File size: 6,957 Bytes
1b00d9c
 
5664e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b00d9c
5664e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---

license: apache-2.0
task_categories:
- object-detection
tags:
- COCO
- Detection
- '2017'
pretty_name: COCO detection dataset script
size_categories:
- 100K<n<1M
dataset_info:
  config_name: '2017'
  features:
  - name: id
    dtype: int64
  - name: objects
    struct:
    - name: bbox_id
      sequence: int64
    - name: category_id
      sequence:
        class_label:
          names:
            '0': N/A
            '1': person
            '2': bicycle
            '3': car
            '4': motorcycle
            '5': airplane
            '6': bus
            '7': train
            '8': truck
            '9': boat
            '10': traffic light
            '11': fire hydrant
            '12': street sign
            '13': stop sign
            '14': parking meter
            '15': bench
            '16': bird
            '17': cat
            '18': dog
            '19': horse
            '20': sheep
            '21': cow
            '22': elephant
            '23': bear
            '24': zebra
            '25': giraffe
            '26': hat
            '27': backpack
            '28': umbrella
            '29': shoe
            '30': eye glasses
            '31': handbag
            '32': tie
            '33': suitcase
            '34': frisbee
            '35': skis
            '36': snowboard
            '37': sports ball
            '38': kite
            '39': baseball bat
            '40': baseball glove
            '41': skateboard
            '42': surfboard
            '43': tennis racket
            '44': bottle
            '45': plate
            '46': wine glass
            '47': cup
            '48': fork
            '49': knife
            '50': spoon
            '51': bowl
            '52': banana
            '53': apple
            '54': sandwich
            '55': orange
            '56': broccoli
            '57': carrot
            '58': hot dog
            '59': pizza
            '60': donut
            '61': cake
            '62': chair
            '63': couch
            '64': potted plant
            '65': bed
            '66': mirror
            '67': dining table
            '68': window
            '69': desk
            '70': toilet
            '71': door
            '72': tv
            '73': laptop
            '74': mouse
            '75': remote
            '76': keyboard
            '77': cell phone
            '78': microwave
            '79': oven
            '80': toaster
            '81': sink
            '82': refrigerator
            '83': blender
            '84': book
            '85': clock
            '86': vase
            '87': scissors
            '88': teddy bear
            '89': hair drier
            '90': toothbrush
    - name: bbox
      sequence:
        sequence: float64
        length: 4
    - name: iscrowd
      sequence: int64
    - name: area
      sequence: float64
  - name: height
    dtype: int64
  - name: width
    dtype: int64
  - name: file_name
    dtype: string
  - name: coco_url
    dtype: string
  - name: image_path
    dtype: string
  splits:
  - name: train
    num_bytes: 87231216
    num_examples: 117266
  - name: validation
    num_bytes: 3692192
    num_examples: 4952
  download_size: 20405354669
  dataset_size: 90923408
---

## Usage
For using the COCO dataset (2017), you need to download it manually first:
```bash

wget http://images.cocodataset.org/zips/train2017.zip

wget http://images.cocodataset.org/zips/val2017.zip

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip

```

Then to load the dataset:
```python

COCO_DIR = ...(path to the downloaded dataset directory)...

ds = datasets.load_dataset(

    "yonigozlan/coco_2017_detection_script",

    "2017",

    data_dir=COCO_DIR,

    trust_remote_code=True,

)

```

## Benchmarking
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:

```python

import datasets

import torch

from PIL import Image

from torch.utils.data import DataLoader

from torchmetrics.detection.mean_ap import MeanAveragePrecision

from tqdm import tqdm



from transformers import AutoImageProcessor, AutoModelForObjectDetection



# prepare data

COCO_DIR = ...(path to the downloaded dataset directory)...

ds = datasets.load_dataset(

    "yonigozlan/coco_2017_detection_script",

    "2017",

    data_dir=COCO_DIR,

    trust_remote_code=True,

)

val_data = ds["validation"]

categories = val_data.features["objects"]["category_id"].feature.names

id2label = {index: x for index, x in enumerate(categories, start=0)}

label2id = {v: k for k, v in id2label.items()}

checkpoint = "facebook/detr-resnet-50"



# load model and processor

model = AutoModelForObjectDetection.from_pretrained(

    checkpoint, torch_dtype=torch.float16

).to("cuda")

id2label_model = model.config.id2label

processor = AutoImageProcessor.from_pretrained(checkpoint)





def collate_fn(batch):

    data = {}

    images = [Image.open(x["image_path"]).convert("RGB") for x in batch]

    data["images"] = images

    annotations = []

    for x in batch:

        boxes = x["objects"]["bbox"]

        # convert to xyxy format

        boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]

        labels = x["objects"]["category_id"]

        boxes = torch.tensor(boxes)

        labels = torch.tensor(labels)

        annotations.append({"boxes": boxes, "labels": labels})

    data["original_size"] = [(x["height"], x["width"]) for x in batch]

    data["annotations"] = annotations

    return data





# prepare dataloader

dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)



# prepare metric

metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)



# evaluation loop

for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):

    inputs = (

        processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)

    )

    with torch.no_grad():

        outputs = model(**inputs)

    target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")

    results = processor.post_process_object_detection(

        outputs, threshold=0.0, target_sizes=target_sizes

    )



    # convert predicted label id to dataset label id

    if len(id2label_model) != len(id2label):

        for result in results:

            result["labels"] = torch.tensor(

                [label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]

            )

    # put results back to cpu

    for result in results:

        for k, v in result.items():

            if isinstance(v, torch.Tensor):

                result[k] = v.to("cpu")

    metric.update(results, batch["annotations"])



metrics = metric.compute()

print(metrics)

```