File size: 6,957 Bytes
1b00d9c 5664e18 1b00d9c 5664e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
license: apache-2.0
task_categories:
- object-detection
tags:
- COCO
- Detection
- '2017'
pretty_name: COCO detection dataset script
size_categories:
- 100K<n<1M
dataset_info:
config_name: '2017'
features:
- name: id
dtype: int64
- name: objects
struct:
- name: bbox_id
sequence: int64
- name: category_id
sequence:
class_label:
names:
'0': N/A
'1': person
'2': bicycle
'3': car
'4': motorcycle
'5': airplane
'6': bus
'7': train
'8': truck
'9': boat
'10': traffic light
'11': fire hydrant
'12': street sign
'13': stop sign
'14': parking meter
'15': bench
'16': bird
'17': cat
'18': dog
'19': horse
'20': sheep
'21': cow
'22': elephant
'23': bear
'24': zebra
'25': giraffe
'26': hat
'27': backpack
'28': umbrella
'29': shoe
'30': eye glasses
'31': handbag
'32': tie
'33': suitcase
'34': frisbee
'35': skis
'36': snowboard
'37': sports ball
'38': kite
'39': baseball bat
'40': baseball glove
'41': skateboard
'42': surfboard
'43': tennis racket
'44': bottle
'45': plate
'46': wine glass
'47': cup
'48': fork
'49': knife
'50': spoon
'51': bowl
'52': banana
'53': apple
'54': sandwich
'55': orange
'56': broccoli
'57': carrot
'58': hot dog
'59': pizza
'60': donut
'61': cake
'62': chair
'63': couch
'64': potted plant
'65': bed
'66': mirror
'67': dining table
'68': window
'69': desk
'70': toilet
'71': door
'72': tv
'73': laptop
'74': mouse
'75': remote
'76': keyboard
'77': cell phone
'78': microwave
'79': oven
'80': toaster
'81': sink
'82': refrigerator
'83': blender
'84': book
'85': clock
'86': vase
'87': scissors
'88': teddy bear
'89': hair drier
'90': toothbrush
- name: bbox
sequence:
sequence: float64
length: 4
- name: iscrowd
sequence: int64
- name: area
sequence: float64
- name: height
dtype: int64
- name: width
dtype: int64
- name: file_name
dtype: string
- name: coco_url
dtype: string
- name: image_path
dtype: string
splits:
- name: train
num_bytes: 87231216
num_examples: 117266
- name: validation
num_bytes: 3692192
num_examples: 4952
download_size: 20405354669
dataset_size: 90923408
---
## Usage
For using the COCO dataset (2017), you need to download it manually first:
```bash
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
```
Then to load the dataset:
```python
COCO_DIR = ...(path to the downloaded dataset directory)...
ds = datasets.load_dataset(
"yonigozlan/coco_2017_detection_script",
"2017",
data_dir=COCO_DIR,
trust_remote_code=True,
)
```
## Benchmarking
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:
```python
import datasets
import torch
from PIL import Image
from torch.utils.data import DataLoader
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from tqdm import tqdm
from transformers import AutoImageProcessor, AutoModelForObjectDetection
# prepare data
COCO_DIR = ...(path to the downloaded dataset directory)...
ds = datasets.load_dataset(
"yonigozlan/coco_2017_detection_script",
"2017",
data_dir=COCO_DIR,
trust_remote_code=True,
)
val_data = ds["validation"]
categories = val_data.features["objects"]["category_id"].feature.names
id2label = {index: x for index, x in enumerate(categories, start=0)}
label2id = {v: k for k, v in id2label.items()}
checkpoint = "facebook/detr-resnet-50"
# load model and processor
model = AutoModelForObjectDetection.from_pretrained(
checkpoint, torch_dtype=torch.float16
).to("cuda")
id2label_model = model.config.id2label
processor = AutoImageProcessor.from_pretrained(checkpoint)
def collate_fn(batch):
data = {}
images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
data["images"] = images
annotations = []
for x in batch:
boxes = x["objects"]["bbox"]
# convert to xyxy format
boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
labels = x["objects"]["category_id"]
boxes = torch.tensor(boxes)
labels = torch.tensor(labels)
annotations.append({"boxes": boxes, "labels": labels})
data["original_size"] = [(x["height"], x["width"]) for x in batch]
data["annotations"] = annotations
return data
# prepare dataloader
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)
# prepare metric
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
# evaluation loop
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
inputs = (
processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
results = processor.post_process_object_detection(
outputs, threshold=0.0, target_sizes=target_sizes
)
# convert predicted label id to dataset label id
if len(id2label_model) != len(id2label):
for result in results:
result["labels"] = torch.tensor(
[label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
)
# put results back to cpu
for result in results:
for k, v in result.items():
if isinstance(v, torch.Tensor):
result[k] = v.to("cpu")
metric.update(results, batch["annotations"])
metrics = metric.compute()
print(metrics)
```
|