Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
0a9ec88
·
1 Parent(s): b5ab364

addd preprint info

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -50,7 +50,7 @@ task_ids: []
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
- - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:[email protected])
55
 
56
  ### Dataset Summary
@@ -58,7 +58,7 @@ task_ids: []
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
- This is the Easy set of our SRSD-Feynman datasets, which consists of the following 30 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
@@ -183,11 +183,12 @@ MIT License
183
 
184
  ### Citation Information
185
 
 
186
  ```bibtex
187
  @article{matsubara2022rethinking,
188
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
189
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
190
- journal={arXiv preprint arXiv:...},
191
  year={2022}
192
  }
193
  ```
 
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
+ - **Paper:** [Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery](https://arxiv.org/abs/2206.10540)
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:[email protected])
55
 
56
  ### Dataset Summary
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
+ This is the ***Easy set*** of our SRSD-Feynman datasets, which consists of the following 30 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
 
183
 
184
  ### Citation Information
185
 
186
+ [[Preprint](https://arxiv.org/abs/2206.10540)]
187
  ```bibtex
188
  @article{matsubara2022rethinking,
189
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
190
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
191
+ journal={arXiv preprint arXiv:2206.10540},
192
  year={2022}
193
  }
194
  ```