|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import datasets |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@misc{wei2024aceval, |
|
title={AC-EVAL: Evaluating Ancient Chinese Language Understanding in Large Language Models}, |
|
author={Yuting Wei and Yuanxing Xu and Xinru Wei and Simin Yang and Yangfu Zhu and Yuqing Li and Di Liu and Bin Wu}, |
|
year={2024}, |
|
eprint={2403.06574}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
AC-EVAL presents a thorough evaluation suite for Large Language Models (LLMs) focusing on ancient Chinese, covering eras from the Pre-Qin period to the Qing dynasty. This suite includes 3245 multi-choice questions across 3 levels of difficulty and 13 diverse tasks. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/yuting-wei/AC-EVAL" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" |
|
|
|
_URL = r"https://huggingface.co/datasets/yuting-wei/aceval/resolve/main/aceval.zip" |
|
|
|
task_list = [ |
|
'historical_facts', |
|
'geography', |
|
'social_customs', |
|
'art_and_cultural_heritage', |
|
'philosophy_and_religion', |
|
'lexical_pragmatics_analysis', |
|
'allusions_and_idioms', |
|
'word_sense_disambiguation', |
|
'translation', |
|
'event_extraction', |
|
'sentence_pauses', |
|
'summarization_and_analysis', |
|
'poetry_appreciation' |
|
] |
|
|
|
|
|
class ACEVALConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
|
|
|
|
class ACEVAL(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
ACEVALConfig( |
|
name=task_name |
|
) |
|
for task_name in task_list |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"Question": datasets.Value("string"), |
|
"A": datasets.Value("string"), |
|
"B": datasets.Value("string"), |
|
"C": datasets.Value("string"), |
|
"D": datasets.Value("string"), |
|
"Answer": datasets.Value("string"), |
|
"Explanation":datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
task_name = self.config.name |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("dev"), |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8") |
|
for i, instance in enumerate(df.to_dict(orient="records")): |
|
if "Answer" not in instance.keys(): |
|
instance["Answer"]="" |
|
if "Explanation" not in instance.keys(): |
|
instance["Explanation"]="" |
|
yield i, instance |
|
|