Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 12,729 Bytes
2d3e3bb
7e35bc4
 
2d3e3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa4827b
2d3e3bb
 
 
 
 
 
 
 
 
 
 
 
aa4827b
2d3e3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
---
language:
- en
license: cc-by-sa-4.0
configs:
- config_name: default
  data_files:
  - split: count
    path: data/count-*
  - split: direction
    path: data/direction-*
  - split: rotation
    path: data/rotation-*
  - split: shape_trend
    path: data/shape_trend-*
  - split: velocity_frequency
    path: data/velocity_frequency-*
  - split: visual_cues
    path: data/visual_cues-*
dataset_info:
  features:
  - name: question
    dtype: string
  - name: demonstration_type
    dtype: string
  - name: variation
    struct:
    - name: composite
      dtype: int64
    - name: counterfactual
      dtype: int64
    - name: first_person
      dtype: int64
    - name: zoom
      dtype: int64
  - name: motion_type
    dtype: string
  - name: answer
    dtype: int64
  - name: note
    dtype: string
  - name: key
    dtype: string
  - name: options
    sequence: string
  - name: video_source_url
    dtype: string
  splits:
  - name: count
    num_bytes: 60102
    num_examples: 292
  - name: direction
    num_bytes: 124629
    num_examples: 403
  - name: rotation
    num_bytes: 92655
    num_examples: 286
  - name: shape_trend
    num_bytes: 61447
    num_examples: 223
  - name: velocity_frequency
    num_bytes: 57868
    num_examples: 210
  - name: visual_cues
    num_bytes: 16937
    num_examples: 70
  download_size: 71255
  dataset_size: 413638
---

# πŸ… TOMATO

[**πŸ“„ Paper**](https://arxiv.org/abs/2410.23266) | [**πŸ’» Code**](https://github.com/yale-nlp/TOMATO) | [**🎬 Videos**](https://drive.google.com/file/d/1-dNt9bZcp6C3RXuGoAO3EBgWkAHg8NWR/view?usp=drive_link) 



This repository contains the QAs of the following paper:

>πŸ… TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models <br>
>[Ziyao Shangguan](https://ziyaosg.github.io/)\*<sup>1</sup>,&nbsp;
[Chuhan Li](https://LeeChuh.github.io)\*<sup>1</sup>,&nbsp;
[Yuxuan Ding](https://scholar.google.com/citations?user=jdsf4z4AAAAJ)<sup>1</sup>,&nbsp;
[Yanan Zheng](https://scholar.google.com/citations?user=0DqJ8eIAAAAJ)<sup>1</sup>,&nbsp;
[Yilun Zhao](https://yilunzhao.github.io/)<sup>1</sup>,&nbsp;
[Tesca Fitzgerald](https://www.tescafitzgerald.com/)<sup>1</sup>,&nbsp;
[Arman Cohan](https://armancohan.com/)<sup>1</sup><sup>2</sup> <br>
>*Equal contribution. <br>
><sup>1</sup>Yale University &nbsp;<sup>2</sup>Allen Institute of AI <sup>


## TOMATO - A Visual Temporal Reasoning Benchmark
![figure1](./misc/figure1.png)

### Introduction

Our study of existing benchmarks shows that visual temporal reasoning capabilities of Multimodal Foundation Models (MFMs) are likely overestimated as many questions can be solved by using a single, few, or out-of-order frames. To systematically examine current visual temporal reasoning tasks, we propose three principles with corresponding metrics: (1) *Multi-Frame Gain*, (2) *Frame Order Sensitivity*, and (3) *Frame Information Disparity*. 

Following these principles, we introduce TOMATO, a novel benchmark crafted to rigorously assess MFMs' temporal reasoning capabilities in video understanding. TOMATO comprises 1,484 carefully curated, human-annotated questions spanning 6 tasks (i.e. *action count*, *direction*, *rotation*, *shape&trend*, *velocity&frequency*, and *visual cues*), applied to 1,417 videos, including 805 self-recorded and -generated videos, that encompass 3 video scenarios (i.e. *human-centric*, *real-world*, and *simulated*). In the 805 self-created videos, we apply editing to incorporate *counterfactual scenes*, *composite motions*, and *zoomed-in* views, aiming to investigate the impact of these characteristics on the performance of MFMs.

### Task Examples

![rotation](./misc/ball_rotation_frames.png)
>What direction(s) does the Ping Pong ball rotate in? <br>
>A. Clockwise throughout. <br>
>B. No rotation. <br>
>C. Clockwise then counter-clockwise. <br>
>D. Counter-clockwise throughout. <br>
>E. Counter-clockwise then clockwise. <br>
>
>Answer: D. Counter-clockwise throughout. <br>

![acceleration](./misc/dropping_reversed_frames.png)
>What is the pattern of the object’s speed in the video? <br>
>A. Not moving at all. <br>
>B. Constant speed. <br>
>C. Decelerating. <br>
>D. Accelerating. <br>
>
>Answer: C. Decelerating.


![human_gesture](./misc/human_gesture_frames.png) <br>
>What instruction did the person give to the camera in the video? <br>
>A. Moving Down. <br>
>B. Moving Left. <br>
>C. Moving Further. <br>
>D. Moving Closer. <br>
>E. Moving Right. <br>
>F. Moving Up. <br>
>
>Answer: E. Moving Right.


![synthetic_human](./misc/synthetic_human_frames.png) <br>
>How many triangle(s) does the person draw in the air throughout the entire video? <br>
>A. 0 <br>
>B. 1 <br>
>C. 2 <br>
>D. 3 <br>
>E. 4 <br>
>F. 5 <br>
>
>Answer: E. 4

### Analysis Highlight

![earth_moon_frames](./misc/earth_moon_frames.png)

Our in-depth error case analysis reveals that **models lack the basic ability to interpret frames as a continuous sequence**. In the example, while GPT-4o correctly generates captions for each consecutive change in the moon's movement, showcasing its ability to reason at individual time steps, it still fails to infer based on the captions that the overall sequence represents a clockwise rotation and falsely concludes that it is a counter-clockwise rotation. 

For more detailed error case analysis, please refer to Section 6.3 in our paper.


## Dataset and Evaluation
### 1. Setup 

```bash
git clone https://github.com/yale-nlp/TOMATO
cd TOMATO
```
Download the [videos](https://drive.google.com/file/d/1-dNt9bZcp6C3RXuGoAO3EBgWkAHg8NWR/view?usp=drive_link) and unzip into the /TOMATO directory

<details>
<summary>After downloading the videos, your file structure should look like this.</summary>

```
.
β”œβ”€β”€ data/
β”œβ”€β”€ src/
β”œβ”€β”€ videos/
β”‚   β”œβ”€β”€ human/
β”‚   β”œβ”€β”€ object/
β”‚   β”œβ”€β”€ simulated/

```
</details>


#### 1.1 Proprietary Models 
To install the required packages for evaluating proprietary models, run:
```bash
pip install openai # GPT 
pip install google-generativeai # Gemini 
pip install anthropic # Claude
pip install reka-api==2.0.0 # Reka
```
Create a `.env` file in the root directory with the following format:
```
OPENAI_API_KEY="your_openai_api_key"
GEMINI_API_KEY="your_gemini_api_key"
ANTHROPIC_API_KEY="your_anthropic_api_key"
REKA_API_KEY="your_reka_api_key"
```

#### 1.2 Open-sourced Models
Create a directory named `pretrained` in the root of TOMATO to store open-sourced models. For example, to download `Qwen-2-VL-7B` model, run the following command: 

```bash
mkdir pretrained && cd pretrained
huggingface-cli download 
  --resume-download 
  --local-dir-use-symlinks False Qwen/Qwen2-VL-7B-Instruct 
  --local-dir Qwen2-VL-7B-Instruct
```

<details>
  <summary>After downloading open-sourced models, your file structure should look like this.</summary>

```
.
β”œβ”€β”€ data/
β”œβ”€β”€ src/
β”œβ”€β”€ videos/
β”œβ”€β”€ pretrained/
β”‚   β”œβ”€β”€ Qwen2-VL-7B-Instruct/
β”‚   β”œβ”€β”€ ...
```
</details>
<br>

**Note**: To use `Video-CCAM`, `LLaVA-NeXT`, `Video-LLaVA`, `VideoLLaMA2`,  and `VILA`, follow additional instructions below. <br>
Clone their repositories into the `./src/generate_lib/` directory. Run the following commands:
```bash
cd ./src/generate_lib

git clone [email protected]:QQ-MM/Video-CCAM.git             # Video-CCAM
git clone [email protected]:LLaVA-VL/LLaVA-NeXT.git          # LLaVA-NeXT
git clone [email protected]:DAMO-NLP-SG/VideoLLaMA2.git      # VideoLLaMA2
git clone [email protected]:PKU-YuanGroup/Video-LLaVA.git    # Video-LLaVA
git clone [email protected]:NVlabs/VILA.git                  # VILA
```
After cloning, rename the directories by replacing hyphens (`-`) with underscores (`_`):
```bash
mv Video-CCAM Video_CCAM
mv LLaVA-NeXT LLaVA_NeXT
mv Video-LLaVA Video_LLaVA
```

### 2. Evaluation

To run evaluation with a model:
```bash
python src/evaluate.py 
  --model $model_name
  --reasoning_type ALL 
  --demonstration_type ALL 
  --total_frames $total_frames
```
All supported models are listed [here](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L2-L62). To evaluate additional models, please refer to the next section.<br>

[This](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L63-L70) is a list of models that take in videos directly and any specified `total_frames` will be ignore. <br>

You can specify a subset of `reasoning_type` and `demonstration_type` using a comma-seperated list. [These](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L71-83) are the lists of valid choices.

### 3. Result Parsing
When our standard parser using regular expression fails, we employ `GPT-4o-mini` to extract answers from model response. To use the parser:
```bash
python src/parse_result.py
``` 
**Note**: This parser is designed to be incremental. It only parses additional raw model responses while leaving the already parsed results unchanged.

### 4. Display Categorized Scores

Scores are grouped by `model`, `reasoning_type`+`model`, and `demonstration_type`+`model`. To display scores:

```bash
python src/get_categorized_score.py
```

## Evaluate Additional Models

Our evaluation scripts are designed for the ease of adding additional models, simply:

### 1. Add Model to Config File
Add `model_family` and `model_name` to `src/config.json` like below:

```json
{
    "models": {
        "{model_family}": [
            "{model_name}",
            "..."
        ]
```

### 2. Add Model Evaluation Code
Create the corresponding `{model_family}.py` file under `src/generate_lib` with the starter code below:

```python
from generate_lib.constant import GENERATION_TEMPERATURE, GENERATION_TOP_P, SYSTEM_PROMPT, MAX_TOKENS, GENERATION_SEED
from generate_lib.construct_prompt import construct_prompt
from generate_lib.utils import read_video

def generate_response(model_name: str, queries: list, total_frames: int, output_dir: str):
    # initialize your model 
    model = ...

    for query in queries:
      id_ = query['id']
      question = query['question']
      gt = optionized_list[query['answer']]

      # construct prompt
      base64Frames, _ = read_video(video_path=video_path, total_frames=total_frames)
      prompt, all_choices, index2ans = construct_prompt(question=question,
                                                        options=options,
                                                        num_frames=total_frames)
      
      # generate response
      response = model(...)

      # save model response in default format to use our result parser
      with open(output_dir, "a") as f:
            f.write(json.dumps(
                {
                    "id": id_,
                    "question": question,
                    "response": response,
                    "all_choices": all_choices,
                    "index2ans": index2ans,
                    'gt': gt
                }
            ) + "\n")
```


## Experiments

### 1. Comparison with Existing Benchmarks

#### 1.1 Multi-Frame Gain ($\kappa$): a *higher* value indicates the task is less solvable by a single frame.
![multi_frame_gain1](./misc/multi_frame_gain1.png)
![multi_frame_gain2](./misc/multi_frame_gain2.png)
 
#### 1.2 Frame Order Sensitivity ($\tau$): a *higher* value indicates the task is more reliant on the correct order of frames.
![frame_order_sensitivity](./misc/frame_order_sensitivity.png)


#### 1.3 Frame Information Parity ($\rho$): a *lower* value indicates information is more evenly distributed across the frames.
![frame_information_parity](./misc/frame_information_parity.png)


### 2. Leaderboard
We evaluate general-purpose MFMs on TOMATO, with all models tested in a zero-shot setting. The scores below are represented percentage accuracy (\%).

![main_results](./misc/main_results.png)




# Contact
If you have any questions or suggestions, please don't hesitate to let us know. You can post an issue on this repository, or contact us directly at:
- Ziyao Shangguan: [email protected]
- Chuhan Li: [email protected]

# Citation
If you find πŸ…TOMATO useful for your research and applications, please cite using this BibTex:

```bibtex
@misc{shangguan2024tomatoassessingvisualtemporal,
      title={TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models}, 
      author={Ziyao Shangguan and Chuhan Li and Yuxuan Ding and Yanan Zheng and Yilun Zhao and Tesca Fitzgerald and Arman Cohan},
      year={2024},
      eprint={2410.23266},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2410.23266}, 
}
```