File size: 2,101 Bytes
23fd692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eff5ec
23fd692
 
 
8eff5ec
23fd692
 
 
 
 
 
 
 
1863b58
23fd692
 
 
 
 
8eff5ec
23fd692
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
task_categories:
- text-to-image
- image-to-image
language:
- en
size_categories:
- 100K<n<1M
---

# X2I Dataset

* Project Page: [https://vectorspacelab.github.io/OmniGen/](https://vectorspacelab.github.io/OmniGen/)
* Github: [https://github.com/VectorSpaceLab/OmniGen](https://github.com/VectorSpaceLab/OmniGen)
* Paper: [https://arxiv.org/abs/2409.11340](https://arxiv.org/abs/2409.11340)
* Model: [https://huggingface.co/Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1)


To achieve robust multi-task processing capabilities, it is essential to train the **OmniGen** on large-scale and diverse datasets. However, in the field of unified image generation, a readily available dataset has yet to emerge. For this reason, we have curated a large-scale **unified image generation** dataset with unified format for the **first time**, which we refer to as the **X2I dataset**, meaning **"anything to image"**. 


| Task| Datastet|
| :--------  | :--------  |
| Multi-modal Instruction| [X2I-mm-instruction](https://huggingface.co/datasets/yzwang/X2I-mm-instruction) |
| Subject-driven Editing | [X2I-subject-driven](https://huggingface.co/datasets/yzwang/X2I-subject-driven) |
| In-context Learning | [X2I-in-context-learning](https://huggingface.co/datasets/yzwang/X2I-in-context-learning) |
| Computer Vision | [X2I-computer-vision](https://huggingface.co/datasets/yzwang/X2I-computer-vision) |
| Text to Image Generation| [X2I-text-to-image](https://huggingface.co/datasets/yzwang/X2I-text-to-image) |


## X2I-in-context-learning


- **Derain & Enhance & GoPro**

A set of image derain, enhance and deblur datasets with 859 & 485 & 2,103 samples. 

```python
## meta file: derain.jsonl
cd derain
tar -xzvf derain.tar.gz

## meta file: enhance.jsonl
cd enhance
tar -xzvf enhance.tar.gz

## meta file: gopro.jsonl
cd gopro
tar -xzvf gopro.tar.gz
```


- **ADE**

An image segementation dataset with 297,472 samples.

```python
## meta file: ade.jsonl
cd ade
tar -xzvf ade.tar.gz
tar -xzvf seg_imgs.tar.gz
```

- [MultiGen](https://github.com/salesforce/UniControl)