {δ : Type w} (f : δ → α → δ) (d : δ) (m : HashSetImp α) : δ :=\n foldBuckets m.buckets d f", "start": [ 59, 1 ], "end": [ 60, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.forBucketsM", "code": "@[inline] def forBucketsM {m : Type w → Type w} [Monad m] (data : HashSetBucket α) (f : α → m PUnit) : m PUnit :=\n data.val.forM fun as => as.forM f", "start": [ 62, 1 ], "end": [ 63, 36 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.forM", "code": "@[inline] def forM {m : Type w → Type w} [Monad m] (f : α → m PUnit) (h : HashSetImp α) : m PUnit :=\n forBucketsM h.buckets f", "start": [ 65, 1 ], "end": [ 66, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.find?", "code": "def find? [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : Option α :=\n match m with\n | ⟨_, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n buckets.val[i].find? (fun a' => a == a')", "start": [ 68, 1 ], "end": [ 72, 45 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.contains", "code": "def contains [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : Bool :=\n match m with\n | ⟨_, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n buckets.val[i].contains a", "start": [ 74, 1 ], "end": [ 78, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.moveEntries", "code": "def moveEntries [Hashable α] (i : Nat) (source : Array (List α)) (target : HashSetBucket α) : HashSetBucket α :=\n if h : i < source.size then\n let idx : Fin source.size := ⟨i, h⟩\n let es : List α := source.get idx\n let source := source.set idx []\n let target := es.foldl (reinsertAux hash) target\n moveEntries (i+1) source target\n else\n target\ntermination_by source.size - i\ndecreasing_by simp_wf; decreasing_trivial_pre_omega", "start": [ 80, 1 ], "end": [ 91, 52 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.expand", "code": "def expand [Hashable α] (size : Nat) (buckets : HashSetBucket α) : HashSetImp α :=\n let bucketsNew : HashSetBucket α := ⟨\n mkArray (buckets.val.size * 2) [],\n by simp; apply Nat.mul2_isPowerOfTwo_of_isPowerOfTwo buckets.property\n ⟩\n { size := size,\n buckets := moveEntries 0 buckets.val bucketsNew }", "start": [ 93, 1 ], "end": [ 99, 54 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.insert", "code": "def insert [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : HashSetImp α :=\n match m with\n | ⟨size, buckets⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n let bkt := buckets.val[i]\n if bkt.contains a\n then\n let buckets' := buckets.update i .nil h\n ⟨size, buckets'.update i (bkt.replace a a) (by simpa [buckets'])⟩\n else\n let size' := size + 1\n let buckets' := buckets.update i (a :: bkt) h\n if size' ≤ buckets.val.size\n then { size := size', buckets := buckets' }\n else expand size' buckets'", "start": [ 101, 1 ], "end": [ 116, 33 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.erase", "code": "def erase [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : HashSetImp α :=\n match m with\n | ⟨ size, buckets ⟩ =>\n let ⟨i, h⟩ := mkIdx (hash a) buckets.property\n let bkt := buckets.val[i]\n if bkt.contains a then\n let buckets' := buckets.update i .nil h\n ⟨size - 1, buckets'.update i (bkt.erase a) (by simpa [buckets'])⟩\n else\n ⟨size, buckets⟩", "start": [ 118, 1 ], "end": [ 128, 22 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSetImp.WellFormed", "code": "inductive WellFormed [BEq α] [Hashable α] : HashSetImp α → Prop where\n | mkWff : ∀ n, WellFormed (mkHashSetImp n)\n | insertWff : ∀ m a, WellFormed m → WellFormed (insert m a)\n | eraseWff : ∀ m a, WellFormed m → WellFormed (erase m a)", "start": [ 130, 1 ], "end": [ 133, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet", "code": "def HashSet (α : Type u) [BEq α] [Hashable α] :=\n { m : HashSetImp α // m.WellFormed }", "start": [ 137, 1 ], "end": [ 138, 39 ], "kind": "commanddeclaration" }, { "full_name": "Lean.mkHashSet", "code": "def mkHashSet {α : Type u} [BEq α] [Hashable α] (capacity := 8) : HashSet α :=\n ⟨ mkHashSetImp capacity, WellFormed.mkWff capacity ⟩", "start": [ 142, 1 ], "end": [ 143, 55 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.empty", "code": "@[inline] def empty [BEq α] [Hashable α] : HashSet α :=\n mkHashSet", "start": [ 146, 1 ], "end": [ 147, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.insert", "code": "@[inline] def insert (m : HashSet α) (a : α) : HashSet α :=\n match m with\n | ⟨ m, hw ⟩ => ⟨ m.insert a, WellFormed.insertWff m a hw ⟩", "start": [ 156, 1 ], "end": [ 158, 61 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.erase", "code": "@[inline] def erase (m : HashSet α) (a : α) : HashSet α :=\n match m with\n | ⟨ m, hw ⟩ => ⟨ m.erase a, WellFormed.eraseWff m a hw ⟩", "start": [ 160, 1 ], "end": [ 162, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.find?", "code": "@[inline] def find? (m : HashSet α) (a : α) : Option α :=\n match m with\n | ⟨ m, _ ⟩ => m.find? a", "start": [ 164, 1 ], "end": [ 166, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.contains", "code": "@[inline] def contains (m : HashSet α) (a : α) : Bool :=\n match m with\n | ⟨ m, _ ⟩ => m.contains a", "start": [ 168, 1 ], "end": [ 170, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.foldM", "code": "@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → m δ) (init : δ) (h : HashSet α) : m δ :=\n match h with\n | ⟨ h, _ ⟩ => h.foldM f init", "start": [ 172, 1 ], "end": [ 174, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.fold", "code": "@[inline] def fold {δ : Type w} (f : δ → α → δ) (init : δ) (m : HashSet α) : δ :=\n match m with\n | ⟨ m, _ ⟩ => m.fold f init", "start": [ 176, 1 ], "end": [ 178, 30 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.forM", "code": "@[inline] def forM {m : Type w → Type w} [Monad m] (h : HashSet α) (f : α → m PUnit) : m PUnit :=\n match h with\n | ⟨h, _⟩ => h.forM f", "start": [ 180, 1 ], "end": [ 182, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.size", "code": "@[inline] def size (m : HashSet α) : Nat :=\n match m with\n | ⟨ {size := sz, ..}, _ ⟩ => sz", "start": [ 190, 1 ], "end": [ 192, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.isEmpty", "code": "@[inline] def isEmpty (m : HashSet α) : Bool :=\n m.size = 0", "start": [ 194, 1 ], "end": [ 195, 13 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.toList", "code": "def toList (m : HashSet α) : List α :=\n m.fold (init := []) fun r a => a::r", "start": [ 197, 1 ], "end": [ 198, 38 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.toArray", "code": "def toArray (m : HashSet α) : Array α :=\n m.fold (init := #[]) fun r a => r.push a", "start": [ 200, 1 ], "end": [ 201, 43 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.numBuckets", "code": "def numBuckets (m : HashSet α) : Nat :=\n m.val.buckets.val.size", "start": [ 203, 1 ], "end": [ 204, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.insertMany", "code": "def insertMany [ForIn Id ρ α] (s : HashSet α) (as : ρ) : HashSet α := Id.run do\n let mut s := s\n for a in as do\n s := s.insert a\n return s", "start": [ 206, 1 ], "end": [ 211, 11 ], "kind": "commanddeclaration" }, { "full_name": "Lean.HashSet.merge", "code": "@[inline]\ndef merge {α : Type u} [BEq α] [Hashable α] (s t : HashSet α) : HashSet α :=\n t.fold (init := s) fun s a => s.insert a", "start": [ 213, 1 ], "end": [ 218, 43 ], "kind": "commanddeclaration" } ]
.lake/packages/lean4/src/lean/Lean/Data/Name.lean
[ ".lake/packages/lean4/src/lean/Init/Data/Ord.lean" ]
[ { "full_name": "Lean.Name.hashEx", "code": "@[export lean_name_hash_exported] def hashEx : Name → UInt64 :=\n Name.hash", "start": [ 12, 1 ], "end": [ 13, 12 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.getPrefix", "code": "def getPrefix : Name → Name\n | anonymous => anonymous\n | str p _ => p\n | num p _ => p", "start": [ 15, 1 ], "end": [ 18, 19 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.getString!", "code": "def getString! : Name → String\n | str _ s => s\n | _ => unreachable!", "start": [ 20, 1 ], "end": [ 22, 28 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.getNumParts", "code": "def getNumParts : Name → Nat\n | anonymous => 0\n | str p _ => getNumParts p + 1\n | num p _ => getNumParts p + 1", "start": [ 24, 1 ], "end": [ 27, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.updatePrefix", "code": "def updatePrefix : Name → Name → Name\n | anonymous, _ => anonymous\n | str _ s, newP => Name.mkStr newP s\n | num _ s, newP => Name.mkNum newP s", "start": [ 29, 1 ], "end": [ 32, 41 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.componentsRev", "code": "def componentsRev : Name → List Name\n | anonymous => []\n | str n s => Name.mkStr anonymous s :: componentsRev n\n | num n v => Name.mkNum anonymous v :: componentsRev n", "start": [ 34, 1 ], "end": [ 37, 59 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.components", "code": "def components (n : Name) : List Name :=\n n.componentsRev.reverse", "start": [ 39, 1 ], "end": [ 40, 26 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.eqStr", "code": "def eqStr : Name → String → Bool\n | str anonymous s, s' => s == s'\n | _, _ => false", "start": [ 42, 1 ], "end": [ 44, 35 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isPrefixOf", "code": "def isPrefixOf : Name → Name → Bool\n | p, anonymous => p == anonymous\n | p, n@(num p' _) => p == n || isPrefixOf p p'\n | p, n@(str p' _) => p == n || isPrefixOf p p'", "start": [ 46, 1 ], "end": [ 49, 49 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isSuffixOf", "code": "def isSuffixOf : Name → Name → Bool\n | anonymous, _ => true\n | str p₁ s₁, str p₂ s₂ => s₁ == s₂ && isSuffixOf p₁ p₂\n | num p₁ n₁, num p₂ n₂ => n₁ == n₂ && isSuffixOf p₁ p₂\n | _, _ => false", "start": [ 52, 1 ], "end": [ 56, 34 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.cmp", "code": "def cmp : Name → Name → Ordering\n | anonymous, anonymous => Ordering.eq\n | anonymous, _ => Ordering.lt\n | _, anonymous => Ordering.gt\n | num p₁ i₁, num p₂ i₂ =>\n match cmp p₁ p₂ with\n | Ordering.eq => compare i₁ i₂\n | ord => ord\n | num _ _, str _ _ => Ordering.lt\n | str _ _, num _ _ => Ordering.gt\n | str p₁ n₁, str p₂ n₂ =>\n match cmp p₁ p₂ with\n | Ordering.eq => compare n₁ n₂\n | ord => ord", "start": [ 58, 1 ], "end": [ 71, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.lt", "code": "def lt (x y : Name) : Bool :=\n cmp x y == Ordering.lt", "start": [ 73, 1 ], "end": [ 74, 25 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.quickCmpAux", "code": "def quickCmpAux : Name → Name → Ordering\n | anonymous, anonymous => Ordering.eq\n | anonymous, _ => Ordering.lt\n | _, anonymous => Ordering.gt\n | num n v, num n' v' =>\n match compare v v' with\n | Ordering.eq => n.quickCmpAux n'\n | ord => ord\n | num _ _, str _ _ => Ordering.lt\n | str _ _, num _ _ => Ordering.gt\n | str n s, str n' s' =>\n match compare s s' with\n | Ordering.eq => n.quickCmpAux n'\n | ord => ord", "start": [ 76, 1 ], "end": [ 89, 17 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.quickCmp", "code": "def quickCmp (n₁ n₂ : Name) : Ordering :=\n match compare n₁.hash n₂.hash with\n | Ordering.eq => quickCmpAux n₁ n₂\n | ord => ord", "start": [ 91, 1 ], "end": [ 94, 15 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.quickLt", "code": "def quickLt (n₁ n₂ : Name) : Bool :=\n quickCmp n₁ n₂ == Ordering.lt", "start": [ 96, 1 ], "end": [ 97, 32 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.hasNum", "code": "def hasNum : Name → Bool\n | .anonymous => false\n | .str p _ => p.hasNum\n | .num _ _ => true", "start": [ 99, 1 ], "end": [ 103, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isInternal", "code": "def isInternal : Name → Bool\n | str p s => s.get 0 == '_' || isInternal p\n | num p _ => isInternal p\n | _ => false", "start": [ 105, 1 ], "end": [ 110, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isInternalOrNum", "code": "def isInternalOrNum : Name → Bool\n | .str p s => s.get 0 == '_' || isInternalOrNum p\n | .num _ _ => true\n | _ => false", "start": [ 112, 1 ], "end": [ 121, 21 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isInternalDetail", "code": "def isInternalDetail : Name → Bool\n | .str p s =>\n s.startsWith \"_\"\n || matchPrefix s \"eq_\"\n || matchPrefix s \"match_\"\n || matchPrefix s \"proof_\"\n || p.isInternalOrNum\n | .num _ _ => true\n | p => p.isInternalOrNum\nwhere\n \n matchPrefix (s : String) (pre : String) :=\n s.startsWith pre && (s |>.drop pre.length |>.all Char.isDigit)", "start": [ 123, 1 ], "end": [ 141, 67 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isImplementationDetail", "code": "def isImplementationDetail : Name → Bool\n | str anonymous s => s.startsWith \"__\"\n | num p _ => p.isImplementationDetail\n | str p _ => p.isImplementationDetail\n | anonymous => false", "start": [ 143, 1 ], "end": [ 152, 23 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isAtomic", "code": "def isAtomic : Name → Bool\n | anonymous => true\n | str anonymous _ => true\n | num anonymous _ => true\n | _ => false", "start": [ 154, 1 ], "end": [ 158, 29 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isAnonymous", "code": "def isAnonymous : Name → Bool\n | anonymous => true\n | _ => false", "start": [ 160, 1 ], "end": [ 162, 31 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isStr", "code": "def isStr : Name → Bool\n | str .. => true\n | _ => false", "start": [ 164, 1 ], "end": [ 166, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.isNum", "code": "def isNum : Name → Bool\n | num .. => true\n | _ => false", "start": [ 168, 1 ], "end": [ 170, 20 ], "kind": "commanddeclaration" }, { "full_name": "Lean.Name.anyS", "code": "def anyS (n : Name) (f : String → Bool) : Bool :=\n match n with\n | .str p s => f s || p.anyS f\n | .num p _ => p.anyS f\n | _ => false", "start": [ 172, 1 ], "end": [ 185, 15 ], "kind": "commanddeclaration" } ]