Datasets:
File size: 7,419 Bytes
1b675f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
---
tags:
- text-to-image
- stable-diffusion
language:
- en
library_name: diffusers
---
# IP-Adapter-FaceID Model Card
<div align="center">
[**Project Page**](https://ip-adapter.github.io) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2308.06721) **|** [**Code**](https://github.com/tencent-ailab/IP-Adapter)
</div>
---
## Introduction
An experimental version of IP-Adapter-FaceID: we use face ID embedding from a face recognition model instead of CLIP image embedding, additionally, we use LoRA to improve ID consistency. IP-Adapter-FaceID can generate various style images conditioned on a face with only text prompts.
![results](./ip-adapter-faceid.jpg)
**Update 2023/12/27**:
IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
<div align="center">
![results](./faceid-plus.jpg)
</div>
**Update 2023/12/28**:
IP-Adapter-FaceID-PlusV2: face ID embedding (for face ID) + controllable CLIP image embedding (for face structure)
You can adjust the weight of the face structure to get different generation!
<div align="center">
![results](./faceid_plusv2.jpg)
</div>
**Update 2024/01/04**:
IP-Adapter-FaceID-SDXL: An experimental SDXL version of IP-Adapter-FaceID
<div align="center">
![results](./sdxl_faceid.jpg)
</div>
## Usage
### IP-Adapter-FaceID
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
```python
import cv2
from insightface.app import FaceAnalysis
import torch
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.imread("person.jpg")
faces = app.get(image)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
```
Then, you can generate images conditioned on the face embeddings:
```python
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
ip_ckpt = "ip-adapter-faceid_sd15.bin"
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
)
# load ip-adapter
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
# generate image
prompt = "photo of a woman in red dress in a garden"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
images = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
)
```
### IP-Adapter-FaceID-SDXL
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
```python
import cv2
from insightface.app import FaceAnalysis
import torch
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.imread("person.jpg")
faces = app.get(image)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
```
Then, you can generate images conditioned on the face embeddings:
```python
import torch
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDXL
base_model_path = "SG161222/RealVisXL_V3.0"
ip_ckpt = "ip-adapter-faceid_sdxl.bin"
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
add_watermarker=False,
)
# load ip-adapter
ip_model = IPAdapterFaceIDXL(pipe, ip_ckpt, device)
# generate image
prompt = "A closeup shot of a beautiful Asian teenage girl in a white dress wearing small silver earrings in the garden, under the soft morning light"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
images = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=2,
width=1024, height=1024,
num_inference_steps=30, guidance_scale=7.5, seed=2023
)
```
### IP-Adapter-FaceID-Plus
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
```python
import cv2
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import torch
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.imread("person.jpg")
faces = app.get(image)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
```
Then, you can generate images conditioned on the face embeddings:
```python
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
v2 = False
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin" if not v2 else "ip-adapter-faceid-plusv2_sd15.bin"
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
)
# load ip-adapter
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
# generate image
prompt = "photo of a woman in red dress in a garden"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
images = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, shortcut=v2, s_scale=1.0,
num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
)
```
## Limitations and Bias
- The model does not achieve perfect photorealism and ID consistency.
- The generalization of the model is limited due to limitations of the training data, base model and face recognition model.
## Non-commercial use
**This model is released exclusively for research purposes and is not intended for commercial use.**
|