File size: 12,729 Bytes
2d3e3bb 7e35bc4 2d3e3bb aa4827b 2d3e3bb aa4827b 2d3e3bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
---
language:
- en
license: cc-by-sa-4.0
configs:
- config_name: default
data_files:
- split: count
path: data/count-*
- split: direction
path: data/direction-*
- split: rotation
path: data/rotation-*
- split: shape_trend
path: data/shape_trend-*
- split: velocity_frequency
path: data/velocity_frequency-*
- split: visual_cues
path: data/visual_cues-*
dataset_info:
features:
- name: question
dtype: string
- name: demonstration_type
dtype: string
- name: variation
struct:
- name: composite
dtype: int64
- name: counterfactual
dtype: int64
- name: first_person
dtype: int64
- name: zoom
dtype: int64
- name: motion_type
dtype: string
- name: answer
dtype: int64
- name: note
dtype: string
- name: key
dtype: string
- name: options
sequence: string
- name: video_source_url
dtype: string
splits:
- name: count
num_bytes: 60102
num_examples: 292
- name: direction
num_bytes: 124629
num_examples: 403
- name: rotation
num_bytes: 92655
num_examples: 286
- name: shape_trend
num_bytes: 61447
num_examples: 223
- name: velocity_frequency
num_bytes: 57868
num_examples: 210
- name: visual_cues
num_bytes: 16937
num_examples: 70
download_size: 71255
dataset_size: 413638
---
# π
TOMATO
[**π Paper**](https://arxiv.org/abs/2410.23266) | [**π» Code**](https://github.com/yale-nlp/TOMATO) | [**π¬ Videos**](https://drive.google.com/file/d/1-dNt9bZcp6C3RXuGoAO3EBgWkAHg8NWR/view?usp=drive_link)
This repository contains the QAs of the following paper:
>π
TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models <br>
>[Ziyao Shangguan](https://ziyaosg.github.io/)\*<sup>1</sup>,
[Chuhan Li](https://LeeChuh.github.io)\*<sup>1</sup>,
[Yuxuan Ding](https://scholar.google.com/citations?user=jdsf4z4AAAAJ)<sup>1</sup>,
[Yanan Zheng](https://scholar.google.com/citations?user=0DqJ8eIAAAAJ)<sup>1</sup>,
[Yilun Zhao](https://yilunzhao.github.io/)<sup>1</sup>,
[Tesca Fitzgerald](https://www.tescafitzgerald.com/)<sup>1</sup>,
[Arman Cohan](https://armancohan.com/)<sup>1</sup><sup>2</sup> <br>
>*Equal contribution. <br>
><sup>1</sup>Yale University <sup>2</sup>Allen Institute of AI <sup>
## TOMATO - A Visual Temporal Reasoning Benchmark
![figure1](./misc/figure1.png)
### Introduction
Our study of existing benchmarks shows that visual temporal reasoning capabilities of Multimodal Foundation Models (MFMs) are likely overestimated as many questions can be solved by using a single, few, or out-of-order frames. To systematically examine current visual temporal reasoning tasks, we propose three principles with corresponding metrics: (1) *Multi-Frame Gain*, (2) *Frame Order Sensitivity*, and (3) *Frame Information Disparity*.
Following these principles, we introduce TOMATO, a novel benchmark crafted to rigorously assess MFMs' temporal reasoning capabilities in video understanding. TOMATO comprises 1,484 carefully curated, human-annotated questions spanning 6 tasks (i.e. *action count*, *direction*, *rotation*, *shape&trend*, *velocity&frequency*, and *visual cues*), applied to 1,417 videos, including 805 self-recorded and -generated videos, that encompass 3 video scenarios (i.e. *human-centric*, *real-world*, and *simulated*). In the 805 self-created videos, we apply editing to incorporate *counterfactual scenes*, *composite motions*, and *zoomed-in* views, aiming to investigate the impact of these characteristics on the performance of MFMs.
### Task Examples
![rotation](./misc/ball_rotation_frames.png)
>What direction(s) does the Ping Pong ball rotate in? <br>
>A. Clockwise throughout. <br>
>B. No rotation. <br>
>C. Clockwise then counter-clockwise. <br>
>D. Counter-clockwise throughout. <br>
>E. Counter-clockwise then clockwise. <br>
>
>Answer: D. Counter-clockwise throughout. <br>
![acceleration](./misc/dropping_reversed_frames.png)
>What is the pattern of the objectβs speed in the video? <br>
>A. Not moving at all. <br>
>B. Constant speed. <br>
>C. Decelerating. <br>
>D. Accelerating. <br>
>
>Answer: C. Decelerating.
![human_gesture](./misc/human_gesture_frames.png) <br>
>What instruction did the person give to the camera in the video? <br>
>A. Moving Down. <br>
>B. Moving Left. <br>
>C. Moving Further. <br>
>D. Moving Closer. <br>
>E. Moving Right. <br>
>F. Moving Up. <br>
>
>Answer: E. Moving Right.
![synthetic_human](./misc/synthetic_human_frames.png) <br>
>How many triangle(s) does the person draw in the air throughout the entire video? <br>
>A. 0 <br>
>B. 1 <br>
>C. 2 <br>
>D. 3 <br>
>E. 4 <br>
>F. 5 <br>
>
>Answer: E. 4
### Analysis Highlight
![earth_moon_frames](./misc/earth_moon_frames.png)
Our in-depth error case analysis reveals that **models lack the basic ability to interpret frames as a continuous sequence**. In the example, while GPT-4o correctly generates captions for each consecutive change in the moon's movement, showcasing its ability to reason at individual time steps, it still fails to infer based on the captions that the overall sequence represents a clockwise rotation and falsely concludes that it is a counter-clockwise rotation.
For more detailed error case analysis, please refer to Section 6.3 in our paper.
## Dataset and Evaluation
### 1. Setup
```bash
git clone https://github.com/yale-nlp/TOMATO
cd TOMATO
```
Download the [videos](https://drive.google.com/file/d/1-dNt9bZcp6C3RXuGoAO3EBgWkAHg8NWR/view?usp=drive_link) and unzip into the /TOMATO directory
<details>
<summary>After downloading the videos, your file structure should look like this.</summary>
```
.
βββ data/
βββ src/
βββ videos/
β βββ human/
β βββ object/
β βββ simulated/
```
</details>
#### 1.1 Proprietary Models
To install the required packages for evaluating proprietary models, run:
```bash
pip install openai # GPT
pip install google-generativeai # Gemini
pip install anthropic # Claude
pip install reka-api==2.0.0 # Reka
```
Create a `.env` file in the root directory with the following format:
```
OPENAI_API_KEY="your_openai_api_key"
GEMINI_API_KEY="your_gemini_api_key"
ANTHROPIC_API_KEY="your_anthropic_api_key"
REKA_API_KEY="your_reka_api_key"
```
#### 1.2 Open-sourced Models
Create a directory named `pretrained` in the root of TOMATO to store open-sourced models. For example, to download `Qwen-2-VL-7B` model, run the following command:
```bash
mkdir pretrained && cd pretrained
huggingface-cli download
--resume-download
--local-dir-use-symlinks False Qwen/Qwen2-VL-7B-Instruct
--local-dir Qwen2-VL-7B-Instruct
```
<details>
<summary>After downloading open-sourced models, your file structure should look like this.</summary>
```
.
βββ data/
βββ src/
βββ videos/
βββ pretrained/
β βββ Qwen2-VL-7B-Instruct/
β βββ ...
```
</details>
<br>
**Note**: To use `Video-CCAM`, `LLaVA-NeXT`, `Video-LLaVA`, `VideoLLaMA2`, and `VILA`, follow additional instructions below. <br>
Clone their repositories into the `./src/generate_lib/` directory. Run the following commands:
```bash
cd ./src/generate_lib
git clone [email protected]:QQ-MM/Video-CCAM.git # Video-CCAM
git clone [email protected]:LLaVA-VL/LLaVA-NeXT.git # LLaVA-NeXT
git clone [email protected]:DAMO-NLP-SG/VideoLLaMA2.git # VideoLLaMA2
git clone [email protected]:PKU-YuanGroup/Video-LLaVA.git # Video-LLaVA
git clone [email protected]:NVlabs/VILA.git # VILA
```
After cloning, rename the directories by replacing hyphens (`-`) with underscores (`_`):
```bash
mv Video-CCAM Video_CCAM
mv LLaVA-NeXT LLaVA_NeXT
mv Video-LLaVA Video_LLaVA
```
### 2. Evaluation
To run evaluation with a model:
```bash
python src/evaluate.py
--model $model_name
--reasoning_type ALL
--demonstration_type ALL
--total_frames $total_frames
```
All supported models are listed [here](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L2-L62). To evaluate additional models, please refer to the next section.<br>
[This](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L63-L70) is a list of models that take in videos directly and any specified `total_frames` will be ignore. <br>
You can specify a subset of `reasoning_type` and `demonstration_type` using a comma-seperated list. [These](https://github.com/yale-nlp/TOMATO/blob/2161ce9a98291ce4fcb7aff9a531d10502bf5b10/src/config.json#L71-83) are the lists of valid choices.
### 3. Result Parsing
When our standard parser using regular expression fails, we employ `GPT-4o-mini` to extract answers from model response. To use the parser:
```bash
python src/parse_result.py
```
**Note**: This parser is designed to be incremental. It only parses additional raw model responses while leaving the already parsed results unchanged.
### 4. Display Categorized Scores
Scores are grouped by `model`, `reasoning_type`+`model`, and `demonstration_type`+`model`. To display scores:
```bash
python src/get_categorized_score.py
```
## Evaluate Additional Models
Our evaluation scripts are designed for the ease of adding additional models, simply:
### 1. Add Model to Config File
Add `model_family` and `model_name` to `src/config.json` like below:
```json
{
"models": {
"{model_family}": [
"{model_name}",
"..."
]
```
### 2. Add Model Evaluation Code
Create the corresponding `{model_family}.py` file under `src/generate_lib` with the starter code below:
```python
from generate_lib.constant import GENERATION_TEMPERATURE, GENERATION_TOP_P, SYSTEM_PROMPT, MAX_TOKENS, GENERATION_SEED
from generate_lib.construct_prompt import construct_prompt
from generate_lib.utils import read_video
def generate_response(model_name: str, queries: list, total_frames: int, output_dir: str):
# initialize your model
model = ...
for query in queries:
id_ = query['id']
question = query['question']
gt = optionized_list[query['answer']]
# construct prompt
base64Frames, _ = read_video(video_path=video_path, total_frames=total_frames)
prompt, all_choices, index2ans = construct_prompt(question=question,
options=options,
num_frames=total_frames)
# generate response
response = model(...)
# save model response in default format to use our result parser
with open(output_dir, "a") as f:
f.write(json.dumps(
{
"id": id_,
"question": question,
"response": response,
"all_choices": all_choices,
"index2ans": index2ans,
'gt': gt
}
) + "\n")
```
## Experiments
### 1. Comparison with Existing Benchmarks
#### 1.1 Multi-Frame Gain ($\kappa$): a *higher* value indicates the task is less solvable by a single frame.
![multi_frame_gain1](./misc/multi_frame_gain1.png)
![multi_frame_gain2](./misc/multi_frame_gain2.png)
#### 1.2 Frame Order Sensitivity ($\tau$): a *higher* value indicates the task is more reliant on the correct order of frames.
![frame_order_sensitivity](./misc/frame_order_sensitivity.png)
#### 1.3 Frame Information Parity ($\rho$): a *lower* value indicates information is more evenly distributed across the frames.
![frame_information_parity](./misc/frame_information_parity.png)
### 2. Leaderboard
We evaluate general-purpose MFMs on TOMATO, with all models tested in a zero-shot setting. The scores below are represented percentage accuracy (\%).
![main_results](./misc/main_results.png)
# Contact
If you have any questions or suggestions, please don't hesitate to let us know. You can post an issue on this repository, or contact us directly at:
- Ziyao Shangguan: [email protected]
- Chuhan Li: [email protected]
# Citation
If you find π
TOMATO useful for your research and applications, please cite using this BibTex:
```bibtex
@misc{shangguan2024tomatoassessingvisualtemporal,
title={TOMATO: Assessing Visual Temporal Reasoning Capabilities in Multimodal Foundation Models},
author={Ziyao Shangguan and Chuhan Li and Yuxuan Ding and Yanan Zheng and Yilun Zhao and Tesca Fitzgerald and Arman Cohan},
year={2024},
eprint={2410.23266},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.23266},
}
```
|