File size: 2,101 Bytes
23fd692 8eff5ec 23fd692 8eff5ec 23fd692 1863b58 23fd692 8eff5ec 23fd692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
task_categories:
- text-to-image
- image-to-image
language:
- en
size_categories:
- 100K<n<1M
---
# X2I Dataset
* Project Page: [https://vectorspacelab.github.io/OmniGen/](https://vectorspacelab.github.io/OmniGen/)
* Github: [https://github.com/VectorSpaceLab/OmniGen](https://github.com/VectorSpaceLab/OmniGen)
* Paper: [https://arxiv.org/abs/2409.11340](https://arxiv.org/abs/2409.11340)
* Model: [https://huggingface.co/Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1)
To achieve robust multi-task processing capabilities, it is essential to train the **OmniGen** on large-scale and diverse datasets. However, in the field of unified image generation, a readily available dataset has yet to emerge. For this reason, we have curated a large-scale **unified image generation** dataset with unified format for the **first time**, which we refer to as the **X2I dataset**, meaning **"anything to image"**.
| Task| Datastet|
| :-------- | :-------- |
| Multi-modal Instruction| [X2I-mm-instruction](https://huggingface.co/datasets/yzwang/X2I-mm-instruction) |
| Subject-driven Editing | [X2I-subject-driven](https://huggingface.co/datasets/yzwang/X2I-subject-driven) |
| In-context Learning | [X2I-in-context-learning](https://huggingface.co/datasets/yzwang/X2I-in-context-learning) |
| Computer Vision | [X2I-computer-vision](https://huggingface.co/datasets/yzwang/X2I-computer-vision) |
| Text to Image Generation| [X2I-text-to-image](https://huggingface.co/datasets/yzwang/X2I-text-to-image) |
## X2I-in-context-learning
- **Derain & Enhance & GoPro**
A set of image derain, enhance and deblur datasets with 859 & 485 & 2,103 samples.
```python
## meta file: derain.jsonl
cd derain
tar -xzvf derain.tar.gz
## meta file: enhance.jsonl
cd enhance
tar -xzvf enhance.tar.gz
## meta file: gopro.jsonl
cd gopro
tar -xzvf gopro.tar.gz
```
- **ADE**
An image segementation dataset with 297,472 samples.
```python
## meta file: ade.jsonl
cd ade
tar -xzvf ade.tar.gz
tar -xzvf seg_imgs.tar.gz
```
- [MultiGen](https://github.com/salesforce/UniControl) |