_id
stringlengths
4
9
text
stringlengths
260
10k
8698208
Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000–15,000 births. Affected females develop normally for 6–18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3–12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.
8698857
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU-rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE-binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.
8712839
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
8721150
The Protein Data Bank [PDB; Berman, Westbrook et al. (2000), Nucleic Acids Res. 28, 235-242; http://www.pdb.org/] is the single worldwide archive of primary structural data of biological macromolecules. Many secondary sources of information are derived from PDB data. It is the starting point for studies in structural bioinformatics. This article describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource. The reader should come away with an understanding of the scope of the PDB and what is provided by the resource.
8756719
This study represents the first phase III trial of the safety, tolerability, and effectiveness of tafenoquine for malaria prophylaxis. In a randomized (3:1), double-blinded study, Australian soldiers received weekly malaria prophylaxis with 200 mg tafenoquine (492 subjects) or 250 mg mefloquine (162 subjects) for 6 months on a peacekeeping deployment to East Timor. After returning to Australia, tafenoquine-receiving subjects received a placebo and mefloquine-receiving subjects received 30 mg primaquine daily for 14 days. There were no clinically significant differences between hematological and biochemical parameters of the treatment groups. Treatment-related adverse events for the two groups were similar (tafenoquine, 13.4%; mefloquine, 11.7%). Three subjects on tafenoquine (0.6%) and none on mefloquine discontinued prophylaxis because of possible drug-related adverse events. No diagnoses of malaria occurred for either group during deployment, but 4 cases (0.9%) and 1 case (0.7%) of Plasmodium vivax infection occurred among the tafenoquine and mefloquine groups, respectively, up to 20 weeks after discontinuation of medication. In a subset of subjects recruited for detailed safety assessments, treatment-related mild vortex keratopathy was detected in 93% (69 of 74) of tafenoquine subjects but none of the 21 mefloquine subjects. The vortex keratopathy was not associated with any effect on visual acuity and was fully resolved in all subjects by 1 year. Tafenoquine appears to be safe and well tolerated as malaria prophylaxis. Although the volunteers' precise exposure to malaria could not be proven in this study, tafenoquine appears to be a highly efficacious drug for malaria prophylaxis.
8759633
Studies of replication timing provide a handle into previously impenetrable higher-order levels of chromosome organization and their plasticity during development. Although mechanisms regulating replication timing are not clear, novel genome-wide studies provide a thorough survey of the extent to which replication timing is regulated during most of the early cell fate transitions in mammals, revealing coordinated changes of a defined set of 400–800 kb chromosomal segments that involve at least half the genome. Furthermore, changes in replication time are linked to changes in sub-nuclear organization and domain-wide transcriptional potential, and tissue-specific replication timing profiles are conserved from mouse to human, suggesting that the program has developmental significance. Hence, these studies have provided a solid foundation for linking megabase level chromosome structure to function, and suggest a central role for replication in domain-level genome organization.
8764879
Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony–stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1Rhigh cells), but not those expressing low amounts of CSF1R (CSF1Rlow cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1Rhigh cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2–induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1Rhigh cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.
8771704
Acute skeletal muscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to permanent tissue scarring, the consequences of its suppression remain to be studied. Using a model of acute muscle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration. We found that Nilotinib inhibits the damage-induced expansion of satellite cells in vivo, but it does not affect in vitro proliferation, suggesting a non cell-autonomous effect. Nilotinib impairs regenerative fibrogenesis by preventing the injury-triggered expansion and differentiation of resident CD45(-):CD31(-):α7integrin(-):Sca1(+) mesenchymal FAPs. Our data support the notion that the expansion of FAPs and transient fibrogenesis observed during regeneration play an important trophic role toward tissue-specific stem cells.
8774475
Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.
8780599
OBJECTIVE Although the Polypill concept (proposed in 2003) is promising in terms of benefits for cardiovascular risk management, the potential costs and adverse effects are its main pitfalls. The objective of this study was to identify a tastier and safer alternative to the Polypill: the Polymeal. METHODS Data on the ingredients of the Polymeal were taken from the literature. The evidence based recipe included wine, fish, dark chocolate, fruits, vegetables, garlic, and almonds. Data from the Framingham heart study and the Framingham offspring study were used to build life tables to model the benefits of the Polymeal in the general population from age 50, assuming multiplicative correlations. RESULTS Combining the ingredients of the Polymeal would reduce cardiovascular disease events by 76%. For men, taking the Polymeal daily represented an increase in total life expectancy of 6.6 years, an increase in life expectancy free from cardiovascular disease of 9.0 years, and a decrease in life expectancy with cardiovascular disease of 2.4 years. The corresponding differences for women were 4.8, 8.1, and 3.3 years. CONCLUSION The Polymeal promises to be an effective, non-pharmacological, safe, cheap, and tasty alternative to reduce cardiovascular morbidity and increase life expectancy in the general population.
8790729
BACKGROUND There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs), which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2) in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin-producing cells, because of the large potential donor pool, its rapid availability, no risk of discomfort for the donor, and low risk of rejection.
8842332
OBJECTIVE To compare contemporary pregnancy outcomes in women with and without type 1 diabetes, and to examine the effects of obesity and glycaemic control on these outcomes. DESIGN AND SETTING Historical cohort study in a specialist diabetes and maternity network in Victoria. PARTICIPANTS All singleton births (at least 20 weeks' gestation), 2010-2013, were analysed: 107 pregnancies to women with type 1 diabetes and 27 075 pregnancies to women without diabetes. Women with type 2 diabetes or gestational diabetes were excluded. METHODS Data were extracted from the Birthing Outcomes System database; associations between type 1 diabetes and pregnancy outcomes were analysed by multivariable regression. MAIN OUTCOME MEASURES Mode of birth; maternal and neonatal outcomes. RESULTS The mean body mass index was higher for women with type 1 diabetes than for women without diabetes (mean, 27.3 kg/m(2) [SD, 5.0] v 25.7 kg/m(2) [SD, 5.9]; P = 0.01); the median gestation period for their babies was shorter (median, 37.3 weeks [IQR, 34.6-38.1] v 39.4 weeks [IQR, 38.4-40.4]; P < 0.001) and they were more likely to be large for gestational age (LGA) (adjusted odds ratio [aOR], 7.9; 95% CI, 5.3-11.8). Women with type 1 diabetes were more likely to have had labour induced (aOR, 3.0; 95% CI, 2.0-4.5), a caesarean delivery (aOR, 4.6; 95% CI, 3.1-7.0), or a pre-term birth (aOR, 6.7; 95% CI, 4.5-10.0); their babies were more likely to have shoulder dystocia (aOR, 8.2; 95% CI, 3.6-18.7), hypoglycaemia (aOR, 10.3; 95% CI, 6.8-15.6), jaundice (aOR, 5.1; 95% CI, 3.3-7.7), respiratory distress (aOR, 2.5; 95% CI, 1.4-4.4) or to suffer perinatal death (aOR, 4.3; 95% CI, 1.9-9.9). In women with type 1 diabetes, greater obesity was associated with increased odds for an LGA baby or congenital malformation, and increased HbA1c levels were associated with pre-term birth and perinatal death. CONCLUSION Women with type 1 diabetes, even when managed in a specialist setting, still experience adverse obstetric and neonatal outcomes. Poor glycaemic control is not wholly responsible for adverse outcomes, reinforcing the importance of other risk factors, such as obesity and weight gain.
8856690
The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP9k, and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.
8868863
Sleep disturbances, including sleep insufficiency and sleep fragmentation, have been linked to abnormal glucose metabolism and increased diabetes risk. Well-controlled laboratory studies have provided insights regarding the underlying mechanisms. Several large prospective studies suggest that these sleep disturbances are associated with an increased risk of incident diabetes. Obstructive sleep apnea, which combines sleep fragmentation and hypoxemia, is a major risk factor for insulin resistance and possibly diabetes. Whether glycemic control in type 2 diabetes patients can be improved by treating sleep apnea remains controversial. Recently, sleep disturbances during pregnancy and their relationship to gestational diabetes and hyperglycemia have received considerable attention owing to potential adverse effects on maternal and fetal health. Additionally, evidence from animal models has identified disruption of the circadian system as a putative risk factor for adverse metabolic outcomes. The purpose of this review is to provide an update on the current state of knowledge linking sleep disturbances, circadian dysfunction, and glucose metabolism. Experimental, prospective, and interventional studies are discussed.
8891333
Data from certain leukemias as well as brain and breast cancer indicate that there is a small population of tumor cells with ‘stem cell’ characteristics and the capacity for self-renewal. The self-renewing cells have many of the properties of normal stem cells and have been termed ‘cancer stem cells’. These cancer stem cells make up as few as 1% of the cells in a tumor, making them difficult to detect and study. Like normal stem cells, cancer stem cells have a number of properties permitting them to survive traditional cancer chemotherapy and radiation therapy. These cells express high levels of ATP-binding cassette (ABC) drug transporters, providing for a level of resistance; are relatively quiescent; have higher levels of DNA repair and a lowered ability to enter apoptosis. Combined cancer therapy approaches targeting the cancer stem cells and the non-stem cells may be developed with increased efficacy. Efforts to target the Hedgehog/Patched pathway, critical to embryonic growth and differentiation, and the ABCG2 drug efflux transporter will be presented.
8892905
Alzheimer's disease (AD) is hypothesized to be caused by an overproduction or reduced clearance of amyloid-β (Aβ) peptide. Autosomal dominant AD (ADAD) caused by mutations in the presenilin (PSEN) gene have been postulated to result from increased production of Aβ42 compared to Aβ40 in the central nervous system (CNS). This has been demonstrated in rodent models of ADAD but not in human mutation carriers. We used compartmental modeling of stable isotope labeling kinetic (SILK) studies in human carriers of PSEN mutations and related noncarriers to evaluate the pathophysiological effects of PSEN1 and PSEN2 mutations on the production and turnover of Aβ isoforms. We compared these findings by mutation status and amount of fibrillar amyloid deposition as measured by positron emission tomography (PET) using the amyloid tracer Pittsburgh compound B (PIB). CNS Aβ42 to Aβ40 production rates were 24% higher in mutation carriers compared to noncarriers, and this was independent of fibrillar amyloid deposits quantified by PET PIB imaging. The fractional turnover rate of soluble Aβ42 relative to Aβ40 was 65% faster in mutation carriers and correlated with amyloid deposition, consistent with increased deposition of Aβ42 into plaques, leading to reduced recovery of Aβ42 in cerebrospinal fluid (CSF). Reversible exchange of Aβ42 peptides with preexisting unlabeled peptide was observed in the presence of plaques. These findings support the hypothesis that Aβ42 is overproduced in the CNS of humans with PSEN mutations that cause AD, and demonstrate that soluble Aβ42 turnover and exchange processes are altered in the presence of amyloid plaques, causing a reduction in Aβ42 concentrations in the CSF.
8903143
The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.
8925851
Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q- syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases.
8989616
The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.
8994465
Melanomas are highly heterogeneous tumors, but the biological significance of their different subpopulations is not clear. Using the H3K4 demethylase JARID1B (KDM5B/PLU-1/RBP2-H1) as a biomarker, we have characterized a small subpopulation of slow-cycling melanoma cells that cycle with doubling times of >4 weeks within the rapidly proliferating main population. Isolated JARID1B-positive melanoma cells give rise to a highly proliferative progeny. Knockdown of JARID1B leads to an initial acceleration of tumor growth followed by exhaustion which suggests that the JARID1B-positive subpopulation is essential for continuous tumor growth. Expression of JARID1B is dynamically regulated and does not follow a hierarchical cancer stem cell model because JARID1B-negative cells can become positive and even single melanoma cells irrespective of selection are tumorigenic. These results suggest a new understanding of melanoma heterogeneity with tumor maintenance as a dynamic process mediated by a temporarily distinct subpopulation.
8995263
Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients' samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. KEY MESSAGES: circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
8997410
Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network.
9021186
The persistence of transcriptionally silent but replication-competent HIV-1 reservoirs in Highly Active Anti-Retroviral Therapy (HAART)-treated infected individuals, represents a major hurdle to virus eradication. Activation of HIV-1 gene expression in these cells together with an efficient HAART has been proposed as an adjuvant therapy aimed at decreasing the pool of latent viral reservoirs. Using the latently-infected U1 monocytic cell line and latently-infected J-Lat T-cell clones, we here demonstrated a strong synergistic activation of HIV-1 production by clinically used histone deacetylase inhibitors (HDACIs) combined with prostratin, a non-tumor-promoting nuclear factor (NF)- kappaB inducer. In J-Lat cells, we showed that this synergism was due, at least partially, to the synergistic recruitment of unresponsive cells into the expressing cell population. A combination of prostratin+HDACI synergistically activated the 5' Long Terminal Repeat (5'LTR) from HIV-1 Major group subtypes representing the most prevalent viral genetic forms, as shown by transient transfection reporter assays. Mechanistically, HDACIs increased prostratin-induced DNA-binding activity of nuclear NF-kappaB and degradation of cytoplasmic NF-kappaB inhibitor, IkappaBalpha . Moreover, the combined treatment prostratin+HDACI caused a more pronounced nucleosomal remodeling in the U1 viral promoter region than the treatments with the compounds alone. This more pronounced remodeling correlated with a synergistic reactivation of HIV-1 transcription following the combined treatment prostratin+HDACI, as demonstrated by measuring recruitment of RNA polymerase II to the 5'LTR and both initiated and elongated transcripts. The physiological relevance of the prostratin+HDACI synergism was shown in CD8(+)-depleted peripheral blood mononuclear cells from HAART-treated patients with undetectable viral load. Moreover, this combined treatment reactivated viral replication in resting CD4(+) T cells isolated from similar patients. Our results suggest that combinations of different kinds of proviral activators may have important implications for reducing the size of latent HIV-1 reservoirs in HAART-treated patients.
9056874
Prolonged or intensive immunosuppressive therapy used after organ transplantation is complicated by an increased incidence of cancer. Striking differences in incidence are observed in heart and heart-lung transplant recipients when compared with renal transplant patients. The most significant increase was in the incidence of lymphomas in cardiac versus renal patients. Moreover, a two-fold greater increase of all neoplasms was found in cardiac recipients, with nearly a six-fold increase in visceral tumors. Several factors may account for these differences. In cardiac allograft recipients, intensive immunosuppression is frequently used to reverse acute rejection and the highest number of cardiac transplants was performed in the era of polypharmacy, usually consisting of triple therapy.
9095943
BACKGROUND In patients with Ovarian Cancer (OvCa) exosomes released by tumor cells are present in the plasma and could be involved in tumor progression. This study examines the association between the exosome presence/protein content in plasma of OvCa patients and disease outcome, response to standard therapy and/or tumorresistance to therapies in patients studied at diagnosis and also serially during and after therapy. DESIGN AND METHODS Exosomes were purified from OvCa patients' plasma (n=22), patients with benign tumors (n=10) or (n=10) healthy controls (NC) using ultracentrifugation. Exosomes were visualized by scanning electron microscopy. Their protein content was measured. The presence of MAGE 3/6 and TGF-β1 in exosomes was evaluated in Western blots. RESULTS The OvCa patients' plasma contained higher levels of exosomal proteins (p<0.05) compared to those isolated from plasma of patients with benign tumors or NC. Exosomes isolated from OvCa patients's plasma carried TGF-β1 and MAGE3/6, which distinguished OvCa patients from those with benign tumors and NC. High protein levels of exosomes were seen in newly diagnosed patients; however in advanced stages of OvCa patients the protein content of isolated exosomes was significantly higher than that of early stages. The exosome levels variably changed during/after chemotherapy, and correlations between the changes in exosomal protein levels and clinical data suggested that the protein content of exosomes might be useful in predicting responses to therapy and prognosis in OvCa patients. CONCLUSION Analysis of plasma exosomes levels offers a novel approach to diagnosis and monitoring response to therapies in OvCa patients.
9122283
RATIONALE Multiple biological mechanisms contribute to the efficacy of cardiac cell therapy. Most prominent among these are direct heart muscle and blood vessel regeneration from transplanted cells, as opposed to paracrine enhancement of tissue preservation and/or recruitment of endogenous repair. OBJECTIVE Human cardiac progenitor cells, cultured as cardiospheres (CSps) or as CSp-derived cells (CDCs), have been shown to be capable of direct cardiac regeneration in vivo. Here we characterized paracrine effects in CDC transplantation and investigated their relative importance versus direct differentiation of surviving transplanted cells. METHODS AND RESULTS In vitro, many growth factors were found in media conditioned by human adult CSps and CDCs; CDC-conditioned media exerted antiapoptotic effects on neonatal rat ventricular myocytes, and proangiogenic effects on human umbilical vein endothelial cells. In vivo, human CDCs secreted vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1 when transplanted into the same SCID mouse model of acute myocardial infarction where they were previously shown to improve function and to produce tissue regeneration. Injection of CDCs in the peri-infarct zone increased the expression of Akt, decreased apoptotic rate and caspase 3 level, and increased capillary density, indicating overall higher tissue resilience. Based on the number of human-specific cells relative to overall increases in capillary density and myocardial viability, direct differentiation quantitatively accounted for 20% to 50% of the observed effects. CONCLUSIONS Together with their spontaneous commitment to cardiac and angiogenic differentiation, transplanted CDCs serve as "role models," recruiting endogenous regeneration and improving tissue resistance to ischemic stress. The contribution of the role model effect rivals or exceeds that of direct regeneration.
9142761
Plasmodium falciparum surface protein 25 (Pfs25) is a candidate for transmission-blocking vaccines (TBVs). Anti-Pfs25 antibodies block the development of oocysts in membrane-feeding assays and we have shown the activity correlates with antibody titer. In this study, we purified Pfs25-specific IgGs to convert antibody titer to microg/mL and determined the amount of antibody required to inhibit 50% of oocyst development (IC(50)). The IC(50) were, 15.9, 4.2, 41.2, and 85.6microg/mL for mouse, rabbit, monkey and human, respectively, and the differences among species were significant. Anti-Pfs25 sera from rabbit, monkey and human showed different patterns of competition against 6 mouse monoclonal antibodies, and the avidity of antibodies among four species were also different. These data suggests that information obtained from animal studies which assess efficacy of TBV candidates may be difficult to translate to human immunization.
9154703
Expression from both alleles is generally observed in analyses of diploid cell populations, but studies addressing allelic expression patterns genome-wide in single cells are lacking. Here, we present global analyses of allelic expression across individual cells of mouse preimplantation embryos of mixed background (CAST/EiJ × C57BL/6J). We discovered abundant (12 to 24%) monoallelic expression of autosomal genes and that expression of the two alleles occurs independently. The monoallelic expression appeared random and dynamic because there was considerable variation among closely related embryonic cells. Similar patterns of monoallelic expression were observed in mature cells. Our allelic expression analysis also demonstrates the de novo inactivation of the paternal X chromosome. We conclude that independent and stochastic allelic transcription generates abundant random monoallelic expression in the mammalian cell.
9159125
Macrophages produce a large amount of PGE(2) during inflammation. This lipid mediator modulates various immune responses. PGE(2) acts on macrophages and inhibits production of cytokines such as TNF-alpha and IL-12. Membrane-bound glutathione-dependent PGE(2) synthase (mPGES) has been shown to be a terminal enzyme of the cyclooxygenase-2-mediated PGE(2) biosynthesis. Here we identified mPGES as a molecule that is induced by LPS in macrophages. The expression of mPGES was not induced by LPS in mice lacking Toll-like receptor 4 or MyD88. Furthermore, mice deficient in NF-IL6 showed neither induction of mPGES nor biosynthesis of PGE(2) in response to LPS, indicating that mPGES expression in response to LPS is regulated by a Toll-like receptor 4/MyD88/NF-IL6-dependent signaling pathway. We generated mPGES-deficient mice and investigated the role of mPGES in vivo. The mice showed no augmentation of the PGE(2) production in response to LPS. However, they were not impaired in the LPS-induced production of inflammatory cytokines and showed normal response to the LPS-induced shock. Thus, mPGES is critically involved in the biosynthesis of PGE(2) induced by LPS, but is dispensable for the modulation of inflammatory responses.
9160947
Interleukin 7 (IL-7) stimulates the proliferation of B cell progenitors, thymocytes, and mature T cells through an interaction with a high affinity receptor (IL-7R) belonging to the hematopoietin receptor superfamily. We have further addressed the role of IL-7 and its receptor during B and T cell development by generating mice genetically deficient in IL-7R. Mutant mice display a profound reduction in thymic and peripheral lymphoid cellularity. Analyses of lymphoid progenitor populations in IL-7R-deficient mice define precisely those developmental stages affected by the mutation and reveal a critical role for IL-7R during early lymphoid development. Significantly, these studies indicate that the phase of thymocyte expansion occurring before the onset of T cell receptor gene rearrangement is critically dependent upon, and mediated by the high affinity receptor for IL-7.
9167230
BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. FUNDING WHO.
9171913
In this prospective study, the relationship between blood lipids and breast cancer risk was examined. Between 1977 and 1983, 31,209 Norwegian women, 20 to 54 years of age, attended a health screening carried out by the Norwegian National Health Screening Services. The screening consisted of a questionnaire, anthropometric measurements, and nonfasting blood drawn for analysis of total serum cholesterol (TC), triglyceride (TG), and high density lipoprotein (HDL) cholesterol. Low density lipoprotein (LDL) cholesterol was calculated by the Friedewald's formula. During the seven to 13 years of follow-up, 302 breast cancer cases were identified by linkage to the Norwegian Cancer Registry. After adjustment for some of the known risk factors of breast cancer, the relative risk of women in the highest quartile of TC compared with women in the lowest quartile was 0.87 (95 percent confidence interval [CI]=0.61–1.23). The corresponding relative risks and CIs were 0.82 (CI=0.58–1.16) for TG, 1.02 (CI=0.73–1.42) for HDL, and 0.93 (CI=0.67–1.29) for LDL. No association between breast cancer risk and blood lipids was found in the total population, nor when the data were divided into those diagnosed before or after the age of 50 as a dividing line between pre- and postmenopausal diagnosis.
9194077
Pathogenesis of Alzheimer’s disease (AD), which is characterised by accumulation of extracellular deposits of β-amyloid peptide (Aβ) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Aβ is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by β- and γ-secretases and certain Aβ species are toxic for neurones. The brain has an endogenous mechanism of Aβ removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Aβ concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Aβ-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression.
9196472
BACKGROUND Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. METHODOLOGY/PRINCIPAL FINDINGS To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78x10(-12)), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9x10(-7)), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. CONCLUSIONS/SIGNIFICANCE This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment.
9199796
Among lower eukaryotes, glucose repression is a conserved, widely spread mechanism regulating carbon catabolism. The yeast Snf1 kinase, the Mig1 DNA-binding repressor and the Mig1-interacting co-repressor complex Cyc8(Ssn6)-Tup1 are central components of this pathway. Previous experiments suggested that cytoplasmic translocation of Mig1, upon its phosphorylation by Snf1 in the nucleus, is the key regulatory step for releasing glucose repression. In this report we re-evaluate this model. We establish the coordinated repressive action of Mig1 and Cyc8-Tup1 on GAL1 transcription, but we find that Cyc8-Tup1 is not tethered by Mig1 to the promoter DNA. We demonstrate that both negative regulators occupy GAL1 continuously under either repression or activation conditions, although the majority of the Mig1 is redistributed to the cytoplasm upon activation. We show that Snf1-dependent phosphorylation of Mig1 abolishes interaction with Cyc8-Tup1, and we propose that regulation of this interaction, not the Mig1 cytoplasmic localization, is the molecular switch that controls transcriptional repression/de-repression.
9217800
The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD.
9225850
Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kβ/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation.
9226649
Chronic inflammation is a known risk factor for tumorigenesis, yet the precise mechanism of this association is currently unknown. The inflammasome, a multiprotein complex formed by NOD-like receptor (NLR) family members, has recently been shown to orchestrate multiple innate and adaptive immune responses, yet its potential role in inflammation-induced cancer has been little studied. Using the azoxymethane and dextran sodium sulfate colitis-associated colorectal cancer model, we show that caspase-1-deficient (Casp1(-/-)) mice have enhanced tumor formation. Surprisingly, the role of caspase-1 in tumorigenesis was not through regulation of colonic inflammation, but rather through regulation of colonic epithelial cell proliferation and apoptosis. Consequently, caspase-1-deficient mice demonstrate increased colonic epithelial cell proliferation in early stages of injury-induced tumor formation and reduced apoptosis in advanced tumors. We suggest a model in which the NLRC4 inflammasome is central to colonic inflammation-induced tumor formation through regulation of epithelial cell response to injury.
9239963
Excessive exposure to estradiol represents the main risk factor for endometrial cancer. The abnormally high estradiol levels in the endometrium of women with endometrial cancer are most likely due to overproduction by the tumour itself. Endometrial cancer cells express the genes encoding the steroidogenic enzymes involved in estradiol synthesis. Here we used RT-PCR and Western blot to show that the nuclear receptors SF1 and LRH1, two well-known regulators of steroidogenic gene expression in gonadal and adrenal cells, are also expressed in endometrial cancer cell lines. By transient transfections, we found that SF1 and LRH1, but not the related nuclear receptor NUR77, can activate the promoters of three human steroidogenic genes: STAR, HSD3B2, and CYP19A1 PII. Similarly, forskolin but not PMA, could activate all three promoters. In addition, we found that both SF1 and LRH1 can transcriptionally cooperate with the AP-1 family members c-JUN and c-FOS, known to be associated with enhanced proliferation of endometrial carcinoma cells, to further enhance activation of the STAR, HSD3B2, and CYP19A1 PII promoters. All together, our data provide novel insights into the mechanisms of steroidogenic gene expression in endometrial cancer cells and thus in the regulation of estradiol biosynthesis by tumour cells.
9244474
Diet is known to play a major role in the symptoms of the inflammatory bowel disease, Crohn's disease (CD). Although no single diet is appropriate to all individuals, most CD patients are aware of foods that provide adverse or beneficial effects. This study seeks to categorise foods in relation to their effects on symptoms of CD, in a New Zealand Caucasian population. Four hundred and forty-six subjects from two different centres in New Zealand were recruited into the study. An extensive dietary questionnaire (257 food items in 15 groups) recorded self-reported dietary tolerances and intolerances. Across each of the food groups, there were statistically significant differences among responses to foods. A two-dimensional graphical summary enabled stratification of foods according to the probability that they will be either beneficial or detrimental. A small number of foods are frequently considered to be beneficial, including white fish, salmon and tuna, gluten-free products, oatmeal, bananas, boiled potatoes, sweet potatoes (kumara), pumpkin, soya milk, goat's milk and yoghurt. Foods that are typically considered detrimental include grapefruit, chilli or chilli sauce, corn and corn products, peanuts, cream, salami, curried foods, cola drinks, high energy drinks, beer, and red wine. For a number of the food items, the same item that was beneficial for one group of subjects was detrimental to others; in particular soya milk, goat's milk, yoghurt, oatmeal, kiwifruit, prunes, apple, broccoli, cauliflower, linseed, pumpkin seed, sunflower seed, ginger and ginger products, beef, lamb, liver, and oily fish. It was not possible to identify a specific group of food items that should be avoided by all CD patients. The wide range of detrimental items suggests that dietary maintenance of remission is likely to be difficult, and to exclude a substantial number of foods. Personalised diets may be especially important to these individuals.
9274291
PURPOSE To compare expectations for cancer survivorship care between patients and their physicians and between primary care providers (PCPs) and oncologists. METHODS Survivors and their physicians were surveyed to evaluate for expectations regarding physician participation in primary cancer follow-up, screening for other cancers, general preventive health, and management of comorbidities. RESULTS Of 992 eligible survivors and 607 physicians surveyed, 535 (54%) and 378 (62%) were assessable, respectively. Among physician respondents, 255 (67%) were PCPs and 123 (33%) were oncologists. Comparing patients with their oncologists, expectations were highly discrepant for screening for cancers other than the index one (agreement rate, 29%), with patients anticipating significantly more oncologist involvement. Between patients and their PCPs, expectations were most incongruent for primary cancer follow-up (agreement rate, 35%), with PCPs indicating they should contribute a much greater part to this aspect of care. Expectations between patients and their PCPs were generally more concordant than between patients and their oncologists. PCPs and oncologists showed high discordances in perceptions of their own roles for primary cancer follow-up, cancer screening, and general preventive health (agreement rates of 3%, 44%, and 51%, respectively). In the case of primary cancer follow-up, both PCPs and oncologists indicated they should carry substantial responsibility for this task. CONCLUSION Patients and physicians have discordant expectations with respect to the roles of PCPs and oncologists in cancer survivorship care. Uncertainties around physician roles and responsibilities can lead to deficiencies in care, supporting the need to make survivorship care planning a standard component in cancer management.
9278263
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus–host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
9283422
T cell receptor (TCR) signaling is initiated and sustained in microclusters; however, it's not known whether signaling also occurs in the TCR-rich central supramolecular activation cluster (cSMAC). We showed that the cSMAC formed by fusion of microclusters contained more CD45 than microclusters and is a site enriched in lysobisphosphatidic acid, a lipid involved in sorting ubiquitinated membrane proteins for degradation. Calcium signaling via TCR was blocked within 2 min by anti-MHCp treatment and 1 min by latrunculin-A treatment. TCR-MHCp interactions in the cSMAC survived these perturbations for 10 min and hence were not sufficient to sustain signaling. TCR microclusters were also resistant to disruption by anti-MHCp and latrunculin-A treatments. We propose that TCR signaling is sustained by stabilized microclusters and is terminated in the cSMAC, a structure from which TCR are sorted for degradation. Our studies reveal a role for F-actin in TCR signaling beyond microcluster formation.
9288638
OBJECTIVE The aim of this study was to investigate whether diabetes and hypertension cause additive effects in the responses to various vasoconstrictor and vasodilator agents, in isolated perfused kidneys obtained from streptozotocin (STZ)-diabetic Wistar-Kyoto (WKY) rats and from diabetic spontaneously hypertensive rats (SHR). METHODS SHR and WKY rats were administered STZ 55 mg/kg by intravenous injection into a lateral tail vein at age 12 weeks. Eight weeks later the kidneys were isolated and perfused via the left renal artery with a physiological salt solution. Renal perfusion pressure was measured continuously. Concentration response curves were plotted for various vasoconstrictor and vasodilator agents. RESULTS Both the diabetic and the hypertensive state were associated with an increased wet kidney weight. The contractile responses of the renal arterial system to phenylephrine (PhE), serotonin (5-HT) and angiotensin II (Ang II) in terms both of the maximal rise in perfusion pressure (mmHg) and of the sensitivity (log EC50) were the same in preparations from diabetic WKY rats and in those from normoglycaemic WKY rats. The maximal contractile responses both to PhE and to Ang II were enhanced in kidneys from SHR compared with those in kidneys from their normotensive controls, whereas simultaneously occurring diabetes impaired this sensitization. After precontraction with 3 x 10(-6) mol/l PhE both endothelium-dependent (methacholine) and endothelium-independent (sodium nitroprusside) vasodilator drugs caused the same vasodilator response in the preparations taken from the four groups of animals. CONCLUSION In isolated perfused kidneys obtained from STZ-diabetic WKY rats and SHR, the isolated diabetic state did not influence the vasoconstriction caused by various agonists. However, the enhanced vascular reactivity in the hypertensive state was blunted by simultaneously occurring diabetes mellitus. Endothelium-dependent and -independent vasorelaxation in this model was not affected neither by the hypertensive nor by the diabetic state.
9291668
The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies.
9301606
Parathyroid hormone (PTH), a major regulator of bone metabolism, activates the PTHR1 receptor on the osteoblast plasma membrane to initiate signaling and induce transcription of primary response genes. Subsequently, primary genes with transcriptional activity regulate expression of downstream PTH targets. We have identified the adenovirus E4 promoter-binding protein/nuclear factor regulated by IL-3 (E4bp4) as a PTH-induced primary gene in osteoblasts. E4BP4 is a basic leucine zipper (bZIP) transcription factor that represses or activates transcription in non-osteoblastic cells. We report here that PTH rapidly and transiently induced E4bp4 mRNA in osteoblastic cells and that this induction did not require protein synthesis. PTH also induced E4BP4 protein synthesis and E4BP4 binding to a consensus but not to a mutant E4BP4 response element (EBPRE). E4BP4 overexpression inhibited an EBPRE-containing promoter-reporter construct, whereas PTH treatment attenuated activity of the same construct in primary mouse osteoblasts. Finally, E4BP4 overexpression inhibited PTH-induced activity of a cyclooxygenase-2 promoter-reporter construct. Our data suggest a role for E4BP4 in attenuation of PTH target gene transcription in osteoblasts.
9304312
Synaptic transmission depends on clathrin-mediated recycling of synaptic vesicles (SVs). How select SV proteins are targeted for internalization has remained elusive. Stonins are evolutionarily conserved adaptors dedicated to endocytic sorting of the SV protein synaptotagmin. Our data identify the molecular determinants for recognition of synaptotagmin by stonin 2 or its Caenorhabditis elegans orthologue UNC-41B. The interaction involves the direct association of clusters of basic residues on the surface of the cytoplasmic domain of synaptotagmin 1 and a beta strand within the mu-homology domain of stonin 2. Mutation of K783, Y784, and E785 to alanine within this stonin 2 beta strand results in failure of the mutant stonin protein to associate with synaptotagmin, to accumulate at synapses, and to facilitate synaptotagmin internalization. Synaptotagmin-binding-defective UNC-41B is unable to rescue paralysis in C. elegans stonin mutant animals, suggesting that the mechanism of stonin-mediated SV cargo recognition is conserved from worms to mammals.
9315213
BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.
9334631
OBJECTIVE C-Reactive protein (CRP), a cardiovascular risk marker, could also participate in atherosclerosis. Atherosclerotic plaques express CRP and interleukin (IL)-10, a major antiinflammatory cytokine. IL-10 deficiency results in increased lesion formation, whereas IL-10 delivery attenuates lesions. We tested the effect of CRP on lipopolysaccharide (LPS)-induced IL-10 secretion in human monocyte-derived macrophages (HMDMs). METHODS AND RESULTS Incubation of HMDMs with CRP significantly decreased LPS-induced IL-10 mRNA and intracellular and secreted IL-10 protein and destabilized IL-10 mRNA. Also, CRP alone increased secretion of IL-8, IL-6, and tumor necrosis factor from HMDMs and did not inhibit LPS-induced secretion of these cytokines. Fc gamma receptor I antibodies significantly reversed CRP-mediated IL-10 inhibition. CRP significantly decreased intracellular cAMP, phospho-cAMP response element binding protein (pCREB), and adenyl cyclase activity. cAMP agonists reversed CRP-mediated IL-10 inhibition. Overexpression of wild-type and constitutively active CREB in THP-1 cells revealed attenuation of the inhibitory effect of CRP on LPS-induced IL-10 levels. CRP also inhibited hemoglobin:haptoglobin-induced IL-10 and heme oxygenase-1. Furthermore, administration of human CRP to rats significantly decreased IL-10 levels. CONCLUSIONS This study provides novel evidence that CRP, by decreasing IL-10 alters the antiinflammatory/proinflammatory balance, accentuating inflammation, which is pivotal in atherothrombosis.
9379687
DNA polymerase ε (Pol ε) is involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the roles of replicative Pol α and Pol δ in chromosomal DNA replication are relatively well understood and well documented, the precise role of Pol ε in chromosomal DNA replication is not well understood. This study uses a Xenopus egg extract DNA replication system to further elucidate the replicative role(s) played by Pol ε. Previous studies show that the initiation timing and elongation of chromosomal DNA replication are markedly impaired in Pol ε-depleted Xenopus egg extracts, with reduced accumulation of replicative intermediates and products. This study shows that normal replication is restored by addition of Pol ε holoenzyme to Pol ε-depleted extracts, but not by addition of polymerase-deficient forms of Pol ε, including polymerase point or deletion mutants or incomplete enzyme complexes. Evidence is also provided that Pol ε holoenzyme interacts directly with GINS, Cdc45p and Cut5p, each of which plays an important role in initiation of chromosomal DNA replication in eukaryotic cells. These results indicate that the DNA polymerase activity of Pol ε holoenzyme plays an essential role in normal chromosomal DNA replication in Xenopus egg extracts. These are the first biochemical data to show the DNA polymerase activity of Pol ε holoenzyme is essential for chromosomal DNA replication in higher eukaryotes, unlike in yeasts.
9393969
Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The forkhead box O (FOXO) transcription factor DAF-16 (hereafter referred to as DAF-16/FOXO) is a central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO-binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally co-localize at DAF-16/FOXO target promoters. We show that specifically for gene activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role for SWI/SNF in DAF-16/FOXO-mediated processes, in particular dauer formation, stress resistance and the promotion of longevity. Thus, we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation.
9394119
IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.
9412420
Mesenchymal stem cells (MSCs) commonly defined by in vitro functions have entered clinical application despite little definition of their function in residence. Here, we report genetic pulse-chase experiments that define osteoblastic cells as short-lived and nonreplicative, requiring replenishment from bone-marrow-derived, Mx1(+) stromal cells with "MSC" features. These cells respond to tissue stress and migrate to sites of injury, supplying new osteoblasts during fracture healing. Single cell transplantation yielded progeny that both preserve progenitor function and differentiate into osteoblasts, producing new bone. They are capable of local and systemic translocation and serial transplantation. While these cells meet current definitions of MSCs in vitro, they are osteolineage restricted in vivo in growing and adult animals. Therefore, bone-marrow-derived MSCs may be a heterogeneous population with the Mx1(+) population, representing a highly dynamic and stress responsive stem/progenitor cell population of fate-restricted potential that feeds the high cell replacement demands of the adult skeleton.
9433958
Although susceptibility of neurons in the brain to microbial infection is a major determinant of clinical outcome, little is known about the molecular factors governing this vulnerability. Here we show that two types of neurons from distinct brain regions showed differential permissivity to replication of several positive-stranded RNA viruses. Granule cell neurons of the cerebellum and cortical neurons from the cerebral cortex have unique innate immune programs that confer differential susceptibility to viral infection ex vivo and in vivo. By transducing cortical neurons with genes that were expressed more highly in granule cell neurons, we identified three interferon-stimulated genes (ISGs; Ifi27, Irg1 and Rsad2 (also known as Viperin)) that mediated the antiviral effects against different neurotropic viruses. Moreover, we found that the epigenetic state and microRNA (miRNA)-mediated regulation of ISGs correlates with enhanced antiviral response in granule cell neurons. Thus, neurons from evolutionarily distinct brain regions have unique innate immune signatures, which probably contribute to their relative permissiveness to infection.
9451052
Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or zero H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.
9451684
Budding yeast grown under continuous, nutrient-limited conditions exhibit robust, highly periodic cycles in the form of respiratory bursts. Microarray studies reveal that over half of the yeast genome is expressed periodically during these metabolic cycles. Genes encoding proteins having a common function exhibit similar temporal expression patterns, and genes specifying functions associated with energy and metabolism tend to be expressed with exceptionally robust periodicity. Essential cellular and metabolic events occur in synchrony with the metabolic cycle, demonstrating that key processes in a simple eukaryotic cell are compartmentalized in time.
9460704
Differentiation therapy has emerged as a powerful way to target specific hematologic malignancies. One of the best examples is the use of all-trans retinoic acid (ATRA) in acute promyelocytic leukemia (APL), which has significantly improved the outcome for patients with this specific form of acute myeloid leukemia (AML). In considering how differentiation therapy could be used in other forms of AML, we predicted that compounds that induce terminal differentiation of megakaryocytes would be effective therapies for the megakaryocytic form of AML, named acute megakaryocytic leukemia (AMKL). We also speculated that such agents would reduce the burden of abnormal hematopoietic cells in primary myelofibrosis and alter the differentiation of megakaryocytes in myelodysplastic syndromes. Using a high-throughput chemical screening approach, we identified small molecules that promoted many features of terminal megakaryocyte differentiation, including the induction of polyploidization, the process by which cells accumulate DNA to 32N or greater. As the induction of polyploidization is an irreversible process, cells that enter this form of the cell cycle do not divide again. Thus, this would be an effective way to reduce the tumor burden. Clinical studies with polyploidy inducers, such as aurora kinase A inhibitors, are under way for a wide variety of malignancies, whereas trials specifically for AMKL and PMF are in development. This novel form of differentiation therapy may be clinically available in the not-too-distant future. Clin Cancer Res; 19(22); 6084-8. ©2013 AACR.
9478135
Point mutations of the transcription factor AML1 are associated with leukemogenesis in acute myeloblastic leukemia (AML). Internal tandem duplications (ITDs) in the juxtamembrane domain and mutations in the second tyrosine kinase domain of the Fms-like tyrosine kinase 3 (FLT3) gene represent the most frequent genetic alterations in AML. However, such mutations per se appear to be insufficient for leukemic transformation. To evaluate whether both AML1 and FLT3 mutations contribute to leukemogenesis, we analyzed mutations of these genes in AML M0 subtype in whom AML1 mutations were predominantly observed. Of 51 patients, eight showed a mutation in the Runt domain of the AML1 gene: one heterozygous missense mutation with normal function, five heterozygous frameshift mutations and two biallelic nonsense or frameshift mutations, resulting in haploinsufficiency or complete loss of the AML1 activities. On the other hand, a total of 10 of 49 patients examined had the FLT3 mutation. We detected the FLT3 mutation in five of eight (63%) patients with AML1 mutation, whereas five of 41 (12%) without AML1 mutation showed the FLT3 mutation (P=0.0055). These observations suggest that reduced AML1 activities predispose cells to the acquisition of the activating FLT3 mutation as a secondary event leading to full transformation in AML M0.
9483851
p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.
9498458
UNLABELLED Rociletinib is a third-generation EGFR inhibitor active in lung cancers with T790M, the gatekeeper mutation underlying most first-generation EGFR drug resistance. We biopsied patients at rociletinib progression to explore resistance mechanisms. Among 12 patients with T790M-positive cancers at rociletinib initiation, six had T790-wild-type rociletinib-resistant biopsies. Two T790-wild-type cancers underwent small cell lung cancer transformation; three T790M-positive cancers acquired EGFR amplification. We documented T790-wild-type and T790M-positive clones coexisting within a single pre-rociletinib biopsy. The pretreatment fraction of T790M-positive cells affected response to rociletinib. Longitudinal circulating tumor DNA (ctDNA) analysis revealed an increase in plasma EGFR-activating mutation, and T790M heralded rociletinib resistance in some patients, whereas in others the activating mutation increased but T790M remained suppressed. Together, these findings demonstrate the role of tumor heterogeneity when therapies targeting a singular resistance mechanism are used. To further improve outcomes, combination regimens that also target T790-wild-type clones are required. SIGNIFICANCE This report documents that half of T790M-positive EGFR-mutant lung cancers treated with rociletinib are T790-wild-type upon progression, suggesting that T790-wild-type clones can emerge as the dominant source of resistance. We show that tumor heterogeneity has important clinical implications and that plasma ctDNA analyses can sometimes predict emerging resistance mechanisms.
9505448
Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.
9513785
We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85alpha (P = 0.018), p110beta (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.
9538708
Recent studies report comparable psychosocial adaptation in children with or without a growth disorder. These findings may be due to a general lack of sensitive and specific techniques for analysing and comparing their respective qualities of life. In this study we present a new questionnaire for parents of short-statured children. We suggest both a qualitative and quantitative approach providing specific information about the relative extent of individual stress factors and sources of help. The parents of 442 children with growth retardation resulting from different aetiologies completed the questionnaire. Aprincipal component analysis of the scaled items revealed four dimensions of psychosocial adaptation: suffering, future anxieties, behavioural problems and coping efforts. The index of internal consistency reliability was sufficient for all scales. The comparison of two selected growth disorder groups (achondroplasia versus growth hormone deficiency) demonstrated growth disorder-specific but not very different profiles of psychosocial adaptation. The qualitative analysis revealed a shift in the stress factor patterns (achondroplasia, more physical restrictions). These findings give evidence for both the specificity and construct validity of the new instrument. Therefore, we may conclude that this questionnaire is a helpful method in attaining growth disorder-specific information about individual stress factors, resources and psychosocial adaptation.
9539753
RNA interference (RNAi) is heritable in Caenorhabditis elegans; the progeny of C. elegans exposed to dsRNA inherit the ability to silence genes that were targeted by RNAi in the previous generation. Here we investigate the mechanism of RNAi inheritance in C. elegans. We show that exposure of animals to dsRNA results in the heritable expression of siRNAs and the heritable deposition of histone 3 lysine 9 methylation (H3K9me) marks in progeny. siRNAs are detectable before the appearance of H3K9me marks, suggesting that chromatin marks are not directly inherited but, rather, reestablished in inheriting progeny. Interestingly, H3K9me marks appear more prominently in inheriting progeny than in animals directly exposed to dsRNA, suggesting that germ-line transmission of silencing signals may enhance the efficiency of siRNA-directed H3K9me. Finally, we show that the nuclear RNAi (Nrde) pathway maintains heritable RNAi silencing in C. elegans. The Argonaute (Ago) NRDE-3 associates with heritable siRNAs and, acting in conjunction with the nuclear RNAi factors NRDE-1, NRDE-2, and NRDE-4, promotes siRNA expression in inheriting progeny. These results demonstrate that siRNA expression is heritable in C. elegans and define an RNAi pathway that promotes the maintenance of RNAi silencing and siRNA expression in the progeny of animals exposed to dsRNA.
9547722
BACKGROUND Cancer survivors represent a growing population, heterogeneous in their need for medical care, psychosocial support, and practical assistance. To inform survivorship research and practice, this manuscript will describe the prevalent population of cancer survivors in terms of overall numbers and prevalence by cancer site and time since diagnosis. METHODS Incidence and survival data from 1975-2007 were obtained from the Surveillance, Epidemiology, and End Results Program and population projections from the United States Census Bureau. Cancer prevalence for 2012 and beyond was estimated using the Prevalence Incidence Approach Model, assuming constant future incidence and survival trends but dynamic projections of the U.S. population. RESULTS As of January 1, 2012, approximately 13.7 million cancer survivors were living in the United States with prevalence projected to approach 18 million by 2022. Sixty-four percent of this population have survived 5 years or more; 40% have survived 10 years or more; and 15% have survived 20 years or more after diagnosis. Over the next decade, the number of people who have lived 5 years or more after their cancer diagnosis is projected to increase approximately 37% to 11.9 million. CONCLUSIONS A coordinated agenda for research and practice is needed to address cancer survivors' long-term medical, psychosocial, and practical needs across the survivorship trajectory. IMPACT Prevalence estimates for cancer survivors across the survivorship trajectory will inform the national research agenda as well as future projections about the health service needs of this population.
9548440
Trisomic and monosomic (aneuploid) embryos account for at least 10% of human pregnancies and, for women nearing the end of their reproductive lifespan, the incidence may exceed 50%. The errors that lead to aneuploidy almost always occur in the oocyte but, despite intensive investigation, the underlying molecular basis has remained elusive. Recent studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.
9550981
The adult Drosophila hindgut was recently reported to contain active, tissue-replenishing stem cells, like those of the midgut, but located within an anterior ring so as to comprise a single giant crypt. In contrast to this view, we observed no active stem cells and little cell turnover in adult hindgut tissue based on clonal marking and BrdU incorporation studies. Again contradicting the previous proposal, we showed that the adult hindgut is not generated by anterior stem cells during larval/pupal development. However, severe tissue damage within the hindgut elicits cell proliferation within a ring of putative quiescent stem cells at the anterior of the pylorus. Thus, the hindgut does not provide a model of tissue maintenance by constitutively active stem cells, but has great potential to illuminate mechanisms of stress-induced tissue repair.
9558539
Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target.
9559146
Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate.
9600826
Angiogenesis and cancer invasiveness greatly contribute to cancer malignancy. Arf6 and its effector, AMAP1, are frequently overexpressed in breast cancer, and constitute a central pathway to induce the invasion and metastasis. In this pathway, Arf6 is activated by EGFR via GEP100. Arf6 is highly expressed also in human umbilical vein endothelial cells (HUVECs) and is implicated in angiogenesis. Here, we found that HUVECs also highly express AMAP1, and that vascular endothelial growth factor receptor-2 (VEGFR2) recruits GEP100 to activate Arf6. AMAP1 functions by binding to cortactin in cancer invasion and metastasis. We demonstrate that the same GEP100-Arf6-AMAP1-cortactin pathway is essential for angiogenesis activities, including cell migration and tubular formation, as well as for the enhancement of cell permeability and VE-cadherin endocytosis of VEGF-stimulated HUVECs. Components of this pathway are highly expressed in pathologic angiogenesis, and blocking of this pathway effectively inhibits VEGF- or tumor-induced angiogenesis and choroidal neovascularization. The GEP100-Arf6-AMAP1-cortactin pathway, activated by receptor tyrosine kinases, appears to be common in angiogenesis and cancer invasion and metastasis, and provides their new therapeutic targets.
9604301
UNLABELLED Cryptococcosis is a multifaceted fungal infection with variable clinical presentation and outcome. As in many infectious diseases, this variability is commonly assigned to host factors. To investigate whether the diversity of Cryptococcus neoformans clinical (ClinCn) isolates influences the interaction with host cells and the clinical outcome, we developed and validated new quantitative assays using flow cytometry and J774 macrophages. The phenotype of ClinCn-macrophage interactions was determined for 54 ClinCn isolates recovered from cerebrospinal fluids (CSF) from 54 unrelated patients, based on phagocytic index (PI) and 2-h and 48-h intracellular proliferation indexes (IPH2 and IPH48, respectively). Their phenotypes were highly variable. Isolates harboring low PI/low IPH2 and high PI/high IPH2 values were associated with nonsterilization of CSF at week 2 and death at month 3, respectively. A subset of 9 ClinCn isolates with different phenotypes exhibited variable virulence in mice and displayed intramacrophagic expression levels of the LAC1, APP1, VAD1, IPC1, PLB1, and COX1 genes that were highly variable among the isolates and correlated with IPH48. Variation in the expression of virulence factors is thus shown here to depend on not only experimental conditions but also fungal background. These results suggest that, in addition to host factors, the patient's outcome can be related to fungal determinants. Deciphering the molecular events involved in C. neoformans fate inside host cells is crucial for our understanding of cryptococcosis pathogenesis. IMPORTANCE Cryptococcus neoformans is a life-threatening human fungal pathogen that is responsible for an estimated 1 million cases of meningitis/year, predominantly in HIV-infected patients. The diversity of infecting isolates is well established, as is the importance of the host factors. Interaction with macrophages is a major step in cryptococcosis pathogenesis. How the diversity of clinical isolates influences macrophages' interactions and impacts cryptococcosis outcome in humans remains to be elucidated. Using new assays, we uncovered how yeast-macrophage interactions were highly variable among clinical isolates and found an association between specific behaviors and cryptococcosis outcome. In addition, gene expression of some virulence factors and intracellular proliferation were correlated. While many studies have established that virulence factors can be differentially expressed as a function of experimental conditions, our study demonstrates that, under the same experimental conditions, clinical isolates behaved differently, a diversity that could participate in the variable outcome of infection in humans.
9614443
The anti-inflammatory eicosanoid lipoxin A(4) (LXA(4)), aspirin-triggered 15-epi-LXA(4), and their stable analogs down-regulate IL-8 secretion and subsequent recruitment of neutrophils by intestinal epithelia. In an effort to elucidate the mechanism by which these lipid mediators modulate cellular proinflammatory programs, we surveyed global epithelial gene expression using cDNA microarrays. LXA(4) analog alone did not significantly affect expression of any of the >7000 genes analyzed. However, LXA(4) analog pretreatment attenuated induction of approximately 50% of the 125 genes up-regulated in response to the gastroenteritis-causing pathogen Salmonella typhimurium. A major subset of genes whose induction was reduced by LXA(4) analog pretreatment is regulated by NF-kappaB, suggesting that LXA(4) analog was influencing the activity of this transcription factor. Nanomolar concentrations of LXA(4) analog reduced NF-kappaB-mediated transcriptional activation in a LXA(4) receptor-dependent manner and inhibited induced degradation of IkappaBalpha. LXA(4) analog did not affect earlier stimulus-induced signaling events that lead to IkappaBalpha degradation, such as S. typhimurium-induced epithelial Ca(2+) mobilization or TNF-alpha-induced phosphorylation of IkappaBalpha. To establish the in vivo relevance of these findings, we examined whether LXA(4) analogs could affect intestinal inflammation in vivo using the mouse model of DSS-induced inflammatory colitis. Oral administration of LXA(4) analog (15-epi-16-para-fluoro-phenoxy-LXA(4), 10 microg/day) significantly reduced the weight loss, hematochezia, and mortality that characterize DSS colitis. Thus, LXA(4) analog-mediated down-regulation of proinflammatory gene expression via inhibition of the NF-kappaB pathway can be therapeutic for diseases characterized by mucosal inflammation.
9617381
OBJECTIVE To evaluate long-term prognostic effect of serum noncholesterol sterols, including plant sterols, in middle-aged men with high cardiovascular disease (CVD) risk, without statins at baseline. METHODS This was a prospective study of 232 men (mean age 60 years) at high risk of CVD in 1985-1986. Most were hypercholesterolemic, 29 (12%) had a history of CVD or cancer, 6 (3%) had diabetes, and 46 (20%) had metabolic syndrome (MS). Measured noncholesterol sterols (expressed as absolute concentrations or ratios to serum cholesterol to standardize for cholesterol concentrations) included lathosterol and desmosterol (reflect cholesterol synthesis), and plant sterols (campesterol and sitosterol) and cholestanol (reflect cholesterol absorption). Main outcome measure was total mortality. RESULTS At baseline, markers of cholesterol synthesis and absorption showed expected inverse associations. During the 22-year follow-up 101 men (43%) died. At baseline, nonsurvivors smoked more, exercised less and had more components of MS (although not filling strict criteria), whereas traditional risk factors of CVD were not significantly different. Of the noncholesterol sterols (either absolute or ratio), only sitosterol was significantly higher in survivors than in nonsurvivors (P=0.02). In multivariable analyses, highest sitosterol-to-cholesterol tertile was associated with significantly lower mortality risk (HR 0.51, 95% CI 0.30-0.87) as compared to lowest tertile. Other associations were nonsignificant, although a "global" index of cholesterol metabolism (desmosterol-to-sitosterol ratio) suggested higher cholesterol synthesis and lower absorption to be associated with higher total and CVD mortality. CONCLUSION Higher serum plant sterol levels in middle-aged men predicted lower long-term mortality risk, possibly reflecting an association between higher synthesis/lower absorption of cholesterol and mortality.
9629682
The field of macro-imaging has grown considerably with the appearance of innovative clearing methods and confocal microscopes with lasers capable of penetrating increasing tissue depths. The ability to visualize and model the growth of whole organs as they develop from birth, or with manipulation, disease or injury, provides new ways of thinking about development, tissue-wide signaling, and cell-to-cell interactions. The zebrafish (Danio rerio) has ascended from a predominantly developmental model to a leading adult model of tissue regeneration. The unmatched neurogenic and regenerative capacity of the mature central nervous system, in particular, has received much attention, however tools to interrogate the adult brain are sparse. At present there exists no straightforward methods of visualizing changes in the whole adult brain in 3-dimensions (3-D) to examine systemic patterns of cell proliferation or cell populations of interest under physiological, injury, or diseased conditions. The method presented here is the first of its kind to offer an efficient step-by-step pipeline from intraperitoneal injections of the proliferative marker, 5-ethynyl-2'-deoxyuridine (EdU), to whole brain labeling, to a final embedded and cleared brain sample suitable for 3-D imaging using optical projection tomography (OPT). Moreover, this method allows potential for imaging GFP-reporter lines and cell-specific antibodies in the presence or absence of EdU. The small size of the adult zebrafish brain, the highly consistent degree of EdU labeling, and the use of basic clearing agents, benzyl benzoate, and benzyl alcohol, makes this method highly tractable for most laboratories interested in understanding the vertebrate central nervous system in health and disease. Post-processing of OPT-imaged adult zebrafish brains injected with EdU illustrate that proliferative patterns in EdU can readily be observed and analyzed using IMARIS and/or FIJI/IMAGEJ software. This protocol will be a valuable tool to unlock new ways of understanding systemic patterns in cell proliferation in the healthy and injured brain, brain-wide cellular interactions, stem cell niche development, and changes in brain morphology.
9634465
Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.
9638032
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease.
9648896
Lung cancer is the leading cause of cancer-related mortality in humans worldwide. Moreover, the overall 5-year survival rate is only 15%. Pathologically almost 80% of all lung cancer cases are non-small cell lung cancer (NSCLC). Cancer-associated fibroblasts (CAFs) have been found to exist in a large number of NSCLCs. CAFs have been proven to promote tumor progression, metastasis and resistance to therapy through paracrine effects in most solid tumors. In the present study, firstly we isolated CAFs from patient tissues and demonstrated that they promoted cell proliferation and chemoresistance to cisplatin in the lung cancer cell lines A549 and 95D in a paracrine manner. Secondly, using ELISA and quantative PCR, we found that a higher amount of stromal cell-derived factor 1 (SDF-1) existed in the CAFs rather than that observed in the normal fibroblasts (NFs). Thirdly, we detected that SDF-1 facilitated lung cancer cell proliferation and drug resistance via the CXCR4-mediated signaling pathway which involved NF-κB and Bcl-xL. Moreover, we also confirmed that the expression level of SDF-1 in the CAFs was negatively regulated by microRNA mir-1 through microRNA overexpression and quantitative PCR. Overall, our data provide one explanation for the effects of CAFs on lung cancer cells. Meanwhile, our results also suggest CAFs as a potential therapeutic target in tumor treatment.
9658390
INTRODUCTION To assess whether respiratory intermediate care units (RICUs) are cost effective alternatives to intensive care units (ICUs) for patients with exacerbation of chronic obstructive pulmonary disease (COPD). PATIENTS AND METHODS Multi-centre, prospective, bottom-up cost study performed in 15 ICUs and 6 RICUs. COPD patients staying longer than 48 h were recruited; those coming from other ICUs/RICUs, with immune-deficiency or stroke, were excluded. After the ICU sample was standardised to the RICU distribution of the reason-for-admission and infusion of a vasoactive drug on admission, 60 ICU patients and 65 RICU patients remained, of the original 164 recruited. For each patient, besides clinical data on admission and discharge, daily information about the resources consumed were recorded and analysed in terms of their costs. RESULTS Total cost per patient was lower in RICUs than in ICUs (754 vs. 1507 Euro; P < 0.0001). In all items, except drugs and nutrition, we found a significant lower cost in RICUs. Dead patients were noticeably different in terms of disease severity between ICUs and RICUs, while surviving ones were not. CONCLUSIONS Our study suggests that some COPD patients, less severe and with pure respiratory failure, could be successfully and less costly treated in RICUs.
9669099
Binding within or nearby target genes involved in cell proliferation and survival enables the p53 tumor suppressor gene to regulate their transcription and cell-cycle progression. Using genome-wide chromatin-binding profiles, we describe binding of p53 also to regions located distantly from any known p53 target gene. Interestingly, many of these regions possess conserved p53-binding sites and all known hallmarks of enhancer regions. We demonstrate that these p53-bound enhancer regions (p53BERs) indeed contain enhancer activity and interact intrachromosomally with multiple neighboring genes to convey long-distance p53-dependent transcription regulation. Furthermore, p53BERs produce, in a p53-dependent manner, enhancer RNAs (eRNAs) that are required for efficient transcriptional enhancement of interacting target genes and induction of a p53-dependent cell-cycle arrest. Thus, our results ascribe transcription enhancement activity to p53 with the capacity to regulate multiple genes from a single genomic binding site. Moreover, eRNA production from p53BERs is required for efficient p53 transcription enhancement.
9687772
Mutations in the human XPG gene give rise to an inherited photosensitive disorder, xeroderma pigmentosum (XP) associated with Cockayne syndrome (XP-G/CS). The clinical features of CS in XP-G/CS patients are difficult to explain on the basis of a defect in nucleotide excision repair (NER). We found that XPG forms a stable complex with TFIIH, which is active in transcription and NER. Mutations in XPG found in XP-G/CS patient cells that prevent the association with TFIIH also resulted in the dissociation of CAK and XPD from the core TFIIH. As a consequence, the phosphorylation and transactivation of nuclear receptors were disturbed in XP-G/CS as well as xpg(-/-) MEF cells and could be restored by expression of wild-type XPG. These results provide an insight into the role of XPG in the stabilization of TFIIH and the regulation of gene expression and provide an explanation of some of the clinical features of XP-G/CS.
9705208
Subcapsular sinus (SCS) macrophages capture antigens from lymph and present them intact for B cell encounter and follicular delivery. However, the properties of SCS macrophages are poorly defined. Here we show SCS macrophage development depended on lymphotoxin-alpha1beta2, and the cells had low lysosomal enzyme expression and retained opsonized antigens on their surface. Intravital imaging revealed immune complexes moving along macrophage processes into the follicle. Moreover, noncognate B cells relayed antigen opsonized by newly produced antibodies from the subcapsular region to the germinal center, and affinity maturation was impaired when this transport process was disrupted. Thus, we characterize SCS macrophages as specialized antigen-presenting cells functioning at the apex of an antigen transport chain that promotes humoral immunity.
9752604
In light of the emerging interplay between redox and metabolic signaling pathways we investigated the potential cross talk between nuclear factor E2-related factor 2 (Nrf2) and AMP-activated kinase (AMPK), central regulators of the cellular redox and energy balance, respectively. Making use of xanthohumol (XN) as an activator of both the AMPK and the Nrf2 signaling pathway we show that AMPK exerts a positive influence on Nrf2/heme oxygenase (HO)-1 signaling in mouse embryonic fibroblasts. Genetic ablation and pharmacological inhibition of AMPK blunts Nrf2-dependent HO-1 expression by XN already at the mRNA level. XN leads to AMPK activation via interference with mitochondrial function and activation of liver kinase B1 as upstream AMPK kinase. The subsequent AMPK-mediated enhancement of the Nrf2/HO-1 response does not depend on inhibition of the mammalian target of rapamycin, inhibition of glycogen synthase kinase 3β, or altered abundance of Nrf2 (total and nuclear). However, reduced endoplasmic reticulum stress was identified and elaborated as a step in the AMPK-augmented Nrf2/HO-1 response. Overall, we shed more light on the hitherto incompletely understood cross talk between the LKB1/AMPK and the Nrf2/HO-1 axis revealing for the first time involvement of the unfolded protein response as an additional player and suggesting tight cooperation between signaling pathways controlling cellular redox, energy, or protein homeostasis.
9754530
Like other branches of surgery, Urology has encountered major challenges in aligning the research processes by which new interventions are assessed with the principles of Evidence-Based Medicine. This article explains the IDEAL framework and recommendations and illustrates how they might affect the evaluation of current controversial urological procedures. From an inside perspective, we provide an overview of the efforts of the IDEAL Working Group to date with special emphasis on the field of Urology. There are clear differences between drugs and interventions in the natural history of innovations. Since the conventional framework for conducting trials of new treatments is largely based on the former, the evaluation of surgical innovations using the same template can encounter significant problems. Difficulties in performing randomized controlled trials of surgical techniques and the persistence of the case series as an important feature of the scientific literature have been the two most controversial aspects of this mismatch between the subject of research and the methodology used. The IDEAL framework provides a description of the process of innovation and development for surgical trials, and the associated recommendations provide a suggested alternative approach to developing study designs, which are appropriate for the specific problems of new techniques. IDEAL provides a new framework for surgical innovation that was developed with broad stakeholder input from the surgical community and is expected to have a transformative impact on the way that urologists perform clinical research.
9764256
BACKGROUND Human papillomavirus (HPV) testing is more sensitive for the detection of high-grade cervical lesions than is cytology, but detection of HPV by DNA screening in two screening rounds 5 years apart has not been assessed. The aim of this study was to assess whether HPV DNA testing in the first screen decreases detection of cervical intraepithelial neoplasia (CIN) grade 3 or worse, CIN grade 2 or worse, and cervical cancer in the second screening. METHODS In this randomised trial, women aged 29-56 years participating in the cervical screening programme in the Netherlands were randomly assigned to receive HPV DNA (GP5+/6+-PCR method) and cytology co-testing or cytology testing alone, from January, 1999, to September, 2002. Randomisation (in a 1:1 ratio) was done with computer-generated random numbers after the cervical specimen had been taken. At the second screening 5 years later, HPV DNA and cytology co-testing was done in both groups; researchers were masked to the patient's assignment. The primary endpoint was the number of CIN grade 3 or worse detected. Analysis was done by intention to screen. The trial is now finished and is registered, number ISRCTN20781131. FINDINGS 22,420 women were randomly assigned to the intervention group and 22 518 to the control group; 19 999 in the intervention group and 20,106 in the control group were eligible for analysis at the first screen. At the second screen, 19 579 women in the intervention group and 19,731 in the control group were eligible, of whom 16,750 and 16,743, respectively, attended the second screen. In the second round, CIN grade 3 or worse was less common in the intervention group than in the control group (88 of 19 579 in the intervention group vs 122 of 19,731 in the control group; relative risk 0·73, 95% CI 0·55-0·96; p=0·023). Cervical cancer was also less common in the intervention group than in the control group (four of 19 579 in the intervention group vs 14 of 19,731; 0·29, 0·10-0·87; p=0·031). In the baseline round, detection of CIN grade 3 or worse did not differ significantly between groups (171 of 19 999 vs 150 of 20,106; 1·15, 0·92-1·43; p=0·239) but was significantly more common in women with normal cytology (34 of 19,286 vs 12 of 19,373; 2·85, 1·47-5·49; p=0·001). Furthermore, significantly more cases of CIN grade 2 or worse were detected in the intervention group than in the control group (267 of 19 999 vs 215 of 20,106; 1·25, 1·05-1·50; p=0·015). In the second screen, fewer HPV16-positive CIN grade 3 or worse were detected in the intervention group than in the control group (17 of 9481 vs 35 of 9354; 0·48, 0·27-0·85; p=0·012); detection of non-HPV16-positive CIN grade 3 or worse did not differ between groups (25 of 9481 vs 25 of 9354; 0·99, 0·57-1·72; p=1·00). The cumulative detection of CIN grade 3 or worse and CIN grade 2 or worse did not differ significantly between study arms, neither for the whole study group (CIN grade 3 or worse: 259 of 19 999 vs 272 of 20,106; 0·96, 0·81-1·14, p=0·631; CIN grade 2 or worse: 427 of 19 999 vs 399 of 20,106; 1·08, 0·94-1·24; p=0·292), nor for subgroups of women invited for the first time (CIN grade 3 or worse in women aged 29-33 years: 102 of 3139 vs 105 of 3128; 0·97, 0·74-1·27; CIN grade 2 or worse in women aged 29-33 years: 153 of 3139 vs 151 of 3128; 1·01, 0·81-1·26; CIN grade 3 or worse in women aged 34-56 years: 157 of 16,860 vs 167 of 16 978; 0·95, 0·76-1·18; CIN grade 2 or worse in women aged 34-56 years: 274 of 16,860 vs 248 of 16 978; 1·11, 0·94-1·32). INTERPRETATION Implementation of HPV DNA testing in cervical screening leads to earlier detection of clinically relevant CIN grade 2 or worse, which when adequately treated, improves protection against CIN grade 3 or worse and cervical cancer. Early detection of high-grade cervical legions caused by HPV16 was a major component of this benefit. Our results lend support to the use of HPV DNA testing for all women aged 29 years and older. FUNDING Zorg Onderzoek Nederland (Netherlands Organisation for Health Research and Development).
9767444
Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.
9769310
The phenomenon of parental imprinting involves the preferential expression of one parental allele of a subset of chromosomal genes and has so far only been documented in the mouse. We show here, by exploiting sequence polymorphisms in exon nine of the human insulin–like growth factor 2 (IGF2) gene, that only the paternally–inherited allele is active in embryonic and extra–embryonic cells from first trimester pregnancies. In addition, only the paternal allele is expressed in tissues from a patient who suffered from Beckwith–Wiedemann syndrome. Thus the parental imprinting of IGF2 appears to be evolutionarily conserved from mouse to man and has implications for the generation of the Beckwith–Wiedemann syndrome.
9784254
The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone marrow transplant studies point to altered macrophage function as the major determinant of susceptibility. LXR-null macrophages undergo accelerated apoptosis when challenged with LM and exhibit defective bacterial clearance in vivo. These defects result, at least in part, from loss of regulation of the antiapoptotic factor SPalpha, a direct target for regulation by LXRalpha. Expression of LXRalpha or SPalpha in macrophages inhibits apoptosis in the setting of LM infection. Our results demonstrate that LXR-dependent gene expression plays an unexpected role in innate immunity and suggest that common nuclear receptor pathways mediate macrophage responses to modified lipoproteins and intracellular pathogens.
9787715
BACKGROUND The effects of Plasmodium falciparum on B-cell homeostasis have not been well characterized. This study investigated whether an episode of acute malaria in young children results in changes in the peripheral B cell phenotype. METHODS Using flow-cytofluorimetric analysis, the B cell phenotypes found in the peripheral blood of children aged 2-5 years were characterized during an episode of acute uncomplicated clinical malaria and four weeks post-recovery and in healthy age-matched controls. RESULTS There was a significant decrease in CD19+ B lymphocytes during acute malaria. Characterization of the CD19+ B cell subsets in the peripheral blood based on expression of IgD and CD38 revealed a significant decrease in the numbers of naive 1 CD38-IgD+ B cells while there was an increase in CD38+IgD- memory 3 B cells during acute malaria. Further analysis of the peripheral B cell phenotype also identified an expansion of transitional CD10+CD19+ B cells in children following an episode of acute malaria with up to 25% of total CD19+ B cell pool residing in this subset. CONCLUSION Children experiencing an episode of acute uncomplicated clinical malaria experienced profound disturbances in B cell homeostasis.
9791313
In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel tool to treat cancer patients. Recently, the first drugs have been reported that specifically target SETD2-negative tumors. In this review we discuss the studies on the associated protein, Set domain containing 2 (SETD2), a histone modifier for which mutations have only recently been associated with cancer development. Our review starts with the structural characteristics of SETD2 and extends to its corresponding function by combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, mice, and humans. SETD2 is now generally known as the single human gene responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers that recruit protein complexes to carry out specific processes, including transcription elongation, RNA processing, and DNA repair, determine the impact of this histone modification. Finally, we describe the prevalence of SETD2-inactivating mutations in cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how SETD2-inactivation might contribute to tumor development.
9796495
The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use.
9813098
Young patients with an ischaemic stroke or transient ischaemic attack (TIA) often have no vascular risk factors. Hyperhomocysteinaemia is an established risk factor for stroke in elderly patients but it is uncertain whether it is also important for the prognosis of young ischaemic stroke and TIA patients. We examined the possible effect of the plasma homocysteine level on the risk of recurrent vascular events in patients between 18 and 45 years of age. The study population consisted of 161 consecutive patients with a recent cerebral infarction or TIA. Data on the primary event and the homocysteine level were collected retrospectively from hospital records. General practitioners and patients were contacted by telephone to record vascular events and the type of medication used during the follow–up period. Vascular events included cerebral infarction, TIA, pulmonary embolism, venous thrombosis, myocardial infarction and peripheral arterial disease. A Kaplan- Meier curve showed a dose effect relationship between event-free survival time and tertiles of the homocysteine level (Log rank statistic 5.91; p = 0.05). The Cox hazard ratio, after adjustment for homocysteine lowering treatment, was 1.7 (95 % CI, 1.1 to 2.8) for any vascular outcome event, 1.9 (95% CI, 1.1 to 3.0) for arterial outcome events and 1.8 (95 % CI, 1.1 to 2.9) for cerebral outcome events. In spite of our small number of outcome events we found a significant association at the 95% confidence level between homocysteine level and the risk of recurrent vascular events in young patients with an ischaemic stroke or TIA. The association is of the same magnitude as in elderly people.
9822397
CONTEXT Sugar-sweetened beverages like soft drinks and fruit punches contain large amounts of readily absorbable sugars and may contribute to weight gain and an increased risk of type 2 diabetes, but these relationships have been minimally addressed in adults. OBJECTIVE To examine the association between consumption of sugar-sweetened beverages and weight change and risk of type 2 diabetes in women. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort analyses conducted from 1991 to 1999 among women in the Nurses' Health Study II. The diabetes analysis included 91,249 women free of diabetes and other major chronic diseases at baseline in 1991. The weight change analysis included 51,603 women for whom complete dietary information and body weight were ascertained in 1991, 1995, and 1999. We identified 741 incident cases of confirmed type 2 diabetes during 716,300 person-years of follow-up. MAIN OUTCOME MEASURES Weight gain and incidence of type 2 diabetes. RESULTS Those with stable consumption patterns had no difference in weight gain, but weight gain over a 4-year period was highest among women who increased their sugar-sweetened soft drink consumption from 1 or fewer drinks per week to 1 or more drinks per day (multivariate-adjusted means, 4.69 kg for 1991 to 1995 and 4.20 kg for 1995 to 1999) and was smallest among women who decreased their intake (1.34 and 0.15 kg for the 2 periods, respectively) after adjusting for lifestyle and dietary confounders. Increased consumption of fruit punch was also associated with greater weight gain compared with decreased consumption. After adjustment for potential confounders, women consuming 1 or more sugar-sweetened soft drinks per day had a relative risk [RR] of type 2 diabetes of 1.83 (95% confidence interval [CI], 1.42-2.36; P<.001 for trend) compared with those who consumed less than 1 of these beverages per month. Similarly, consumption of fruit punch was associated with increased diabetes risk (RR for > or =1 drink per day compared with <1 drink per month, 2.00; 95% CI, 1.33-3.03; P =.001). CONCLUSION Higher consumption of sugar-sweetened beverages is associated with a greater magnitude of weight gain and an increased risk for development of type 2 diabetes in women, possibly by providing excessive calories and large amounts of rapidly absorbable sugars.
9831859
Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.
9846940
OBJECTIVE To determine if preoperative statin treatment is associated with a reduction in systemic inflammatory response (SIR) and myocardial damage markers following cardiac surgery with cardiopulmonary bypass (CPB). METHODS We study a prospective cohort of 138 patients who underwent coronary and valvular surgery with CPB. We differentiate two study groups: patients with (group A, n=72) or without (group B, n=66) statins. Plasma levels of pro-inflammatory interleukins (tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-8 and IL-2R), creatine phosphokinase (CPK), CPK-MB and troponin I were measured before and 1, 6, 24 and >72 h after surgery. RESULTS The baseline, operative and postoperative morbidity and mortality characteristics were similar for both the groups. Group A had significantly lower postoperative levels of IL-6 than group B at 6h (68.8+/-5 pg ml(-1) vs 108.9+/-108 pg ml(-1), p=0.01), 24h (71.7+/-7 pg ml(-1) vs 110.4+/-106 pg ml(-1), p=0.01) and before hospital discharge (21.6+/-12 pg ml(-1) vs 32.8+/-27 pg ml(-1), p=0.005), as well as significantly lower average IL-6 levels in the first 24h following surgery (71.8+/-5 pgml(-1) vs 112.8+/-82 pg ml(-1), p=0.002). The postoperative CPK-MB at 24h (19.7+/-23 ng ml(-1) vs 33.1+/-32 ng ml(-1), p=0.02) and troponin I levels at the end of the intervention (2.2+/-2.2 ng ml(-1) vs 3.3+/-3.1 ng ml(-1), p=0.03) and at 24h (4.1+/-3.5 ng ml(-1) vs 6.6+/-8 ng ml(-1), p=0.04) were also significantly lower in the group treated with statins prior to surgery. CONCLUSIONS Preoperative treatment with statins is associated with a lower biochemical parameters of SIR and myocardial damage following cardiac surgery with CPB, regardless of it being coronary bypass grafting (CABG) or valvular surgery.
9875570
DNA replication fidelity is a key determinant of genome stability and is central to the evolution of species and to the origins of human diseases. Here we review our current understanding of replication fidelity, with emphasis on structural and biochemical studies of DNA polymerases that provide new insights into the importance of hydrogen bonding, base pair geometry, and substrate-induced conformational changes to fidelity. These studies also reveal polymerase interactions with the DNA minor groove at and upstream of the active site that influence nucleotide selectivity, the efficiency of exonucleolytic proofreading, and the rate of forming errors via strand misalignments. We highlight common features that are relevant to the fidelity of any DNA synthesis reaction, and consider why fidelity varies depending on the enzymes, the error, and the local sequence environment.
9878167
Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.
9881829
The conserved histone variant H2AZ has an important role in the regulation of gene expression and the establishment of a buffer to the spread of silent heterochromatin. How histone variants such as H2AZ are incorporated into nucleosomes has been obscure. We have found that Swr1, a Swi2/Snf2-related adenosine triphosphatase, is the catalytic core of a multisubunit, histone-variant exchanger that efficiently replaces conventional histone H2A with histone H2AZ in nucleosome arrays. Swr1 is required for the deposition of histone H2AZ at specific chromosome locations in vivo, and Swr1 and H2AZ commonly regulate a subset of yeast genes. These findings define a previously unknown role for the adenosine triphosphate-dependent chromatin remodeling machinery.
9889151
FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.
9899292
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
9911547
The physiologic roles of angiopoietin-like proteins (Angptls) in the hematopoietic system remain unknown. Here we show that hematopoietic stem cells (HSCs) in Angptl3-null mice are decreased in number and quiescence. HSCs transplanted into Angptl3-null recipient mice exhibited impaired repopulation. Bone marrow sinusoidal endothelial cells express high levels of Angptl3 and are adjacent to HSCs. Importantly, bone marrow stromal cells or endothelium deficient in Angptl3 have a significantly decreased ability to support the expansion of repopulating HSCs. Angptl3 represses the expression of the transcription factor Ikaros, whose unregulated overexpression diminishes the repopulation activity of HSCs. Angptl3, as an extrinsic factor, thus supports the stemness of HSCs in the bone marrow niche.