File size: 3,821 Bytes
56d5534
 
bd0bc0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56d5534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd0bc0f
 
 
 
 
 
123c2a9
 
 
 
 
 
 
 
 
 
56d5534
123c2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
dataset_info:
- config_name: default
  features:
  - name: premise
    dtype: large_string
  - name: hypothesis
    dtype: large_string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 3213257
    num_examples: 20073
  - name: test
    num_bytes: 389445
    num_examples: 2434
  download_size: 1263287
  dataset_size: 3602702
- config_name: v1.1
  features:
  - name: premise
    dtype: large_string
  - name: hypothesis
    dtype: large_string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
  splits:
  - name: train
    num_bytes: 3213257
    num_examples: 20073
  - name: test
    num_bytes: 389445
    num_examples: 2434
  download_size: 1263287
  dataset_size: 3602702
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: v1.1
  data_files:
  - split: train
    path: v1.1/train-*
  - split: test
    path: v1.1/test-*
license: cc-by-sa-4.0
task_categories:
- text-classification
language:
- ja
tags:
- nli
- benchmark
- evaluation
pretty_name: JGLUE/JNLI
---

# JGLUE[JNLI]: Japanese General Language Understanding Evaluation

JNLI([yahoojapan/JGLUE](https://github.com/yahoojapan/JGLUE)) is a Japanese version of the NLI (Natural Language Inference) dataset. 
NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence. 
The inference relations are `entailment`, `contradiction`, and `neutral`.

## Dataset Details

### Dataset Description

- **Created by:** yahoojapan
- **Language(s) (NLP):** Japanese
- **License:** CC-BY-SA-4.0

### Dataset Sources [optional]

- **Repository:** [yahoojapan/JGLUE](https://github.com/yahoojapan/JGLUE)
- **Paper:** [More Information Needed]

## Citation

**BibTeX:**

```
@article{栗原 健太郎2023,
  title={JGLUE: 日本語言語理解ベンチマーク},
  author={栗原 健太郎 and 河原 大輔 and 柴田 知秀},
  journal={自然言語処理},
  volume={30},
  number={1},
  pages={63-87},
  year={2023},
  url = "https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_article/-char/ja",
  doi={10.5715/jnlp.30.63}
}
@inproceedings{kurihara-etal-2022-jglue,
    title = "{JGLUE}: {J}apanese General Language Understanding Evaluation",
    author = "Kurihara, Kentaro  and
      Kawahara, Daisuke  and
      Shibata, Tomohide",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.317",
    pages = "2957--2966",
    abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.",
}
@InProceedings{Kurihara_nlp2022,
  author = 	"栗原健太郎 and 河原大輔 and 柴田知秀",
  title = 	"JGLUE: 日本語言語理解ベンチマーク",
  booktitle = 	"言語処理学会第28回年次大会",
  year =	"2022",
  url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf"
  note= "in Japanese"
}
```

**APA:**

[More Information Needed]