Dataset Viewer
Auto-converted to Parquet
project
stringclasses
1 value
name
stringlengths
7
39
informal
stringlengths
127
4.37k
formal
stringlengths
82
14.6k
informal_source
stringlengths
36
53
formal_source
stringlengths
21
46
PFR
I_one_le
\begin{lemma}\label{phi-first-estimate}\lean{I_one_le}\leanok $I_1\le 2\eta d[X_1;X_2]$ \end{lemma} \begin{proof}\leanok \uses{phi-min-def,first-fibre} Similar to \Cref{first-estimate}: get upper bounds for $d[X_1;X_2]$ by $\phi[X_1;X_2]\le \phi[X_1+X_2;\tilde X_1+\tilde X_2]$ and $\phi[X_1;X_2]\le \phi[X_1|X_1+X_2;\tilde X_2|\tilde X_1+\tilde X_2]$, and then apply \Cref{first-fibre} to get an upper bound for $I_1$. \end{proof}
/-- $I_1\le 2\eta d[X_1;X_2]$ -/ lemma I_one_le (hA : A.Nonempty) : I₁ ≤ 2 * η * d[ X₁ # X₂ ] := by have : d[X₁ + X₂' # X₂ + X₁'] + d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] + I₁ = 2 * k := rdist_add_rdist_add_condMutual_eq _ _ _ _ hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_indep.reindex_four_abdc have : k - η * (ρ[X₁ | X₁ + X₂' # A] - ρ[X₁ # A]) - η * (ρ[X₂ | X₂ + X₁' # A] - ρ[X₂ # A]) ≤ d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] := condRho_le_condRuzsaDist_of_phiMinimizes h_min hX₁ hX₂ (by fun_prop) (by fun_prop) have : k - η * (ρ[X₁ + X₂' # A] - ρ[X₁ # A]) - η * (ρ[X₂ + X₁' # A] - ρ[X₂ # A]) ≤ d[X₁ + X₂' # X₂ + X₁'] := le_rdist_of_phiMinimizes h_min (hX₁.add hX₂') (hX₂.add hX₁') have : ρ[X₁ + X₂' # A] ≤ (ρ[X₁ # A] + ρ[X₂ # A] + d[ X₁ # X₂ ]) / 2 := by rw [rho_eq_of_identDistrib h₂, (IdentDistrib.refl hX₁.aemeasurable).rdist_eq h₂] apply rho_of_sum_le hX₁ hX₂' hA simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 3 by decide) have : ρ[X₂ + X₁' # A] ≤ (ρ[X₁ # A] + ρ[X₂ # A] + d[ X₁ # X₂ ]) / 2 := by rw [add_comm, rho_eq_of_identDistrib h₁, h₁.rdist_eq (IdentDistrib.refl hX₂.aemeasurable)] apply rho_of_sum_le hX₁' hX₂ hA simpa using h_indep.indepFun (show (2 : Fin 4) ≠ 1 by decide) have : ρ[X₁ | X₁ + X₂' # A] ≤ (ρ[X₁ # A] + ρ[X₂ # A] + d[ X₁ # X₂ ]) / 2 := by rw [rho_eq_of_identDistrib h₂, (IdentDistrib.refl hX₁.aemeasurable).rdist_eq h₂] apply condRho_of_sum_le hX₁ hX₂' hA simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 3 by decide) have : ρ[X₂ | X₂ + X₁' # A] ≤ (ρ[X₁ # A] + ρ[X₂ # A] + d[ X₁ # X₂ ]) / 2 := by have : ρ[X₂ | X₂ + X₁' # A] ≤ (ρ[X₂ # A] + ρ[X₁' # A] + d[ X₂ # X₁' ]) / 2 := by apply condRho_of_sum_le hX₂ hX₁' hA simpa using h_indep.indepFun (show (1 : Fin 4) ≠ 2 by decide) have I : ρ[X₁' # A] = ρ[X₁ # A] := rho_eq_of_identDistrib h₁.symm have J : d[X₂ # X₁'] = d[X₁ # X₂] := by rw [rdist_symm, h₁.rdist_eq (IdentDistrib.refl hX₂.aemeasurable)] linarith nlinarith /- ***************************************** Second estimate ********************************************* -/ include hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_indep in
pfr/blueprint/src/chapter/further_improvement.tex:227
pfr/PFR/RhoFunctional.lean:1294
PFR
I_two_le
\begin{lemma}\label{phi-second-estimate}\lean{I_two_le}\leanok $I_2\le 2\eta d[X_1;X_2] + \frac{\eta}{1-\eta}(2\eta d[X_1;X_2]-I_1)$. \end{lemma} \begin{proof}\leanok \uses{phi-min-def,cor-fibre,I1-I2-diff} First of all, by $\phi[X_1;X_2]\le \phi[X_1+\tilde X_1;X_2+\tilde X_2]$, $\phi[X_1;X_2]\le \phi[X_1|X_1+\tilde X_1;X_2|X_2+\tilde X_2]$, and the fibring identity obtained by applying \Cref{cor-fibre} on $(X_1,X_2,\tilde X_1,\tilde X_2)$, we have $I_2\le \eta (d[X_1;X_1]+d[X_2;X_2])$. Then apply \Cref{I1-I2-diff} to get $I_2\le 2\eta d[X_1;X_2] +\eta(I_2-I_1)$, and rearrange. \end{proof}
/-- $I_2\le 2\eta d[X_1;X_2] + \frac{\eta}{1-\eta}(2\eta d[X_1;X_2]-I_1)$. -/ lemma I_two_le (hA : A.Nonempty) (h'η : η < 1) : I₂ ≤ 2 * η * k + (η / (1 - η)) * (2 * η * k - I₁) := by have W : k - η * (ρ[X₁ + X₁' # A] - ρ[X₁ # A]) - η * (ρ[X₂ + X₂' # A] - ρ[X₂ # A]) ≤ d[X₁ + X₁' # X₂ + X₂'] := le_rdist_of_phiMinimizes h_min (hX₁.add hX₁') (hX₂.add hX₂') (μ₁ := ℙ) (μ₂ := ℙ) have W' : k - η * (ρ[X₁ | X₁ + X₁' # A] - ρ[X₁ # A]) - η * (ρ[X₂ | X₂ + X₂' # A] - ρ[X₂ # A]) ≤ d[X₁ | X₁ + X₁' # X₂ | X₂ + X₂'] := condRho_le_condRuzsaDist_of_phiMinimizes h_min hX₁ hX₂ (hX₁.add hX₁') (hX₂.add hX₂') have Z : 2 * k = d[X₁ + X₁' # X₂ + X₂'] + d[X₁ | X₁ + X₁' # X₂ | X₂ + X₂'] + I₂ := I_two_aux' h₁ h₂ h_indep hX₁ hX₂ hX₁' hX₂' have : ρ[X₁ + X₁' # A] ≤ (ρ[X₁ # A] + ρ[X₁ # A] + d[ X₁ # X₁ ]) / 2 := by refine (rho_of_sum_le hX₁ hX₁' hA (by simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 2 by decide))).trans_eq ?_ rw [rho_eq_of_identDistrib h₁.symm, IdentDistrib.rdist_eq (IdentDistrib.refl hX₁.aemeasurable) h₁] have : ρ[X₂ + X₂' # A] ≤ (ρ[X₂ # A] + ρ[X₂ # A] + d[ X₂ # X₂ ]) / 2 := by refine (rho_of_sum_le hX₂ hX₂' hA (by simpa using h_indep.indepFun (show (1 : Fin 4) ≠ 3 by decide))).trans_eq ?_ rw [rho_eq_of_identDistrib h₂.symm, IdentDistrib.rdist_eq (IdentDistrib.refl hX₂.aemeasurable) h₂] have : ρ[X₁ | X₁ + X₁' # A] ≤ (ρ[X₁ # A] + ρ[X₁ # A] + d[ X₁ # X₁ ]) / 2 := by refine (condRho_of_sum_le hX₁ hX₁' hA (by simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 2 by decide))).trans_eq ?_ rw [rho_eq_of_identDistrib h₁.symm, IdentDistrib.rdist_eq (IdentDistrib.refl hX₁.aemeasurable) h₁] have : ρ[X₂ | X₂ + X₂' # A] ≤ (ρ[X₂ # A] + ρ[X₂ # A] + d[ X₂ # X₂ ]) / 2 := by refine (condRho_of_sum_le hX₂ hX₂' hA (by simpa using h_indep.indepFun (show (1 : Fin 4) ≠ 3 by decide))).trans_eq ?_ rw [rho_eq_of_identDistrib h₂.symm, IdentDistrib.rdist_eq (IdentDistrib.refl hX₂.aemeasurable) h₂] have : I₂ ≤ η * (d[X₁ # X₁] + d[X₂ # X₂]) := by nlinarith rw [rdist_add_rdist_eq h₁ h₂ h_indep hX₁ hX₂ hX₁' hX₂'] at this have one_eta : 0 < 1 - η := by linarith apply (mul_le_mul_iff_of_pos_left one_eta).1 have : (1 - η) * I₂ ≤ 2 * η * k - I₁ * η := by linarith apply this.trans_eq field_simp ring /- **************************************** End Game ******************************************* -/ include h_min in omit [IsProbabilityMeasure (ℙ : Measure Ω)] in /-- If $G$-valued random variables $T_1,T_2,T_3$ satisfy $T_1+T_2+T_3=0$, then $$d[X_1;X_2]\le 3\bbI[T_1:T_2\mid T_3] + (2\bbH[T_3]-\bbH[T_1]-\bbH[T_2])+ \eta(\rho(T_1|T_3)+\rho(T_2|T_3)-\rho(X_1)-\rho(X_2)).$$ -/
pfr/blueprint/src/chapter/further_improvement.tex:244
pfr/PFR/RhoFunctional.lean:1407
PFR
KLDiv_add_le_KLDiv_of_indep
\begin{lemma}[Kullback--Leibler and sums]\label{kl-sums}\lean{KLDiv_add_le_KLDiv_of_indep}\leanok If $X, Y, Z$ are independent $G$-valued random variables, then $$D_{KL}(X+Z\Vert Y+Z) \leq D_{KL}(X\Vert Y).$$ \end{lemma} \begin{proof}\leanok \uses{kl-div-inj,kl-div-convex} For each $z$, $D_{KL}(X+z\Vert Y+z)=D_{KL}(X\Vert Y)$ by \Cref{kl-div-inj}. Then apply \Cref{kl-div-convex} with $w_z=\mathbf{P}(Z=z)$. \end{proof}
lemma KLDiv_add_le_KLDiv_of_indep [Fintype G] [AddCommGroup G] [DiscreteMeasurableSpace G] {X Y Z : Ω → G} [IsZeroOrProbabilityMeasure μ] (h_indep : IndepFun (⟨X, Y⟩) Z μ) (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (habs : ∀ x, μ.map Y {x} = 0 → μ.map X {x} = 0) : KL[X + Z ; μ # Y + Z ; μ] ≤ KL[X ; μ # Y ; μ] := by rcases eq_zero_or_isProbabilityMeasure μ with rfl | hμ · simp [KLDiv] set X' : G → Ω → G := fun s ↦ (· + s) ∘ X with hX' set Y' : G → Ω → G := fun s ↦ (· + s) ∘ Y with hY' have AX' x i : μ.map (X' i) {x} = μ.map X {x - i} := by rw [hX', ← Measure.map_map (by fun_prop) (by fun_prop), Measure.map_apply (by fun_prop) (measurableSet_singleton x)] congr ext y simp [sub_eq_add_neg] have AY' x i : μ.map (Y' i) {x} = μ.map Y {x - i} := by rw [hY', ← Measure.map_map (by fun_prop) (by fun_prop), Measure.map_apply (by fun_prop) (measurableSet_singleton x)] congr ext y simp [sub_eq_add_neg] let w : G → ℝ := fun s ↦ (μ.map Z {s}).toReal have sum_w : ∑ s, w s = 1 := by have : IsProbabilityMeasure (μ.map Z) := isProbabilityMeasure_map hZ.aemeasurable simp [w] have A x : (μ.map (X + Z) {x}).toReal = ∑ s, w s * (μ.map (X' s) {x}).toReal := by have : IndepFun X Z μ := h_indep.comp (φ := Prod.fst) (ψ := id) measurable_fst measurable_id rw [this.map_add_singleton_eq_sum hX hZ, ENNReal.toReal_sum (by simp [ENNReal.mul_eq_top])] simp only [ENNReal.toReal_mul] congr with i congr 1 rw [AX'] have B x : (μ.map (Y + Z) {x}).toReal = ∑ s, w s * (μ.map (Y' s) {x}).toReal := by have : IndepFun Y Z μ := h_indep.comp (φ := Prod.snd) (ψ := id) measurable_snd measurable_id rw [this.map_add_singleton_eq_sum hY hZ, ENNReal.toReal_sum (by simp [ENNReal.mul_eq_top])] simp only [ENNReal.toReal_mul] congr with i congr 1 rw [AY'] have : KL[X + Z ; μ # Y + Z; μ] ≤ ∑ s, w s * KL[X' s ; μ # Y' s ; μ] := by apply KLDiv_of_convex (fun s _ ↦ by simp [w]) · exact A · exact B · intro s _ x rw [AX', AY'] exact habs _ apply this.trans_eq have C s : KL[X' s ; μ # Y' s ; μ] = KL[X ; μ # Y ; μ] := KLDiv_of_comp_inj (add_left_injective s) hX hY simp_rw [C, ← Finset.sum_mul, sum_w, one_mul] /-- If $X,Y,Z$ are random variables, with $X,Z$ defined on the same sample space, we define $$ D_{KL}(X|Z \Vert Y) := \sum_z \mathbf{P}(Z=z) D_{KL}( (X|Z=z) \Vert Y).$$ -/ noncomputable def condKLDiv {S : Type*} (X : Ω → G) (Y : Ω' → G) (Z : Ω → S) (μ : Measure Ω := by volume_tac) (μ' : Measure Ω' := by volume_tac) : ℝ := ∑' z, (μ (Z⁻¹' {z})).toReal * KL[X ; (ProbabilityTheory.cond μ (Z⁻¹' {z})) # Y ; μ'] @[inherit_doc condKLDiv] notation3:max "KL[" X " | " Z " ; " μ " # " Y " ; " μ' "]" => condKLDiv X Y Z μ μ' @[inherit_doc condKLDiv] notation3:max "KL[" X " | " Z " # " Y "]" => condKLDiv X Y Z volume volume /-- If $X, Y$ are $G$-valued random variables, and $Z$ is another random variable defined on the same sample space as $X$, then $$D_{KL}((X|Z)\Vert Y) = D_{KL}(X\Vert Y) + \bbH[X] - \bbH[X|Z].$$ -/
pfr/blueprint/src/chapter/further_improvement.tex:51
pfr/PFR/Kullback.lean:265
PFR
KLDiv_eq_zero_iff_identDistrib
\begin{lemma}[Converse Gibbs inequality]\label{Gibbs-converse}\lean{KLDiv_eq_zero_iff_identDistrib}\leanok If $D_{KL}(X\Vert Y) = 0$, then $Y$ is a copy of $X$. \end{lemma} \begin{proof}\leanok \uses{converse-log-sum} Apply \Cref{converse-log-sum}. \end{proof}
/-- `KL(X ‖ Y) = 0` if and only if `Y` is a copy of `X`. -/ lemma KLDiv_eq_zero_iff_identDistrib [Fintype G] [MeasurableSingletonClass G] [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (habs : ∀ x, μ'.map Y {x} = 0 → μ.map X {x} = 0) : KL[X ; μ # Y ; μ'] = 0 ↔ IdentDistrib X Y μ μ' := by refine ⟨fun h ↦ ?_, fun h ↦ by simp [KLDiv, h.map_eq]⟩ let νY := μ'.map Y have : IsProbabilityMeasure νY := isProbabilityMeasure_map hY.aemeasurable let νX := μ.map X have : IsProbabilityMeasure νX := isProbabilityMeasure_map hX.aemeasurable obtain ⟨r, hr⟩ : ∃ (r : ℝ), ∀ x ∈ Finset.univ, (νX {x}).toReal = r * (νY {x}).toReal := by apply sum_mul_log_div_eq_iff (by simp) (by simp) (fun i _ hi ↦ ?_) · rw [KLDiv_eq_sum] at h simpa using h · simp only [ENNReal.toReal_eq_zero_iff, measure_ne_top, or_false] at hi simp [habs i hi, νX] have r_eq : r = 1 := by have : r * ∑ x, (νY {x}).toReal = ∑ x, (νX {x}).toReal := by simp only [Finset.mul_sum, Finset.mem_univ, hr] simpa using this have : νX = νY := by apply Measure.ext_iff_singleton.mpr (fun x ↦ ?_) simpa [r_eq, ENNReal.toReal_eq_toReal] using hr x (Finset.mem_univ _) exact ⟨hX.aemeasurable, hY.aemeasurable, this⟩ /-- If $S$ is a finite set, $w_s$ is non-negative, and ${\bf P}(X=x) = \sum_{s\in S} w_s {\bf P}(X_s=x)$, ${\bf P}(Y=x) = \sum_{s\in S} w_s {\bf P}(Y_s=x)$ for all $x$, then $$D_{KL}(X\Vert Y) \le \sum_{s\in S} w_s D_{KL}(X_s\Vert Y_s).$$ -/
pfr/blueprint/src/chapter/further_improvement.tex:25
pfr/PFR/Kullback.lean:89
PFR
KLDiv_nonneg
\begin{lemma}[Gibbs inequality]\label{Gibbs}\uses{kl-div}\lean{KLDiv_nonneg}\leanok $D_{KL}(X\Vert Y) \geq 0$. \end{lemma} \begin{proof}\leanok \uses{log-sum} Apply \Cref{log-sum} on the definition. \end{proof}
/-- `KL(X ‖ Y) ≥ 0`.-/ lemma KLDiv_nonneg [Fintype G] [MeasurableSingletonClass G] [IsZeroOrProbabilityMeasure μ] [IsZeroOrProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (habs : ∀ x, μ'.map Y {x} = 0 → μ.map X {x} = 0) : 0 ≤ KL[X ; μ # Y ; μ'] := by rw [KLDiv_eq_sum] rcases eq_zero_or_isProbabilityMeasure μ with rfl | hμ · simp rcases eq_zero_or_isProbabilityMeasure μ' with rfl | hμ' · simp apply le_trans ?_ (sum_mul_log_div_leq (by simp) (by simp) ?_) · have : IsProbabilityMeasure (μ'.map Y) := isProbabilityMeasure_map hY.aemeasurable have : IsProbabilityMeasure (μ.map X) := isProbabilityMeasure_map hX.aemeasurable simp · intro i _ hi simp only [ENNReal.toReal_eq_zero_iff, measure_ne_top, or_false] at hi simp [habs i hi]
pfr/blueprint/src/chapter/further_improvement.tex:17
pfr/PFR/Kullback.lean:71
PFR
KLDiv_of_comp_inj
\begin{lemma}[Kullback--Leibler and injections]\label{kl-div-inj}\lean{KLDiv_of_comp_inj}\leanok If $f:G \to H$ is an injection, then $D_{KL}(f(X)\Vert f(Y)) = D_{KL}(X\Vert Y)$. \end{lemma} \begin{proof}\leanok\uses{kl-div} Clear from definition. \end{proof}
/-- If $f:G \to H$ is an injection, then $D_{KL}(f(X)\Vert f(Y)) = D_{KL}(X\Vert Y)$. -/ lemma KLDiv_of_comp_inj {H : Type*} [MeasurableSpace H] [DiscreteMeasurableSpace G] [MeasurableSingletonClass H] {f : G → H} (hf : Function.Injective f) (hX : Measurable X) (hY : Measurable Y) : KL[f ∘ X ; μ # f ∘ Y ; μ'] = KL[X ; μ # Y ; μ'] := by simp only [KLDiv] rw [← hf.tsum_eq] · symm congr with x have : (Measure.map X μ) {x} = (Measure.map (f ∘ X) μ) {f x} := by rw [Measure.map_apply, Measure.map_apply] · rw [Set.preimage_comp, ← Set.image_singleton, Set.preimage_image_eq _ hf] · exact .comp .of_discrete hX · exact measurableSet_singleton (f x) · exact hX · exact measurableSet_singleton x have : (Measure.map Y μ') {x} = (Measure.map (f ∘ Y) μ') {f x} := by rw [Measure.map_apply, Measure.map_apply] · congr exact Set.Subset.antisymm (fun ⦃a⦄ ↦ congrArg f) fun ⦃a⦄ a_1 ↦ hf a_1 · exact .comp .of_discrete hY · exact measurableSet_singleton (f x) · exact hY · exact measurableSet_singleton x congr · intro y hy have : Measure.map (f ∘ X) μ {y} ≠ 0 := by intro h simp [h] at hy rw [Measure.map_apply (.comp .of_discrete hX) (measurableSet_singleton y)] at this have : f ∘ X ⁻¹' {y} ≠ ∅ := by intro h simp [h] at this obtain ⟨z, hz⟩ := Set.nonempty_iff_ne_empty.2 this simp only [Set.mem_preimage, Function.comp_apply, Set.mem_singleton_iff] at hz exact Set.mem_range.2 ⟨X z, hz⟩
pfr/blueprint/src/chapter/further_improvement.tex:43
pfr/PFR/Kullback.lean:150
PFR
KLDiv_of_convex
\begin{lemma}[Convexity of Kullback--Leibler]\label{kl-div-convex}\lean{KLDiv_of_convex}\leanok If $S$ is a finite set, $\sum_{s \in S} w_s = 1$ for some non-negative $w_s$, and ${\bf P}(X=x) = \sum_{s\in S} w_s {\bf P}(X_s=x)$, ${\bf P}(Y=x) = \sum_{s\in S} w_s {\bf P}(Y_s=x)$ for all $x$, then $$D_{KL}(X\Vert Y) \le \sum_{s\in S} w_s D_{KL}(X_s\Vert Y_s).$$ \end{lemma} \begin{proof}\leanok \uses{kl-div,log-sum} For each $x$, replace $\log \frac{\mathbf{P}(X_s=x)}{\mathbf{P}(Y_s=x)}$ in the definition with $\log \frac{w_s\mathbf{P}(X_s=x)}{w_s\mathbf{P}(Y_s=x)}$ for each $s$, and apply \Cref{log-sum}. \end{proof}
lemma KLDiv_of_convex [Fintype G] [IsFiniteMeasure μ'''] {ι : Type*} {S : Finset ι} {w : ι → ℝ} (hw : ∀ s ∈ S, 0 ≤ w s) (X' : ι → Ω'' → G) (Y' : ι → Ω''' → G) (hconvex : ∀ x, (μ.map X {x}).toReal = ∑ s ∈ S, (w s) * (μ''.map (X' s) {x}).toReal) (hconvex' : ∀ x, (μ'.map Y {x}).toReal = ∑ s ∈ S, (w s) * (μ'''.map (Y' s) {x}).toReal) (habs : ∀ s ∈ S, ∀ x, μ'''.map (Y' s) {x} = 0 → μ''.map (X' s) {x} = 0) : KL[X ; μ # Y ; μ'] ≤ ∑ s ∈ S, w s * KL[X' s ; μ'' # Y' s ; μ'''] := by conv_lhs => rw [KLDiv_eq_sum] have A x : (μ.map X {x}).toReal * log ((μ.map X {x}).toReal / (μ'.map Y {x}).toReal) ≤ ∑ s ∈ S, (w s * (μ''.map (X' s) {x}).toReal) * log ((w s * (μ''.map (X' s) {x}).toReal) / (w s * (μ'''.map (Y' s) {x}).toReal)) := by rw [hconvex, hconvex'] apply sum_mul_log_div_leq (fun s hs ↦ ?_) (fun s hs ↦ ?_) (fun s hs h's ↦ ?_) · exact mul_nonneg (by simp [hw s hs]) (by simp) · exact mul_nonneg (by simp [hw s hs]) (by simp) · rcases mul_eq_zero.1 h's with h | h · simp [h] · simp only [ENNReal.toReal_eq_zero_iff, measure_ne_top, or_false] at h simp [habs s hs x h] have B x : (μ.map X {x}).toReal * log ((μ.map X {x}).toReal / (μ'.map Y {x}).toReal) ≤ ∑ s ∈ S, (w s * (μ''.map (X' s) {x}).toReal) * log ((μ''.map (X' s) {x}).toReal / (μ'''.map (Y' s) {x}).toReal) := by apply (A x).trans_eq apply Finset.sum_congr rfl (fun s _ ↦ ?_) rcases eq_or_ne (w s) 0 with h's | h's · simp [h's] · congr 2 rw [mul_div_mul_left _ _ h's] apply (Finset.sum_le_sum (fun x _ ↦ B x)).trans_eq rw [Finset.sum_comm] simp_rw [mul_assoc, ← Finset.mul_sum, KLDiv_eq_sum]
pfr/blueprint/src/chapter/further_improvement.tex:33
pfr/PFR/Kullback.lean:118
PFR
PFR_conjecture
\begin{theorem}[PFR]\label{pfr} \lean{PFR_conjecture}\leanok If $A \subset {\bf F}_2^n$ is non-empty and $|A+A| \leq K|A|$, then $A$ can be covered by most $2K^{12}$ translates of a subspace $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$. \end{theorem} \begin{proof} \uses{pfr_aux}\leanok Let $H$ be given by \Cref{pfr_aux}. If $|H| \leq |A|$ then we are already done thanks to~\eqref{ah}. If $|H| > |A|$ then we can cover $H$ by at most $2 |H|/|A|$ translates of a subspace $H'$ of $H$ with $|H'| \leq |A|$. We can thus cover $A$ by at most \[2K^{13/2} \frac{|H|^{1/2}}{|A|^{1/2}}\] translates of $H'$, and the claim again follows from~\eqref{ah}. \end{proof}
theorem PFR_conjecture (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c < 2 * K ^ 12 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := by obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA -- consider the subgroup `H` given by Lemma `PFR_conjecture_aux`. obtain ⟨H, c, hc, IHA, IAH, A_subs_cH⟩ : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ (13/2) * Nat.card A ^ (1/2) * Nat.card H ^ (-1/2) ∧ Nat.card H ≤ K ^ 11 * Nat.card A ∧ Nat.card A ≤ K ^ 11 * Nat.card H ∧ A ⊆ c + H := PFR_conjecture_aux h₀A hA have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos; positivity rcases le_or_lt (Nat.card H) (Nat.card A) with h|h -- If `#H ≤ #A`, then `H` satisfies the conclusion of the theorem · refine ⟨H, c, ?_, h, A_subs_cH⟩ calc Nat.card c ≤ K ^ (13/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ) := hc _ ≤ K ^ (13/2 : ℝ) * (K ^ 11 * Nat.card H) ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ) := by gcongr _ = K ^ 12 := by rpow_ring; norm_num _ < 2 * K ^ 12 := by linarith [show 0 < K ^ 12 by positivity] -- otherwise, we decompose `H` into cosets of one of its subgroups `H'`, chosen so that -- `#A / 2 < #H' ≤ #A`. This `H'` satisfies the desired conclusion. · obtain ⟨H', IH'A, IAH', H'H⟩ : ∃ H' : Submodule (ZMod 2) G, Nat.card H' ≤ Nat.card A ∧ Nat.card A < 2 * Nat.card H' ∧ H' ≤ H := by have A_pos' : 0 < Nat.card A := mod_cast A_pos exact ZModModule.exists_submodule_subset_card_le Nat.prime_two H h.le A_pos'.ne' have : (Nat.card A / 2 : ℝ) < Nat.card H' := by rw [div_lt_iff₀ zero_lt_two, mul_comm]; norm_cast have H'_pos : (0 : ℝ) < Nat.card H' := by have : 0 < Nat.card H' := Nat.card_pos; positivity obtain ⟨u, HH'u, hu⟩ := H'.toAddSubgroup.exists_left_transversal_of_le (H := H.toAddSubgroup) H'H dsimp at HH'u refine ⟨H', c + u, ?_, IH'A, by rwa [add_assoc, HH'u]⟩ calc (Nat.card (c + u) : ℝ) ≤ Nat.card c * Nat.card u := mod_cast natCard_add_le _ ≤ (K ^ (13/2 : ℝ) * Nat.card A ^ (1 / 2 : ℝ) * (Nat.card H ^ (-1 / 2 : ℝ))) * (Nat.card H / Nat.card H') := by gcongr apply le_of_eq rw [eq_div_iff H'_pos.ne'] norm_cast _ < (K ^ (13/2) * Nat.card A ^ (1 / 2) * (Nat.card H ^ (-1 / 2))) * (Nat.card H / (Nat.card A / 2)) := by gcongr _ = 2 * K ^ (13/2) * Nat.card A ^ (-1/2) * Nat.card H ^ (1/2) := by field_simp rpow_ring norm_num _ ≤ 2 * K ^ (13/2) * Nat.card A ^ (-1/2) * (K ^ 11 * Nat.card A) ^ (1/2) := by gcongr _ = 2 * K ^ 12 := by rpow_ring norm_num /-- Corollary of `PFR_conjecture` in which the ambient group is not required to be finite (but) then `H` and `c` are finite. -/
pfr/blueprint/src/chapter/pfr.tex:50
pfr/PFR/Main.lean:276
PFR
PFR_conjecture'
\begin{corollary}[PFR in infinite groups]\label{pfr-cor} \lean{PFR_conjecture'}\leanok If $G$ is an abelian $2$-torsion group, $A \subset G$ is non-empty finite, and $|A+A| \leq K|A| $, then $A$ can be covered by most $2K^{12}$ translates of a finite group $H$ of $G$ with $|H| \leq |A|$. \end{corollary} \begin{proof}\uses{pfr}\leanok Apply \Cref{pfr} to the group generated by $A$, which is isomorphic to $\F_2^n$ for some $n$. \end{proof}
theorem PFR_conjecture' {G : Type*} [AddCommGroup G] [Module (ZMod 2) G] {A : Set G} {K : ℝ} (h₀A : A.Nonempty) (Afin : A.Finite) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), c.Finite ∧ (H : Set G).Finite ∧ Nat.card c < 2 * K ^ 12 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := by let G' := Submodule.span (ZMod 2) A let G'fin : Fintype G' := (Afin.submoduleSpan _).fintype let ι : G'→ₗ[ZMod 2] G := G'.subtype have ι_inj : Injective ι := G'.toAddSubgroup.subtype_injective let A' : Set G' := ι ⁻¹' A have A_rg : A ⊆ range ι := by simp only [AddMonoidHom.coe_coe, Submodule.coe_subtype, Subtype.range_coe_subtype, G', ι] exact Submodule.subset_span have cardA' : Nat.card A' = Nat.card A := Nat.card_preimage_of_injective ι_inj A_rg have hA' : Nat.card (A' + A') ≤ K * Nat.card A' := by rwa [cardA', ← preimage_add _ ι_inj A_rg A_rg, Nat.card_preimage_of_injective ι_inj (add_subset_range _ A_rg A_rg)] rcases PFR_conjecture (h₀A.preimage' A_rg) hA' with ⟨H', c', hc', hH', hH'₂⟩ refine ⟨H'.map ι , ι '' c', toFinite _, toFinite (ι '' H'), ?_, ?_, fun x hx ↦ ?_⟩ · rwa [Nat.card_image_of_injective ι_inj] · erw [Nat.card_image_of_injective ι_inj, ← cardA'] exact hH' · erw [← image_add] exact ⟨⟨x, Submodule.subset_span hx⟩, hH'₂ hx, rfl⟩
pfr/blueprint/src/chapter/pfr.tex:63
pfr/PFR/Main.lean:335
PFR
PFR_conjecture_aux
\begin{lemma}\label{pfr_aux} \lean{PFR_conjecture_aux}\leanok If $A \subset {\bf F}_2^n$ is non-empty and $|A+A| \leq K|A|$, then $A$ can be covered by at most $K ^ {13/2}|A|^{1/2}/|H|^{1/2}$ translates of a subspace $H$ of ${\bf F}_2^n$ with \begin{equation} \label{ah} |H|/|A| \in [K^{-11}, K^{11}]. \end{equation} \end{lemma} \begin{proof} \uses{entropy-pfr, unif-exist, uniform-entropy-II, jensen-bound,ruz-dist-def,ruzsa-diff,bound-conc,ruz-cov}\leanok Let $U_A$ be the uniform distribution on $A$ (which exists by \Cref{unif-exist}), thus $\bbH[U_A] = \log |A|$ by \Cref{uniform-entropy-II}. By \Cref{jensen-bound} and the fact that $U_A + U_A$ is supported on $A + A$, $\bbH[U_A + U_A] \leq \log|A+A|$. By \Cref{ruz-dist-def}, the doubling condition $|A+A| \leq K|A|$ therefore gives \[d[U_A;U_A] \leq \log K.\] By \Cref{entropy-pfr}, we may thus find a subspace $H$ of $\F_2^n$ such that \begin{equation}\label{uauh} d[U_A;U_H] \leq \tfrac{1}{2} C' \log K\end{equation} with $C' = 11$. By \Cref{ruzsa-diff} we conclude that \begin{equation*} |\log |H| - \log |A|| \leq C' \log K, \end{equation*} proving~\eqref{ah}. From \Cref{ruz-dist-def},~\eqref{uauh} is equivalent to \[\bbH[U_A - U_H] \leq \log( |A|^{1/2} |H|^{1/2}) + \tfrac{1}{2} C' \log K.\] By \Cref{bound-conc} we conclude the existence of a point $x_0 \in \F_p^n$ such that \[p_{U_A-U_H}(x_0) \geq |A|^{-1/2} |H|^{-1/2} K^{-C'/2},\] or equivalently \[|A \cap (H + x_0)| \geq K^{-C'/2} |A|^{1/2} |H|^{1/2}.\] Applying \Cref{ruz-cov}, we may thus cover $A$ by at most \[\frac{|A + (A \cap (H+x_0))|}{|A \cap (H + x_0)|} \leq \frac{K|A|}{K^{-C'/2} |A|^{1/2} |H|^{1/2}} = K^{C'/2+1} \frac{|A|^{1/2}}{|H|^{1/2}}\] translates of \[\bigl(A \cap (H + x_0)\bigr) - \bigl(A \cap (H + x_0)\bigr) \subseteq H.\] This proves the claim. \end{proof}
lemma PFR_conjecture_aux (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ (13/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ) ∧ Nat.card H ≤ K ^ 11 * Nat.card A ∧ Nat.card A ≤ K ^ 11 * Nat.card H ∧ A ⊆ c + H := by classical have A_fin : Finite A := by infer_instance let _mG : MeasurableSpace G := ⊤ rw [sumset_eq_sub] at hA have : MeasurableSingletonClass G := ⟨λ _ ↦ trivial⟩ obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A - A) ∧ 0 < K := PFR_conjecture_pos_aux h₀A hA let A' := A.toFinite.toFinset have h₀A' : Finset.Nonempty A' := by simpa [Finset.Nonempty, A'] using h₀A have hAA' : A' = A := Finite.coe_toFinset (toFinite A) rcases exists_isUniform_measureSpace A' h₀A' with ⟨Ω₀, mΩ₀, UA, hP₀, UAmeas, UAunif, -, -⟩ rw [hAA'] at UAunif have : d[UA # UA] ≤ log K := rdist_le_of_isUniform_of_card_add_le h₀A hA UAunif UAmeas rw [← sumset_eq_sub] at hA let p : refPackage Ω₀ Ω₀ G := ⟨UA, UA, UAmeas, UAmeas, 1/9, (by norm_num), (by norm_num)⟩ -- entropic PFR gives a subgroup `H` which is close to `A` for the Rusza distance rcases entropic_PFR_conjecture p (by norm_num) with ⟨H, Ω₁, mΩ₁, UH, hP₁, UHmeas, UHunif, hUH⟩ have H_fin : (H : Set G).Finite := (H : Set G).toFinite rcases independent_copies_two UAmeas UHmeas with ⟨Ω, mΩ, VA, VH, hP, VAmeas, VHmeas, Vindep, idVA, idVH⟩ have VAunif : IsUniform A VA := UAunif.of_identDistrib idVA.symm .of_discrete have VA'unif := VAunif rw [← hAA'] at VA'unif have VHunif : IsUniform H VH := UHunif.of_identDistrib idVH.symm .of_discrete let H' := (H : Set G).toFinite.toFinset have hHH' : H' = (H : Set G) := (toFinite (H : Set G)).coe_toFinset have VH'unif := VHunif rw [← hHH'] at VH'unif have : d[VA # VH] ≤ 11/2 * log K := by rw [idVA.rdist_eq idVH]; linarith have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos positivity have VA_ent : H[VA] = log (Nat.card A) := VAunif.entropy_eq' A_fin VAmeas have VH_ent : H[VH] = log (Nat.card H) := VHunif.entropy_eq' H_fin VHmeas have Icard : |log (Nat.card A) - log (Nat.card H)| ≤ 11 * log K := by rw [← VA_ent, ← VH_ent] apply (diff_ent_le_rdist VAmeas VHmeas).trans linarith have IAH : Nat.card A ≤ K ^ 11 * Nat.card H := by have : log (Nat.card A) ≤ log K * 11 + log (Nat.card H) := by linarith [(le_abs_self _).trans Icard] convert exp_monotone this using 1 · exact (exp_log A_pos).symm · rw [exp_add, exp_log H_pos, ← rpow_def_of_pos K_pos] have IHA : Nat.card H ≤ K ^ 11 * Nat.card A := by have : log (Nat.card H) ≤ log K * 11 + log (Nat.card A) := by linarith [(neg_le_abs _).trans Icard] convert exp_monotone this using 1 · exact (exp_log H_pos).symm · rw [exp_add, exp_log A_pos, ← rpow_def_of_pos K_pos] -- entropic PFR shows that the entropy of `VA - VH` is small have I : log K * (-11/2) + log (Nat.card A) * (-1/2) + log (Nat.card H) * (-1/2) ≤ - H[VA - VH] := by rw [Vindep.rdist_eq VAmeas VHmeas] at this linarith -- therefore, there exists a point `x₀` which is attained by `VA - VH` with a large probability obtain ⟨x₀, h₀⟩ : ∃ x₀ : G, rexp (- H[VA - VH]) ≤ (ℙ : Measure Ω).real ((VA - VH) ⁻¹' {x₀}) := prob_ge_exp_neg_entropy' _ ((VAmeas.sub VHmeas).comp measurable_id') -- massage the previous inequality to get that `A ∩ (H + {x₀})` is large have J : K ^ (-11/2 : ℝ) * Nat.card A ^ (1/2) * Nat.card H ^ (1/2 : ℝ) ≤ Nat.card (A ∩ (H + {x₀}) : Set G) := by rw [VA'unif.measureReal_preimage_sub VAmeas VH'unif VHmeas Vindep] at h₀ have := (Real.exp_monotone I).trans h₀ have hAA'_card : Nat.card A' = Nat.card A := congrArg Nat.card (congrArg Subtype hAA') have hHH'_card : Nat.card H' = Nat.card H := congrArg Nat.card (congrArg Subtype hHH') rw [hAA'_card, hHH'_card, le_div_iff₀] at this convert this using 1 · rw [exp_add, exp_add, ← rpow_def_of_pos K_pos, ← rpow_def_of_pos A_pos, ← rpow_def_of_pos H_pos] rpow_ring norm_num · rw [hAA', hHH'] positivity have Hne : (A ∩ (H + {x₀} : Set G)).Nonempty := by by_contra h' have : (0 : ℝ) < Nat.card (A ∩ (H + {x₀}) : Set G) := lt_of_lt_of_le (by positivity) J simp only [Nat.card_eq_fintype_card, card_of_isEmpty, CharP.cast_eq_zero, lt_self_iff_false, not_nonempty_iff_eq_empty.1 h'] at this /- use Rusza covering lemma to cover `A` by few translates of `A ∩ (H + {x₀}) - A ∩ (H + {x₀})` (which is contained in `H`). The number of translates is at most `#(A + (A ∩ (H + {x₀}))) / #(A ∩ (H + {x₀}))`, where the numerator is controlled as this is a subset of `A + A`, and the denominator is bounded below by the previous inequality`. -/ have Z3 : (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) ≤ (K ^ (13/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by calc (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) _ ≤ Nat.card (A + A) := by gcongr; exact Nat.card_mono (toFinite _) <| add_subset_add_left inter_subset_left _ ≤ K * Nat.card A := hA _ = (K ^ (13/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * (K ^ (-11/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (1/2 : ℝ)) := by rpow_ring; norm_num _ ≤ (K ^ (13/2 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by gcongr obtain ⟨u, huA, hucard, hAu, -⟩ := Set.ruzsa_covering_add (toFinite A) (toFinite (A ∩ ((H + {x₀} : Set G)))) Hne (by convert Z3) have A_subset_uH : A ⊆ u + H := by refine hAu.trans $ add_subset_add_left $ (sub_subset_sub (inter_subset_right ..) (inter_subset_right ..)).trans ?_ rw [add_sub_add_comm, singleton_sub_singleton, sub_self] simp exact ⟨H, u, hucard, IHA, IAH, A_subset_uH⟩ /-- The polynomial Freiman-Ruzsa (PFR) conjecture: if `A` is a subset of an elementary abelian 2-group of doubling constant at most `K`, then `A` can be covered by at most `2 * K ^ 12` cosets of a subgroup of cardinality at most `|A|`. -/
pfr/blueprint/src/chapter/pfr.tex:14
pfr/PFR/Main.lean:163
PFR
PFR_conjecture_improv
\begin{theorem}[Improved PFR]\label{pfr-improv}\lean{PFR_conjecture_improv}\leanok If $A \subset {\bf F}_2^n$ is non-empty and $|A+A| \leq K|A|$, then $A$ can be covered by most $2K^{11}$ translates of a subspace $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$. \end{theorem} \begin{proof}\uses{pfr_aux-improv}\leanok By repeating the proof of \Cref{pfr} and using \Cref{pfr_aux-improv} one can obtain the claim with $11$ replaced by $10$. \end{proof}
theorem PFR_conjecture_improv (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c < 2 * K ^ 11 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := by obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA -- consider the subgroup `H` given by Lemma `PFR_conjecture_aux`. obtain ⟨H, c, hc, IHA, IAH, A_subs_cH⟩ : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ 6 * Nat.card A ^ (1/2) * Nat.card H ^ (-1/2) ∧ Nat.card H ≤ K ^ 10 * Nat.card A ∧ Nat.card A ≤ K ^ 10 * Nat.card H ∧ A ⊆ c + H := PFR_conjecture_improv_aux h₀A hA have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos; positivity rcases le_or_lt (Nat.card H) (Nat.card A) with h|h -- If `#H ≤ #A`, then `H` satisfies the conclusion of the theorem · refine ⟨H, c, ?_, h, A_subs_cH⟩ calc Nat.card c ≤ K ^ 6 * Nat.card A ^ (1/2) * Nat.card H ^ (-1/2) := hc _ ≤ K ^ 6 * (K ^ 10 * Nat.card H) ^ (1/2) * Nat.card H ^ (-1/2) := by gcongr _ = K ^ 11 := by rpow_ring; norm_num _ < 2 * K ^ 11 := by linarith [show 0 < K ^ 11 by positivity] -- otherwise, we decompose `H` into cosets of one of its subgroups `H'`, chosen so that -- `#A / 2 < #H' ≤ #A`. This `H'` satisfies the desired conclusion. · obtain ⟨H', IH'A, IAH', H'H⟩ : ∃ H' : Submodule (ZMod 2) G, Nat.card H' ≤ Nat.card A ∧ Nat.card A < 2 * Nat.card H' ∧ H' ≤ H := by have A_pos' : 0 < Nat.card A := mod_cast A_pos exact ZModModule.exists_submodule_subset_card_le Nat.prime_two H h.le A_pos'.ne' have : (Nat.card A / 2 : ℝ) < Nat.card H' := by rw [div_lt_iff₀ zero_lt_two, mul_comm]; norm_cast have H'_pos : (0 : ℝ) < Nat.card H' := by have : 0 < Nat.card H' := Nat.card_pos; positivity obtain ⟨u, HH'u, hu⟩ := H'.toAddSubgroup.exists_left_transversal_of_le (H := H.toAddSubgroup) H'H dsimp at HH'u refine ⟨H', c + u, ?_, IH'A, by rwa [add_assoc, HH'u]⟩ calc (Nat.card (c + u) : ℝ) ≤ Nat.card c * Nat.card u := mod_cast natCard_add_le _ ≤ (K ^ 6 * Nat.card A ^ (1 / 2) * (Nat.card H ^ (-1 / 2))) * (Nat.card H / Nat.card H') := by gcongr apply le_of_eq rw [eq_div_iff H'_pos.ne'] norm_cast _ < (K ^ 6 * Nat.card A ^ (1 / 2) * (Nat.card H ^ (-1 / 2))) * (Nat.card H / (Nat.card A / 2)) := by gcongr _ = 2 * K ^ 6 * Nat.card A ^ (-1/2) * Nat.card H ^ (1/2) := by field_simp rpow_ring norm_num _ ≤ 2 * K ^ 6 * Nat.card A ^ (-1/2) * (K ^ 10 * Nat.card A) ^ (1/2) := by gcongr _ = 2 * K ^ 11 := by rpow_ring norm_num /-- Corollary of `PFR_conjecture_improv` in which the ambient group is not required to be finite (but) then $H$ and $c$ are finite. -/
pfr/blueprint/src/chapter/improved_exponent.tex:229
pfr/PFR/ImprovedPFR.lean:982
PFR
PFR_conjecture_improv_aux
\begin{lemma}\label{pfr_aux-improv}\lean{PFR_conjecture_improv_aux}\leanok If $A \subset {\bf F}_2^n$ is non-empty and $|A+A| \leq K|A|$, then $A$ can be covered by at most $K^6 |A|^{1/2}/|H|^{1/2}$ translates of a subspace $H$ of ${\bf F}_2^n$ with $$ |H|/|A| \in [K^{-10}, K^{10}]. $$ \end{lemma} \begin{proof}\uses{entropy-pfr-improv, unif-exist, uniform-entropy-II, jensen-bound,ruz-dist-def,ruzsa-diff,bound-conc,ruz-cov}\leanok By repeating the proof of \Cref{pfr_aux} and using \Cref{entropy-pfr-improv} one can obtain the claim with $13/2$ replaced with $6$ and $11$ replaced by $10$. \end{proof}
lemma PFR_conjecture_improv_aux (h₀A : A.Nonempty) (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ 6 * Nat.card A ^ (1/2) * Nat.card H ^ (-1/2) ∧ Nat.card H ≤ K ^ 10 * Nat.card A ∧ Nat.card A ≤ K ^ 10 * Nat.card H ∧ A ⊆ c + H := by have A_fin : Finite A := by infer_instance classical let mG : MeasurableSpace G := ⊤ have : MeasurableSingletonClass G := ⟨λ _ ↦ trivial⟩ obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA let A' := A.toFinite.toFinset have h₀A' : Finset.Nonempty A' := by simp [A', Finset.Nonempty] exact h₀A have hAA' : A' = A := Finite.coe_toFinset (toFinite A) rcases exists_isUniform_measureSpace A' h₀A' with ⟨Ω₀, mΩ₀, UA, hP₀, UAmeas, UAunif, -⟩ rw [hAA'] at UAunif have hadd_sub : A + A = A - A := by ext; simp [mem_add, mem_sub, ZModModule.sub_eq_add] rw [hadd_sub] at hA have : d[UA # UA] ≤ log K := rdist_le_of_isUniform_of_card_add_le h₀A hA UAunif UAmeas rw [← hadd_sub] at hA let p : refPackage Ω₀ Ω₀ G := ⟨UA, UA, UAmeas, UAmeas, 1/8, (by norm_num), (by norm_num)⟩ -- entropic PFR gives a subgroup `H` which is close to `A` for the Rusza distance rcases entropic_PFR_conjecture_improv p (by norm_num) with ⟨H, Ω₁, mΩ₁, UH, hP₁, UHmeas, UHunif, hUH⟩ rcases independent_copies_two UAmeas UHmeas with ⟨Ω, mΩ, VA, VH, hP, VAmeas, VHmeas, Vindep, idVA, idVH⟩ have VAunif : IsUniform A VA := UAunif.of_identDistrib idVA.symm .of_discrete have VA'unif := VAunif rw [← hAA'] at VA'unif have VHunif : IsUniform H VH := UHunif.of_identDistrib idVH.symm .of_discrete let H' := (H : Set G).toFinite.toFinset have hHH' : H' = (H : Set G) := Finite.coe_toFinset (toFinite (H : Set G)) have VH'unif := VHunif rw [← hHH'] at VH'unif have H_fin : Finite (H : Set G) := by infer_instance have : d[VA # VH] ≤ 5 * log K := by rw [idVA.rdist_eq idVH]; linarith have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos positivity have VA_ent : H[VA] = log (Nat.card A) := IsUniform.entropy_eq' A_fin VAunif VAmeas have VH_ent : H[VH] = log (Nat.card H) := IsUniform.entropy_eq' H_fin VHunif VHmeas have Icard : |log (Nat.card A) - log (Nat.card H)| ≤ 10 * log K := by rw [← VA_ent, ← VH_ent] apply (diff_ent_le_rdist VAmeas VHmeas).trans linarith have IAH : Nat.card A ≤ K ^ 10 * Nat.card H := by have : log (Nat.card A) ≤ log K * 10 + log (Nat.card H) := by linarith [(le_abs_self _).trans Icard] convert exp_monotone this using 1 · exact (exp_log A_pos).symm · rw [exp_add, exp_log H_pos, ← rpow_def_of_pos K_pos] have IHA : Nat.card H ≤ K ^ 10 * Nat.card A := by have : log (Nat.card H) ≤ log K * 10 + log (Nat.card A) := by linarith [(neg_le_abs _).trans Icard] convert exp_monotone this using 1 · exact (exp_log H_pos).symm · rw [exp_add, exp_log A_pos, ← rpow_def_of_pos K_pos] -- entropic PFR shows that the entropy of `VA - VH` is small have I : log K * (-5) + log (Nat.card A) * (-1/2) + log (Nat.card H) * (-1/2) ≤ - H[VA - VH] := by rw [Vindep.rdist_eq VAmeas VHmeas] at this linarith -- therefore, there exists a point `x₀` which is attained by `VA - VH` with a large probability obtain ⟨x₀, h₀⟩ : ∃ x₀ : G, rexp (- H[VA - VH]) ≤ (ℙ : Measure Ω).real ((VA - VH) ⁻¹' {x₀}) := prob_ge_exp_neg_entropy' _ ((VAmeas.sub VHmeas).comp measurable_id') -- massage the previous inequality to get that `A ∩ (H + {x₀})` is large have J : K ^ (-5) * Nat.card A ^ (1/2) * Nat.card H ^ (1/2) ≤ Nat.card (A ∩ (H + {x₀}) : Set G) := by rw [VA'unif.measureReal_preimage_sub VAmeas VH'unif VHmeas Vindep] at h₀ have := (Real.exp_monotone I).trans h₀ have hAA'_card : Nat.card A' = Nat.card A := congrArg Nat.card (congrArg Subtype hAA') have hHH'_card : Nat.card H' = Nat.card H := congrArg Nat.card (congrArg Subtype hHH') rw [hAA'_card, hHH'_card, le_div_iff₀] at this convert this using 1 · rw [exp_add, exp_add, ← rpow_def_of_pos K_pos, ← rpow_def_of_pos A_pos, ← rpow_def_of_pos H_pos] rpow_ring norm_num · rw [hAA', hHH'] positivity have Hne : (A ∩ (H + {x₀} : Set G)).Nonempty := by by_contra h' have : (0 : ℝ) < Nat.card (A ∩ (H + {x₀}) : Set G) := lt_of_lt_of_le (by positivity) J simp only [Nat.card_eq_fintype_card, card_of_isEmpty, CharP.cast_eq_zero, lt_self_iff_false, not_nonempty_iff_eq_empty.1 h'] at this /- use Rusza covering lemma to cover `A` by few translates of `A ∩ (H + {x₀}) - A ∩ (H + {x₀})` (which is contained in `H`). The number of translates is at most `#(A + (A ∩ (H + {x₀}))) / #(A ∩ (H + {x₀}))`, where the numerator is controlled as this is a subset of `A + A`, and the denominator is bounded below by the previous inequality`. -/ have Z3 : (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) ≤ (K ^ 6 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by calc (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) _ ≤ Nat.card (A + A) := by gcongr; exact Nat.card_mono (toFinite _) <| add_subset_add_left inter_subset_left _ ≤ K * Nat.card A := hA _ = (K ^ 6 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * (K ^ (-5 : ℝ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (1/2 : ℝ)) := by rpow_ring; norm_num _ ≤ (K ^ 6 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by gcongr obtain ⟨u, huA, hucard, hAu, -⟩ := Set.ruzsa_covering_add (toFinite A) (toFinite (A ∩ ((H + {x₀} : Set G)))) Hne (by convert Z3) have A_subset_uH : A ⊆ u + H := by refine hAu.trans $ add_subset_add_left $ (sub_subset_sub (inter_subset_right ..) (inter_subset_right ..)).trans ?_ rw [add_sub_add_comm, singleton_sub_singleton, sub_self] simp exact ⟨H, u, hucard, IHA, IAH, A_subset_uH⟩ /-- The polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of an elementary abelian 2-group of doubling constant at most $K$, then $A$ can be covered by at most $2K^{11$} cosets of a subgroup of cardinality at most $|A|$. -/
pfr/blueprint/src/chapter/improved_exponent.tex:214
pfr/PFR/ImprovedPFR.lean:864
PFR
PFR_projection
\begin{lemma}\label{pfr-projection}\lean{PFR_projection}\leanok If $G=\mathbb{F}_2^d$ and $\alpha\in (0,1)$ and $X,Y$ are $G$-valued random variables then there is a subgroup $H\leq \mathbb{F}_2^d$ such that \[\log \lvert H\rvert \leq 2 (\mathbb{H}(X)+\mathbb{H}(Y))\] and if $\psi:G \to G/H$ is the natural projection then \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\leq 34 d[\psi(X);\psi(Y)].\] \end{lemma} \begin{proof} \uses{pfr-projection'}\leanok Specialize \Cref{pfr-projection'} to $\alpha=3/5$. In the second inequality, it gives a bound $100/3 < 34$. \end{proof}
lemma PFR_projection (hX : Measurable X) (hY : Measurable Y) : ∃ H : Submodule (ZMod 2) G, log (Nat.card H) ≤ 2 * (H[X ; μ] + H[Y;μ']) ∧ H[H.mkQ ∘ X ; μ] + H[H.mkQ ∘ Y; μ'] ≤ 34 * d[H.mkQ ∘ X ;μ # H.mkQ ∘ Y;μ'] := by rcases PFR_projection' X Y μ μ' ((3 : ℝ) / 5) hX hY (by norm_num) (by norm_num) with ⟨H, h, h'⟩ refine ⟨H, ?_, ?_⟩ · convert h norm_num · have : 0 ≤ d[⇑H.mkQ ∘ X ; μ # ⇑H.mkQ ∘ Y ; μ'] := rdist_nonneg (.comp .of_discrete hX) (.comp .of_discrete hY) linarith end F2_projection open MeasureTheory ProbabilityTheory Real Set
pfr/blueprint/src/chapter/weak_pfr.tex:127
pfr/PFR/WeakPFR.lean:397
PFR
PFR_projection'
\begin{lemma}\label{pfr-projection'}\lean{PFR_projection'}\leanok If $G=\mathbb{F}_2^d$ and $\alpha\in (0,1)$ and $X,Y$ are $G$-valued random variables then there is a subgroup $H\leq \mathbb{F}_2^d$ such that \[\log \lvert H\rvert \leq \frac{1+\alpha}{2(1-\alpha)} (\mathbb{H}(X)+\mathbb{H}(Y))\] and if $\psi:G \to G/H$ is the natural projection then \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\leq \frac{20}{\alpha} d[\psi(X);\psi(Y)].\] \end{lemma} \begin{proof} \uses{app-ent-pfr}\leanok Let $H\leq \mathbb{F}_2^d$ be a maximal subgroup such that \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))> \frac{20}{\alpha} d[\psi(X);\psi(Y)]\] and such that there exists $c \ge 0$ with \[\log \lvert H\rvert \leq \frac{1+\alpha}{2(1-\alpha)}(1-c)(\mathbb{H}(X)+\mathbb{H}(Y))\] and \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\leq c (\mathbb{H}(X)+\mathbb{H}(Y)).\] Note that this exists since $H=\{0\}$ is an example of such a subgroup or we are done with this choice of $H$. We know that $G/H$ is a $2$-elementary group and so by Lemma \ref{app-ent-pfr} there exists some non-trivial subgroup $H'\leq G/H$ such that \[\log \lvert H'\rvert < \frac{1+\alpha}{2}(\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\] and \[\mathbb{H}(\psi' \circ\psi(X))+\mathbb{H}(\psi' \circ \psi(Y))< \alpha(\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y)))\] where $\psi':G/H\to (G/H)/H'$. By group isomorphism theorems we know that there exists some $H''$ with $H\leq H''\leq G$ such that $H'\cong H''/H$ and $\psi' \circ \psi(X)=\psi''(X)$ where $\psi'':G\to G/H''$ is the projection homomorphism. Since $H'$ is non-trivial we know that $H$ is a proper subgroup of $H''$. On the other hand we know that \[\log \lvert H''\rvert=\log \lvert H'\rvert+\log \lvert H\rvert< \frac{1+\alpha}{2(1-\alpha)}(1-\alpha c)(\mathbb{H}(X)+\mathbb{H}(Y))\] and \[\mathbb{H}(\psi''(X))+\mathbb{H}(\psi''(Y))< \alpha (\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y)))\leq \alpha c (\mathbb{H}(X)+\mathbb{H}(Y)).\] Therefore (using the maximality of $H$) it must be the first condition that fails, whence \[\mathbb{H}(\psi''(X))+\mathbb{H}(\psi''(Y))\leq \frac{20}{\alpha}d[\psi''(X);\psi''(Y)].\] \end{proof}
lemma PFR_projection' (α : ℝ) (hX : Measurable X) (hY : Measurable Y) (αpos : 0 < α) (αone : α < 1) : ∃ H : Submodule (ZMod 2) G, log (Nat.card H) ≤ (1 + α) / (2 * (1 - α)) * (H[X ; μ] + H[Y ; μ']) ∧ α * (H[H.mkQ ∘ X ; μ] + H[H.mkQ ∘ Y ; μ']) ≤ 20 * d[H.mkQ ∘ X ; μ # H.mkQ ∘ Y ; μ'] := by let S := {H : Submodule (ZMod 2) G | (∃ (c : ℝ), 0 ≤ c ∧ log (Nat.card H) ≤ (1 + α) / (2 * (1 - α)) * (1 - c) * (H[X ; μ] + H[Y;μ']) ∧ H[H.mkQ ∘ X ; μ] + H[H.mkQ ∘ Y; μ'] ≤ c * (H[X ; μ] + H[Y;μ'])) ∧ 20 * d[H.mkQ ∘ X ; μ # H.mkQ ∘ Y ; μ'] < α * (H[H.mkQ ∘ X ; μ ] + H[H.mkQ ∘ Y; μ'])} have : 0 ≤ H[X ; μ] + H[Y ; μ'] := by linarith [entropy_nonneg X μ, entropy_nonneg Y μ'] have : 0 < 1 - α := sub_pos.mpr αone by_cases hE : ⊥ ∈ S · classical obtain ⟨H, ⟨⟨c, hc, hlog, hup⟩, hent⟩, hMaxl⟩ := S.toFinite.exists_maximal_wrt id S (Set.nonempty_of_mem hE) set G' := G ⧸ H set ψ : G →ₗ[ZMod 2] G' := H.mkQ have surj : Function.Surjective ψ := Submodule.Quotient.mk_surjective H obtain ⟨H', hlog', hup'⟩ := app_ent_PFR _ _ _ _ α hent (.comp .of_discrete hX) (.comp .of_discrete hY) have H_ne_bot : H' ≠ ⊥ := by by_contra! rcases this with rfl have inj : Function.Injective (Submodule.mkQ (⊥ : Submodule (ZMod 2) G')) := QuotientAddGroup.quotientBot.symm.injective rw [entropy_comp_of_injective _ (.comp .of_discrete hX) _ inj, entropy_comp_of_injective _ (.comp .of_discrete hY) _ inj] at hup' nlinarith [entropy_nonneg (ψ ∘ X) μ, entropy_nonneg (ψ ∘ Y) μ'] let H'' := H'.comap ψ use H'' rw [← (Submodule.map_comap_eq_of_surjective surj _ : H''.map ψ = H')] at hup' hlog' set H' := H''.map ψ have Hlt := calc H = (⊥ : Submodule (ZMod 2) G').comap ψ := by simp [ψ]; rw [Submodule.ker_mkQ] _ < H'' := by rw [Submodule.comap_lt_comap_iff_of_surjective surj]; exact H_ne_bot.bot_lt let φ : (G' ⧸ H') ≃ₗ[ZMod 2] (G ⧸ H'') := Submodule.quotientQuotientEquivQuotient H H'' Hlt.le set ψ' : G' →ₗ[ZMod 2] G' ⧸ H' := H'.mkQ set ψ'' : G →ₗ[ZMod 2] G ⧸ H'' := H''.mkQ have diag : ψ' ∘ ψ = φ.symm ∘ ψ'' := rfl rw [← Function.comp_assoc, ← Function.comp_assoc, diag, Function.comp_assoc, Function.comp_assoc] at hup' have cond : log (Nat.card H'') ≤ (1 + α) / (2 * (1 - α)) * (1 - α * c) * (H[X ; μ] + H[Y;μ']) := by have cardprod : Nat.card H'' = Nat.card H' * Nat.card H := by have hcard₀ := Nat.card_congr <| (Submodule.comapSubtypeEquivOfLe Hlt.le).toEquiv have hcard₁ := Nat.card_congr <| (ψ.domRestrict H'').quotKerEquivRange.toEquiv have hcard₂ := (H.comap H''.subtype).card_eq_card_quotient_mul_card rw [ψ.ker_domRestrict H'', Submodule.ker_mkQ, ψ.range_domRestrict H''] at hcard₁ simpa only [← Nat.card_eq_fintype_card, hcard₀, hcard₁, mul_comm] using hcard₂ calc log (Nat.card H'') _ = log (Nat.card H' * Nat.card H) := by rw [cardprod]; norm_cast _ = log (Nat.card H') + log (Nat.card H) := by rw [Real.log_mul (Nat.cast_ne_zero.2 (@Nat.card_pos H').ne') (Nat.cast_ne_zero.2 (@Nat.card_pos H).ne')] _ ≤ (1 + α) / 2 * (H[ψ ∘ X ; μ] + H[ψ ∘ Y ; μ']) + log (Nat.card H) := by gcongr _ ≤ (1 + α) / 2 * (c * (H[X ; μ] + H[Y;μ'])) + (1 + α) / (2 * (1 - α)) * (1 - c) * (H[X ; μ] + H[Y ; μ']) := by gcongr _ = (1 + α) / (2 * (1 - α)) * (1 - α * c) * (H[X ; μ] + H[Y ; μ']) := by field_simp; ring have HS : H'' ∉ S := λ Hs => Hlt.ne (hMaxl H'' Hs Hlt.le) simp only [S, Set.mem_setOf_eq, not_and, not_lt] at HS refine ⟨?_, HS ⟨α * c, by positivity, cond, ?_⟩⟩ · calc log (Nat.card H'') _ ≤ (1 + α) / (2 * (1 - α)) * (1 - α * c) * (H[X ; μ] + H[Y;μ']) := cond _ ≤ (1 + α) / (2 * (1 - α)) * 1 * (H[X ; μ] + H[Y;μ']) := by gcongr; simp; positivity _ = (1 + α) / (2 * (1 - α)) * (H[X ; μ] + H[Y;μ']) := by simp only [mul_one] · calc H[ ψ'' ∘ X ; μ ] + H[ ψ'' ∘ Y; μ' ] _ = H[ φ.symm ∘ ψ'' ∘ X ; μ ] + H[ φ.symm ∘ ψ'' ∘ Y; μ' ] := by simp_rw [← entropy_comp_of_injective _ (.comp .of_discrete hX) _ φ.symm.injective, ← entropy_comp_of_injective _ (.comp .of_discrete hY) _ φ.symm.injective] _ ≤ α * (H[ ψ ∘ X ; μ ] + H[ ψ ∘ Y; μ' ]) := hup'.le _ ≤ α * (c * (H[X ; μ] + H[Y ; μ'])) := by gcongr _ = (α * c) * (H[X ; μ] + H[Y ; μ']) := by ring · use ⊥ constructor · simp only [AddSubgroup.mem_bot, Nat.card_eq_fintype_card, Fintype.card_ofSubsingleton, Nat.cast_one, log_one] positivity · simp only [S, Set.mem_setOf_eq, not_and, not_lt] at hE exact hE ⟨1, by norm_num, by norm_num; exact add_le_add (entropy_comp_le μ hX _) (entropy_comp_le μ' hY _)⟩ /-- If $G=\mathbb{F}_2^d$ and `X, Y` are `G`-valued random variables then there is a subgroup $H\leq \mathbb{F}_2^d$ such that \[\log \lvert H\rvert \leq 2 * (\mathbb{H}(X)+\mathbb{H}(Y))\] and if $\psi:G \to G/H$ is the natural projection then \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\leq 34 * d[\psi(X);\psi(Y)].\] -/
pfr/blueprint/src/chapter/weak_pfr.tex:86
pfr/PFR/WeakPFR.lean:300
PFR
ProbabilityTheory.IdentDistrib.rdist_eq
\begin{lemma}[Copy preserves Ruzsa distance]\label{ruz-copy} \uses{ruz-dist-def} \lean{ProbabilityTheory.IdentDistrib.rdist_eq}\leanok If $X',Y'$ are copies of $X,Y$ respectively then $d[X';Y']=d[X ;Y]$. \end{lemma} \begin{proof} \uses{copy-ent}\leanok Immediate from Definitions \ref{ruz-dist-def} and \Cref{copy-ent}. \end{proof}
/-- If `X', Y'` are copies of `X, Y` respectively then `d[X' ; Y'] = d[X ; Y]`. -/ lemma ProbabilityTheory.IdentDistrib.rdist_eq {X' : Ω'' → G} {Y' : Ω''' → G} (hX : IdentDistrib X X' μ μ'') (hY : IdentDistrib Y Y' μ' μ''') : d[X ; μ # Y ; μ'] = d[X' ; μ'' # Y' ; μ'''] := by simp [rdist, hX.map_eq, hY.map_eq, hX.entropy_eq, hY.entropy_eq]
pfr/blueprint/src/chapter/distance.tex:99
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:129
PFR
ProbabilityTheory.IdentDistrib.tau_eq
\begin{lemma}[$\tau$ depends only on distribution]\label{tau-copy}\leanok \uses{tau-def} \lean{ProbabilityTheory.IdentDistrib.tau_eq} If $X'_1, X'_2$ are copies of $X_1,X_2$, then $\tau[X'_1;X'_2] = \tau[X_1;X_2]$. \end{lemma} \begin{proof}\uses{copy-ent}\leanok Immediate from \Cref{copy-ent}. \end{proof}
/-- If $X'_1, X'_2$ are copies of $X_1,X_2$, then $\tau[X'_1;X'_2] = \tau[X_1;X_2]$. -/ lemma ProbabilityTheory.IdentDistrib.tau_eq [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω'₁] [MeasurableSpace Ω'₂] {μ₁ : Measure Ω₁} {μ₂ : Measure Ω₂} {μ'₁ : Measure Ω'₁} {μ'₂ : Measure Ω'₂} {X₁ : Ω₁ → G} {X₂ : Ω₂ → G} {X₁' : Ω'₁ → G} {X₂' : Ω'₂ → G} (h₁ : IdentDistrib X₁ X₁' μ₁ μ'₁) (h₂ : IdentDistrib X₂ X₂' μ₂ μ'₂) : τ[X₁ ; μ₁ # X₂ ; μ₂ | p] = τ[X₁' ; μ'₁ # X₂' ; μ'₂ | p] := by simp only [tau] rw [(IdentDistrib.refl p.hmeas1.aemeasurable).rdist_eq h₁, (IdentDistrib.refl p.hmeas2.aemeasurable).rdist_eq h₂, h₁.rdist_eq h₂] /-- Property recording the fact that two random variables minimize the tau functional. Expressed in terms of measures on the group to avoid quantifying over all spaces, but this implies comparison with any pair of random variables, see Lemma `is_tau_min`. -/
pfr/blueprint/src/chapter/entropy_pfr.tex:17
pfr/PFR/TauFunctional.lean:90
PFR
ProbabilityTheory.IndepFun.rdist_eq
\begin{lemma}[Ruzsa distance in independent case]\label{ruz-indep} \uses{ruz-dist-def} \lean{ProbabilityTheory.IndepFun.rdist_eq}\leanok If $X,Y$ are independent $G$-random variables then $$ d[X ;Y] := \bbH[X - Y] - \bbH[X]/2 - \bbH[Y]/2.$$ \end{lemma} \begin{proof} \uses{relabeled-entropy, copy-ent}\leanok Immediate from \Cref{ruz-dist-def} and Lemmas \ref{relabeled-entropy}, \ref{copy-ent}. \end{proof}
/-- If `X, Y` are independent `G`-random variables then `d[X ; Y] = H[X - Y] - H[X]/2 - H[Y]/2`. -/ lemma ProbabilityTheory.IndepFun.rdist_eq [IsFiniteMeasure μ] {Y : Ω → G} (h : IndepFun X Y μ) (hX : Measurable X) (hY : Measurable Y) : d[X ; μ # Y ; μ] = H[X - Y ; μ] - H[X ; μ]/2 - H[Y ; μ]/2 := by rw [rdist_def] congr 2 have h_prod : (μ.map X).prod (μ.map Y) = μ.map (⟨X, Y⟩) := ((indepFun_iff_map_prod_eq_prod_map_map hX.aemeasurable hY.aemeasurable).mp h).symm rw [h_prod, entropy_def, Measure.map_map (measurable_fst.sub measurable_snd) (hX.prodMk hY)] rfl
pfr/blueprint/src/chapter/distance.tex:108
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:161
PFR
app_ent_PFR
\begin{lemma}\label{app-ent-pfr}\lean{app_ent_PFR}\leanok Let $G=\mathbb{F}_2^n$ and $\alpha\in (0,1)$ and let $X,Y$ be $G$-valued random variables such that \[\mathbb{H}(X)+\mathbb{H}(Y)> \frac{20}{\alpha} d[X;Y].\] There is a non-trivial subgroup $H\leq G$ such that \[\log \lvert H\rvert <\frac{1+\alpha}{2}(\mathbb{H}(X)+\mathbb{H}(Y))\] and \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))< \alpha (\mathbb{H}(X)+\mathbb{H}(Y))\] where $\psi:G\to G/H$ is the natural projection homomorphism. \end{lemma} \begin{proof} \uses{entropy-pfr-improv, ruzsa-diff, dist-projection, ruzsa-nonneg}\leanok By \Cref{entropy-pfr-improv} there exists a subgroup $H$ such that $d[X;U_H] + d[Y;U_H] \leq 10 d[X;Y]$. Using \Cref{dist-projection} we deduce that $\mathbb{H}(\psi(X)) + \mathbb{H}(\psi(X)) \leq 20 d[X;Y]$. The second claim follows adding these inequalities and using the assumption on $\mathbb{H}(X)+\mathbb{H}(Y)$. Furthermore we have by \Cref{ruzsa-diff} \[\log \lvert H \rvert-\mathbb{H}(X)\leq 2d[X;U_H]\] and similarly for $Y$ and thus \begin{align*} \log \lvert H\rvert &\leq \frac{\mathbb{H}(X)+\mathbb{H}(Y)}{2}+d[X;U_H] + d[Y;U_H] \leq \frac{\mathbb{H}(X)+\mathbb{H}(Y)}{2}+ 10d[X;Y] \\& < \frac{1+\alpha}{2}(\mathbb{H}(X)+\mathbb{H}(Y)). \end{align*} Finally note that if $H$ were trivial then $\psi(X)=X$ and $\psi(Y)=Y$ and hence $\mathbb{H}(X)+\mathbb{H}(Y)=0$, which contradicts \Cref{ruzsa-nonneg}. \end{proof}
lemma app_ent_PFR (α : ℝ) (hent : 20 * d[X ;μ # Y;μ'] < α * (H[X ; μ] + H[Y; μ'])) (hX : Measurable X) (hY : Measurable Y) : ∃ H : Submodule (ZMod 2) G, log (Nat.card H) < (1 + α) / 2 * (H[X ; μ] + H[Y;μ']) ∧ H[H.mkQ ∘ X ; μ] + H[H.mkQ ∘ Y; μ'] < α * (H[ X ; μ] + H[Y; μ']) := app_ent_PFR' (mΩ := .mk μ) (mΩ' := .mk μ') X Y hent hX hY set_option maxHeartbeats 300000 in /-- If $G=\mathbb{F}_2^d$ and `X, Y` are `G`-valued random variables and $\alpha < 1$ then there is a subgroup $H\leq \mathbb{F}_2^d$ such that \[\log \lvert H\rvert \leq (1 + α) / (2 * (1 - α)) * (\mathbb{H}(X)+\mathbb{H}(Y))\] and if $\psi:G \to G/H$ is the natural projection then \[\mathbb{H}(\psi(X))+\mathbb{H}(\psi(Y))\leq 20/\alpha * d[\psi(X);\psi(Y)].\] -/
pfr/blueprint/src/chapter/weak_pfr.tex:52
pfr/PFR/WeakPFR.lean:288
PFR
approx_hom_pfr
\begin{theorem}[Approximate homomorphism form of PFR]\label{approx-hom-pfr}\lean{approx_hom_pfr}\leanok Let $G,G'$ be finite abelian $2$-groups. Let $f: G \to G'$ be a function, and suppose that there are at least $|G|^2 / K$ pairs $(x,y) \in G^2$ such that $$ f(x+y) = f(x) + f(y).$$ Then there exists a homomorphism $\phi: G \to G'$ and a constant $c \in G'$ such that $f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {144} * K ^ {122})$ values of $x \in G$. \end{theorem} \begin{proof}\uses{goursat, cs-bound, bsg, pfr_aux-improv}\leanok Consider the graph $A \subset G \times G'$ defined by $$ A := \{ (x,f(x)): x \in G \}.$$ Clearly, $|A| = |G|$. By hypothesis, we have $a+a' \in A$ for at least $|A|^2/K$ pairs $(a,a') \in A^2$. By \Cref{cs-bound}, this implies that $E(A) \geq |A|^3/K^2$. Applying \Cref{bsg}, we conclude that there exists a subset $A' \subset A$ with $|A'| \geq |A|/C_1 K^{2C_2}$ and $|A'+A'| \leq C_1C_3 K^{2(C_2+C_4)} |A'|$. Applying \Cref{pfr-9-aux'}, we may find a subspace $H \subset G \times G'$ such that $|H| / |A'| \in [L^{-8}, L^{8}]$ and a subset $c$ of cardinality at most $L^5 |A'|^{1/2} / |H|^{1/2}$ such that $A' \subseteq c + H$, where $L = C_1C_3 K^{2(C_2+C_4)}$. If we let $H_0,H_1$ be as in \Cref{goursat}, this implies on taking projections the projection of $A'$ to $G$ is covered by at most $|c|$ translates of $H_0$. This implies that $$ |c| |H_0| \geq |A'|;$$ since $|H_0| |H_1| = |H|$, we conclude that $$ |H_1| \leq |c| |H|/|A'|.$$ By hypothesis, $A'$ is covered by at most $|c|$ translates of $H$, and hence by at most $|c| |H_1|$ translates of $\{ (x,\phi(x)): x \in G \}$. As $\phi$ is a homomorphism, each such translate can be written in the form $\{ (x,\phi(x)+c): x \in G \}$ for some $c \in G'$. The number of translates is bounded by $$ |c|^2 \frac{|H|}{|A'|} \leq \left(L^5 \frac{|A'|^{1/2}}{|H|^{1/2}}\right)^2 \frac{|H|}{|A'|} = L^{10}. $$ By the pigeonhole principle, one of these translates must then contain at least $|A'|/L^{10} \geq |G| / (C_1C_3 K^{2(C_2+C_4)})^{10} (C_1 K^{2C_2})$ elements of $A'$ (and hence of $A$), and the claim follows. \end{proof}
theorem approx_hom_pfr (f : G → G') (K : ℝ) (hK : K > 0) (hf : Nat.card G ^ 2 / K ≤ Nat.card {x : G × G | f (x.1 + x.2) = f x.1 + f x.2}) : ∃ (φ : G →+ G') (c : G'), Nat.card {x | f x = φ x + c} ≥ Nat.card G / (2 ^ 144 * K ^ 122) := by let A := (Set.univ.graphOn f).toFinite.toFinset have hA : #A = Nat.card G := by rw [Set.Finite.card_toFinset]; simp [← Nat.card_eq_fintype_card] have hA_nonempty : A.Nonempty := by simp [-Set.Finite.toFinset_setOf, A] have := calc (#A ^ 3 / K ^ 2 : ℝ) = (Nat.card G ^ 2 / K) ^ 2 / #A := by field_simp [hA]; ring _ ≤ Nat.card {x : G × G | f (x.1 + x.2) = f x.1 + f x.2} ^ 2 / #A := by gcongr _ = #{ab ∈ A ×ˢ A | ab.1 + ab.2 ∈ A} ^ 2 / #A := by congr rw [← Nat.card_eq_finsetCard, ← Finset.coe_sort_coe, Finset.coe_filter, Set.Finite.toFinset_prod] simp only [Set.Finite.mem_toFinset, A, Set.graphOn_prod_graphOn] rw [← Set.natCard_graphOn _ (Prod.map f f), ← Nat.card_image_equiv (Equiv.prodProdProdComm G G' G G'), Set.image_equiv_eq_preimage_symm] congr aesop _ ≤ #A * E[A] / #A := by gcongr; exact mod_cast card_sq_le_card_mul_addEnergy .. _ = E[A] := by field_simp obtain ⟨A', hA', hA'1, hA'2⟩ := BSG_self' (sq_nonneg K) hA_nonempty (by simpa only [inv_mul_eq_div] using this) clear hf this have hA'₀ : A'.Nonempty := Finset.card_pos.1 $ Nat.cast_pos.1 $ hA'1.trans_lt' $ by positivity let A'' := A'.toSet have hA''_coe : Nat.card A'' = #A' := Nat.card_eq_finsetCard A' have hA''_pos : 0 < Nat.card A'' := by rw [hA''_coe]; exact hA'₀.card_pos have hA''_nonempty : Set.Nonempty A'' := nonempty_subtype.mp (Finite.card_pos_iff.mp hA''_pos) have : Finset.card (A' - A') = Nat.card (A'' + A'') := calc _ = Nat.card (A' - A').toSet := (Nat.card_eq_finsetCard _).symm _ = Nat.card (A'' + A'') := by rw [Finset.coe_sub, sumset_eq_sub] replace : Nat.card (A'' + A'') ≤ 2 ^ 14 * K ^ 12 * Nat.card A'' := by rewrite [← this, hA''_coe] simpa [← pow_mul] using hA'2 obtain ⟨H, c, hc_card, hH_le, hH_ge, hH_cover⟩ := better_PFR_conjecture_aux hA''_nonempty this clear hA'2 hA''_coe hH_le hH_ge obtain ⟨H₀, H₁, φ, hH₀H₁, hH₀H₁_card⟩ := goursat H have h_le_H₀ : Nat.card A'' ≤ Nat.card c * Nat.card H₀ := by have h_le := Nat.card_mono (Set.toFinite _) (Set.image_subset Prod.fst hH_cover) have h_proj_A'' : Nat.card A'' = Nat.card (Prod.fst '' A'') := Nat.card_congr (Equiv.Set.imageOfInjOn Prod.fst A'' <| Set.fst_injOn_graph.mono (Set.Finite.subset_toFinset.mp hA')) have h_proj_c : Prod.fst '' (c + H : Set (G × G')) = (Prod.fst '' c) + H₀ := by ext x ; constructor <;> intro hx · obtain ⟨x, ⟨⟨c, hc, h, hh, hch⟩, hx⟩⟩ := hx rewrite [← hx] exact ⟨c.1, Set.mem_image_of_mem Prod.fst hc, h.1, ((hH₀H₁ h).mp hh).1, (Prod.ext_iff.mp hch).1⟩ · obtain ⟨_, ⟨c, hc⟩, h, hh, hch⟩ := hx refine ⟨c + (h, φ h), ⟨⟨c, hc.1, (h, φ h), ?_⟩, by rwa [← hc.2] at hch⟩⟩ exact ⟨(hH₀H₁ ⟨h, φ h⟩).mpr ⟨hh, by rw [sub_self]; apply zero_mem⟩, rfl⟩ rewrite [← h_proj_A'', h_proj_c] at h_le apply (h_le.trans Set.natCard_add_le).trans gcongr exact Nat.card_image_le c.toFinite have hH₀_pos : (0 : ℝ) < Nat.card H₀ := Nat.cast_pos.mpr Nat.card_pos have h_le_H₁ : (Nat.card H₁ : ℝ) ≤ (Nat.card c) * (Nat.card H) / Nat.card A'' := calc _ = (Nat.card H : ℝ) / (Nat.card H₀) := (eq_div_iff <| ne_of_gt <| hH₀_pos).mpr <| by rw [mul_comm, ← Nat.cast_mul, hH₀H₁_card] _ ≤ (Nat.card c : ℝ) * (Nat.card H) / Nat.card A'' := by nth_rewrite 1 [← mul_one (Nat.card H : ℝ), mul_comm (Nat.card c : ℝ)] repeat rewrite [mul_div_assoc] refine mul_le_mul_of_nonneg_left ?_ (Nat.cast_nonneg _) refine le_of_mul_le_mul_right ?_ hH₀_pos refine le_of_mul_le_mul_right ?_ (Nat.cast_pos.mpr hA''_pos) rewrite [div_mul_cancel₀ 1, mul_right_comm, one_mul, div_mul_cancel₀, ← Nat.cast_mul] · exact Nat.cast_le.mpr h_le_H₀ · exact ne_of_gt (Nat.cast_pos.mpr hA''_pos) · exact ne_of_gt hH₀_pos clear h_le_H₀ hA''_pos hH₀_pos hH₀H₁_card let translate (c : G × G') (h : G') := A'' ∩ ({c} + {(0, h)} + Set.univ.graphOn φ) have h_translate (c : G × G') (h : G') : Prod.fst '' translate c h ⊆ { x : G | f x = φ x + (-φ c.1 + c.2 + h) } := by intro x hx obtain ⟨x, ⟨hxA'', _, ⟨c', hc, h', hh, hch⟩, x', hx, hchx⟩, hxx⟩ := hx show f _ = φ _ + (-φ c.1 + c.2 + h) replace := by simpa [-Set.Finite.toFinset_setOf, A] using hA' hxA'' rewrite [← hxx, this, ← hchx, ← hch, hc, hh] show c.2 + h + x'.2 = φ (c.1 + 0 + x'.1) + (-φ c.1 + c.2 + h) replace : φ x'.1 = x'.2 := (Set.mem_graphOn.mp hx).2 rw [map_add, map_add, map_zero, add_zero, this, add_comm (φ c.1), add_assoc x'.2, ← add_assoc (φ c.1), ← add_assoc (φ c.1), ← sub_eq_add_neg, sub_self, zero_add, add_comm] have h_translate_card c h : Nat.card (translate c h) = Nat.card (Prod.fst '' translate c h) := Nat.card_congr (Equiv.Set.imageOfInjOn Prod.fst (translate c h) <| Set.fst_injOn_graph.mono fun _ hx ↦ Set.Finite.subset_toFinset.mp hA' hx.1) let cH₁ := (c ×ˢ H₁).toFinite.toFinset have A_nonempty : Nonempty A'' := Set.nonempty_coe_sort.mpr hA''_nonempty replace hc : c.Nonempty := by obtain ⟨x, hx, _, _, _⟩ := hH_cover (Classical.choice A_nonempty).property exact ⟨x, hx⟩ replace : A' = Finset.biUnion cH₁ fun ch ↦ (translate ch.1 ch.2).toFinite.toFinset := by ext x ; constructor <;> intro hx · obtain ⟨c', hc, h, hh, hch⟩ := hH_cover hx refine Finset.mem_biUnion.mpr ⟨(c', h.2 - φ h.1), ?_⟩ refine ⟨(Set.Finite.mem_toFinset _).mpr ⟨hc, ((hH₀H₁ h).mp hh).2⟩, ?_⟩ refine (Set.Finite.mem_toFinset _).mpr ⟨hx, c' + (0, h.2 - φ h.1), ?_⟩ refine ⟨⟨c', rfl, (0, h.2 - φ h.1), rfl, rfl⟩, (h.1, φ h.1), ⟨h.1, by simp⟩, ?_⟩ beta_reduce rewrite [add_assoc] show c' + (0 + h.1, h.2 - φ h.1 + φ h.1) = x rewrite [zero_add, sub_add_cancel] exact hch · obtain ⟨ch, hch⟩ := Finset.mem_biUnion.mp hx exact ((Set.Finite.mem_toFinset _).mp hch.2).1 replace : ∑ _ ∈ cH₁, ((2 ^ 4)⁻¹ * (K ^ 2)⁻¹ * #A / cH₁.card : ℝ) ≤ ∑ ch ∈ cH₁, ((translate ch.1 ch.2).toFinite.toFinset.card : ℝ) := by rewrite [Finset.sum_const, nsmul_eq_mul, ← mul_div_assoc, mul_div_right_comm, div_self, one_mul] · apply hA'1.trans norm_cast exact (congrArg Finset.card this).trans_le Finset.card_biUnion_le · symm refine ne_of_lt <| Nat.cast_zero.symm.trans_lt <| Nat.cast_lt.mpr <| Finset.card_pos.mpr ?_ exact (Set.Finite.toFinset_nonempty _).mpr <| hc.prod H₁.nonempty obtain ⟨c', h, hch⟩ : ∃ c' : G × G', ∃ h : G', (2 ^ 4 : ℝ)⁻¹ * (K ^ 2)⁻¹ * #A / cH₁.card ≤ Nat.card { x : G | f x = φ x + (-φ c'.1 + c'.2 + h) } := by obtain ⟨ch, hch⟩ := Finset.exists_le_of_sum_le ((Set.Finite.toFinset_nonempty _).mpr (hc.prod H₁.nonempty)) this refine ⟨ch.1, ch.2, hch.2.trans ?_⟩ rewrite [Set.Finite.card_toFinset, ← Nat.card_eq_fintype_card, h_translate_card] exact Nat.cast_le.mpr <| Nat.card_mono (Set.toFinite _) (h_translate ch.1 ch.2) clear! hA' hA'1 hH_cover hH₀H₁ translate h_translate h_translate_card use φ, -φ c'.1 + c'.2 + h calc Nat.card G / (2 ^ 144 * K ^ 122) _ = Nat.card G / (2 ^ 4 * K ^ 2 * (2 ^ 140 * K ^ 120)) := by ring _ ≤ Nat.card G / (2 ^ 4 * K ^ 2 * #(c ×ˢ H₁).toFinite.toFinset) := ?_ _ = (2 ^ 4)⁻¹ * (K ^ 2)⁻¹ * ↑(#A) / ↑(#cH₁) := by rw [hA, ← mul_inv, inv_mul_eq_div, div_div] _ ≤ _ := hch have := (c ×ˢ H₁).toFinite.toFinset_nonempty.2 (hc.prod H₁.nonempty) gcongr calc (#(c ×ˢ H₁).toFinite.toFinset : ℝ) _ = #c.toFinite.toFinset * #(H₁ : Set G').toFinite.toFinset := by rw [← Nat.cast_mul, ← Finset.card_product, Set.Finite.toFinset_prod] _ = Nat.card c * Nat.card H₁ := by simp_rw [Set.Finite.card_toFinset, ← Nat.card_eq_fintype_card]; norm_cast _ ≤ Nat.card c * (Nat.card c * Nat.card H / Nat.card ↑A'') := by gcongr _ = Nat.card c ^ 2 * Nat.card H / Nat.card ↑A'' := by ring _ ≤ ((2 ^ 14 * K ^ 12) ^ 5 * Nat.card A'' ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ)) ^ 2 * Nat.card H / Nat.card ↑A'' := by gcongr _ = 2 ^ 140 * K ^ 120 := by field_simp; rpow_simp; norm_num
pfr/blueprint/src/chapter/approx_hom_pfr.tex:27
pfr/PFR/ApproxHomPFR.lean:33
PFR
averaged_construct_good
\begin{lemma}[Constructing good variables, III']\label{averaged-construct-good}\lean{averaged_construct_good}\leanok One has \begin{align*} k & \leq I(U : V \, | \, S) + I(V : W \, | \,S) + I(W : U \, | \, S) + \frac{\eta}{6} \sum_{i=1}^2 \sum_{A,B \in \{U,V,W\}: A \neq B} (d[X^0_i;A|B,S] - d[X^0_i; X_i]). \end{align*} \end{lemma} \begin{proof}\uses{construct-good-improv, key-ident}\leanok For each $s$ in the range of $S$, apply \Cref{construct-good-improv} with $T_1,T_2,T_3$ equal to $(U|S=s)$, $(V|S=s)$, $(W|S=s)$ respectively (which works thanks to \Cref{key-ident}), multiply by $\bbP[S=s]$, and sum in $s$ to conclude. \end{proof}
lemma averaged_construct_good : k ≤ (I[U : V | S] + I[V : W | S] + I[W : U | S]) + (p.η / 6) * (((d[p.X₀₁ # U | ⟨V, S⟩] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # U | ⟨W, S⟩] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # V | ⟨U, S⟩] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # V | ⟨W, S⟩] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # W | ⟨U, S⟩] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # W | ⟨V, S⟩] - d[p.X₀₁ # X₁])) + ((d[p.X₀₂ # U | ⟨V, S⟩] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # U | ⟨W, S⟩] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # V | ⟨U, S⟩] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # V | ⟨W, S⟩] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # W | ⟨U, S⟩] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # W | ⟨V, S⟩] - d[p.X₀₂ # X₂]))) := by have hS : Measurable S := by fun_prop have hU : Measurable U := by fun_prop have hV : Measurable V := by fun_prop have hW : Measurable W := by fun_prop have hUVW : U + V + W = 0 := sum_uvw_eq_zero X₁ X₂ X₁' have hz (a : ℝ) : a = ∑ z, (ℙ (S ⁻¹' {z})).toReal * a := by rw [← Finset.sum_mul, sum_measure_preimage_singleton' ℙ hS, one_mul] rw [hz k, hz (d[p.X₀₁ # X₁]), hz (d[p.X₀₂ # X₂])] simp only [condMutualInfo_eq_sum' hS, ← Finset.sum_add_distrib, ← mul_add, condRuzsaDist'_prod_eq_sum', hU, hS, hV, hW, ← Finset.sum_sub_distrib, ← mul_sub, Finset.mul_sum, ← mul_assoc (p.η/6), mul_comm (p.η/6), mul_assoc _ _ (p.η/6)] rw [Finset.sum_mul, ← Finset.sum_add_distrib] apply Finset.sum_le_sum (fun i _hi ↦ ?_) rcases eq_or_ne (ℙ (S ⁻¹' {i})) 0 with h'i|h'i · simp [h'i] rw [mul_assoc, ← mul_add] gcongr have : IsProbabilityMeasure (ℙ[|S ⁻¹' {i}]) := cond_isProbabilityMeasure h'i linarith [construct_good_improved'' h_min (ℙ[|S ⁻¹' {i}]) hUVW hU hV hW] variable (p) include hX₁ hX₂ hX₁' hX₂' h_indep h₁ h₂ in omit [IsProbabilityMeasure (ℙ : Measure Ω₀₂)] in
pfr/blueprint/src/chapter/improved_exponent.tex:77
pfr/PFR/ImprovedPFR.lean:436
PFR
better_PFR_conjecture
\begin{theorem}[PFR with \texorpdfstring{$C=9$}{C=9}]\label{pfr-9}\lean{better_PFR_conjecture}\leanok If $A \subset {\bf F}_2^n$ is finite non-empty with $|A+A| \leq K|A|$, then there exists a subgroup $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$ such that $A$ can be covered by at most $2K^9$ translates of $H$. \end{theorem} \begin{proof}\leanok \uses{pfr-9-aux,ruz-cov} Given \Cref{pfr-9-aux'}, the proof is the same as that of \Cref{pfr}. \end{proof}
lemma better_PFR_conjecture {A : Set G} (h₀A : A.Nonempty) {K : ℝ} (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c < 2 * K ^ 9 ∧ Nat.card H ≤ Nat.card A ∧ A ⊆ c + H := by obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA -- consider the subgroup `H` given by Lemma `PFR_conjecture_aux`. obtain ⟨H, c, hc, IHA, IAH, A_subs_cH⟩ : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ 5 * Nat.card A ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ) ∧ Nat.card H ≤ K ^ 8 * Nat.card A ∧ Nat.card A ≤ K ^ 8 * Nat.card H ∧ A ⊆ c + H := better_PFR_conjecture_aux h₀A hA have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos; positivity rcases le_or_lt (Nat.card H) (Nat.card A) with h|h -- If `#H ≤ #A`, then `H` satisfies the conclusion of the theorem · refine ⟨H, c, ?_, h, A_subs_cH⟩ calc Nat.card c ≤ K ^ 5 * Nat.card A ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ) := hc _ ≤ K ^ 5 * (K ^ 8 * Nat.card H) ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ) := by gcongr _ = K ^ 9 := by simp_rw [← rpow_natCast]; rpow_ring; norm_num _ < 2 * K ^ 9 := by linarith [show 0 < K ^ 9 by positivity] -- otherwise, we decompose `H` into cosets of one of its subgroups `H'`, chosen so that -- `#A / 2 < #H' ≤ #A`. This `H'` satisfies the desired conclusion. · obtain ⟨H', IH'A, IAH', H'H⟩ : ∃ H' : Submodule (ZMod 2) G, Nat.card H' ≤ Nat.card A ∧ Nat.card A < 2 * Nat.card H' ∧ H' ≤ H := by have A_pos' : 0 < Nat.card A := mod_cast A_pos exact ZModModule.exists_submodule_subset_card_le Nat.prime_two H h.le A_pos'.ne' have : (Nat.card A / 2 : ℝ) < Nat.card H' := by rw [div_lt_iff₀ zero_lt_two, mul_comm]; norm_cast have H'_pos : (0 : ℝ) < Nat.card H' := by have : 0 < Nat.card H' := Nat.card_pos; positivity obtain ⟨u, HH'u, hu⟩ := H'.toAddSubgroup.exists_left_transversal_of_le (H := H.toAddSubgroup) H'H dsimp at HH'u refine ⟨H', c + u, ?_, IH'A, by rwa [add_assoc, HH'u]⟩ calc (Nat.card (c + u) : ℝ) ≤ Nat.card c * Nat.card u := mod_cast natCard_add_le _ ≤ (K ^ 5 * Nat.card A ^ (1 / 2 : ℝ) * (Nat.card H ^ (-1 / 2 : ℝ))) * (Nat.card H / Nat.card H') := by gcongr apply le_of_eq rw [eq_div_iff H'_pos.ne'] norm_cast _ < (K ^ 5 * Nat.card A ^ (1 / 2 : ℝ) * (Nat.card H ^ (-1 / 2 : ℝ))) * (Nat.card H / (Nat.card A / 2)) := by gcongr _ = 2 * K ^ 5 * Nat.card A ^ (-1 / 2 : ℝ) * Nat.card H ^ (1 / 2 : ℝ) := by field_simp simp_rw [← rpow_natCast] rpow_ring norm_num _ ≤ 2 * K ^ 5 * Nat.card A ^ (-1 / 2 : ℝ) * (K ^ 8 * Nat.card A) ^ (1 / 2 : ℝ) := by gcongr _ = 2 * K ^ 9 := by simp_rw [← rpow_natCast] rpow_ring norm_num /-- Corollary of `better_PFR_conjecture` in which the ambient group is not required to be finite (but) then $H$ and $c$ are finite. -/
pfr/blueprint/src/chapter/further_improvement.tex:371
pfr/PFR/RhoFunctional.lean:2074
PFR
better_PFR_conjecture_aux
\begin{corollary}\label{pfr-9-aux'}\lean{better_PFR_conjecture_aux}\leanok If $|A+A| \leq K|A|$, then there exist a subgroup $H$ and a subset $c$ of $G$ with $A \subseteq c + H$, such that $|c| \leq K^{5} |A|^{1/2}/|H|^{1/2}$ and $|H|/|A|\in[K^{-8},K^8]$. \end{corollary} \begin{proof}\leanok \uses{pfr-9-aux, ruz-cov} Apply \Cref{pfr-9-aux} and \Cref{ruz-cov} to get the result, as in the proof of \Cref{pfr_aux}. \end{proof}
lemma better_PFR_conjecture_aux {A : Set G} (h₀A : A.Nonempty) {K : ℝ} (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (c : Set G), Nat.card c ≤ K ^ 5 * Nat.card A ^ (1 / 2 : ℝ) * (Nat.card H : ℝ) ^ (-1 / 2 : ℝ) ∧ Nat.card H ≤ K ^ 8 * Nat.card A ∧ Nat.card A ≤ K ^ 8 * Nat.card H ∧ A ⊆ c + H := by obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA rcases better_PFR_conjecture_aux0 h₀A hA with ⟨H, x₀, J, IAH, IHA⟩ have H_pos : (0 : ℝ) < Nat.card H := by have : 0 < Nat.card H := Nat.card_pos positivity have Hne : Set.Nonempty (A ∩ (H + {x₀})) := by by_contra h' have : 0 < Nat.card H := Nat.card_pos have : (0 : ℝ) < Nat.card (A ∩ (H + {x₀}) : Set G) := lt_of_lt_of_le (by positivity) J simp only [Nat.card_eq_fintype_card, Nat.card_of_isEmpty, CharP.cast_eq_zero, lt_self_iff_false, not_nonempty_iff_eq_empty.1 h', Fintype.card_ofIsEmpty] at this /- use Rusza covering lemma to cover `A` by few translates of `A ∩ (H + {x₀}) - A ∩ (H + {x₀})` (which is contained in `H`). The number of translates is at most `#(A + (A ∩ (H + {x₀}))) / #(A ∩ (H + {x₀}))`, where the numerator is controlled as this is a subset of `A + A`, and the denominator is bounded below by the previous inequality`. -/ have Z3 : (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) ≤ (K ^ 5 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by calc (Nat.card (A + A ∩ (↑H + {x₀})) : ℝ) _ ≤ Nat.card (A + A) := by gcongr; exact Nat.card_mono (toFinite _) <| add_subset_add_left inter_subset_left _ ≤ K * Nat.card A := hA _ = (K ^ 5 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * (K ^ (-4 : ℤ) * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (1/2 : ℝ)) := by simp_rw [← rpow_natCast, ← rpow_intCast]; rpow_ring; norm_num _ ≤ (K ^ 5 * Nat.card A ^ (1/2 : ℝ) * Nat.card H ^ (-1/2 : ℝ)) * Nat.card ↑(A ∩ (↑H + {x₀})) := by gcongr obtain ⟨u, huA, hucard, hAu, -⟩ := Set.ruzsa_covering_add (toFinite A) (toFinite (A ∩ ((H + {x₀} : Set G)))) Hne (by convert Z3) have A_subset_uH : A ⊆ u + H := by refine hAu.trans $ add_subset_add_left $ (sub_subset_sub (inter_subset_right ..) (inter_subset_right ..)).trans ?_ rw [add_sub_add_comm, singleton_sub_singleton, _root_.sub_self] simp exact ⟨H, u, hucard, IHA, IAH, A_subset_uH⟩ /-- If $A \subset {\bf F}_2^n$ is finite non-empty with $|A+A| \leq K|A|$, then there exists a subgroup $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$ such that $A$ can be covered by at most $2K^9$ translates of $H$. -/
pfr/blueprint/src/chapter/further_improvement.tex:358
pfr/PFR/RhoFunctional.lean:2028
PFR
better_PFR_conjecture_aux0
\begin{corollary}\label{pfr-9-aux}\lean{better_PFR_conjecture_aux0}\leanok If $|A+A| \leq K|A|$, then there exists a subgroup $H$ and $t\in G$ such that $|A \cap (H+t)| \geq K^{-4} \sqrt{|A||H|}$, and $|H|/|A|\in[K^{-8},K^8]$. \end{corollary} \begin{proof}\leanok \uses{pfr-rho,rho-init,rho-subgroup} Apply \Cref{pfr-rho} on $U_A,U_A$ to get a subspace such that $2\rho(U_H)\le 2\rho(U_A)+8d[U_A;U_A]$. Recall that $d[U_A;U_A]\le \log K$ as proved in \Cref{pfr_aux}, and $\rho(U_A)=0$ by \Cref{rho-init}. Therefore $\rho(U_H)\le 4\log(K)$. The claim then follows from \Cref{rho-subgroup}. \end{proof}
lemma better_PFR_conjecture_aux0 {A : Set G} (h₀A : A.Nonempty) {K : ℝ} (hA : Nat.card (A + A) ≤ K * Nat.card A) : ∃ (H : Submodule (ZMod 2) G) (t : G), K ^ (-4 : ℤ) * Nat.card A ^ (1 / 2 : ℝ) * Nat.card H ^ (1 / 2 : ℝ) ≤ Nat.card ↑(A ∩ (H + {t})) ∧ Nat.card A ≤ K ^ 8 * Nat.card H ∧ Nat.card H ≤ K ^ 8 * Nat.card A := by have A_fin : Finite A := by infer_instance classical let mG : MeasurableSpace G := ⊤ have : MeasurableSingletonClass G := ⟨λ _ ↦ trivial⟩ obtain ⟨A_pos, -, K_pos⟩ : (0 : ℝ) < Nat.card A ∧ (0 : ℝ) < Nat.card (A + A) ∧ 0 < K := PFR_conjecture_pos_aux' h₀A hA let A' := A.toFinite.toFinset have h₀A' : Finset.Nonempty A' := by simp [A', Finset.Nonempty] exact h₀A have hAA' : A' = A := Finite.coe_toFinset (toFinite A) rcases exists_isUniform_measureSpace A' h₀A' with ⟨Ω₀, mΩ₀, UA, hP₀, UAmeas, UAunif, -⟩ rw [hAA'] at UAunif have hadd_sub : A + A = A - A := by ext; simp [Set.mem_add, Set.mem_sub, ZModModule.sub_eq_add] rw [hadd_sub] at hA have : d[UA # UA] ≤ log K := rdist_le_of_isUniform_of_card_add_le h₀A hA UAunif UAmeas rw [← hadd_sub] at hA -- entropic PFR gives a subgroup `H` which is close to `A` for the rho functional rcases rho_PFR_conjecture UA UA UAmeas UAmeas A' h₀A' with ⟨H, Ω₁, mΩ₁, UH, hP₁, UHmeas, UHunif, hUH⟩ have ineq : ρ[UH # A'] ≤ 4 * log K := by rw [← hAA'] at UAunif have : ρ[UA # A'] = 0 := rho_of_uniform UAunif UAmeas h₀A' linarith set r := 4 * log K with hr have J : K ^ (-4 : ℤ) = exp (-r) := by rw [hr, ← neg_mul, mul_comm, exp_mul, exp_log K_pos] norm_cast have J' : K ^ 8 = exp (2 * r) := by have : 2 * r = 8 * log K := by ring rw [this, mul_comm, exp_mul, exp_log K_pos] norm_cast rw [J, J'] refine ⟨H, ?_⟩ have Z := rho_of_submodule UHunif h₀A' UHmeas r ineq have : Nat.card A = Nat.card A' := by simp [← hAA'] have I t : t +ᵥ (H : Set G) = (H : Set G) + {t} := by ext z; simp [mem_vadd_set_iff_neg_vadd_mem, add_comm] simp_rw [← I] convert Z exact hAA'.symm /-- Auxiliary statement towards the polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of an elementary abelian 2-group of doubling constant at most $K$, then there exists a subgroup $H$ such that $A$ can be covered by at most $K^5 |A|^{1/2} / |H|^{1/2}$ cosets of $H$, and $H$ has the same cardinality as $A$ up to a multiplicative factor $K^8$. -/
pfr/blueprint/src/chapter/further_improvement.tex:347
pfr/PFR/RhoFunctional.lean:1977
PFR
condKLDiv_eq
\begin{lemma}[Kullback--Leibler and conditioning]\label{kl-cond}\lean{condKLDiv_eq}\leanok If $X, Y$ are independent $G$-valued random variables, and $Z$ is another random variable defined on the same sample space as $X$, then $$D_{KL}((X|Z)\Vert Y) = D_{KL}(X\Vert Y) + \bbH[X] - \bbH[X|Z].$$ \end{lemma} \begin{proof}\leanok \uses{ckl-div} Compare the terms correspond to each $x\in G$ on both sides. \end{proof}
lemma condKLDiv_eq {S : Type*} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] [Fintype G] [IsZeroOrProbabilityMeasure μ] [IsFiniteMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω → S} (hX : Measurable X) (hZ : Measurable Z) (habs : ∀ x, μ'.map Y {x} = 0 → μ.map X {x} = 0) : KL[ X | Z ; μ # Y ; μ'] = KL[X ; μ # Y ; μ'] + H[X ; μ] - H[ X | Z ; μ] := by rcases eq_zero_or_isProbabilityMeasure μ with rfl | hμ · simp [condKLDiv, tsum_fintype, KLDiv_eq_sum, Finset.mul_sum, entropy_eq_sum] simp only [condKLDiv, tsum_fintype, KLDiv_eq_sum, Finset.mul_sum, entropy_eq_sum] rw [Finset.sum_comm, condEntropy_eq_sum_sum_fintype hZ, Finset.sum_comm (α := G), ← Finset.sum_add_distrib, ← Finset.sum_sub_distrib] congr with g simp only [negMulLog, neg_mul, Finset.sum_neg_distrib, mul_neg, sub_neg_eq_add, ← sub_eq_add_neg, ← mul_sub] simp_rw [← Measure.map_apply hZ (measurableSet_singleton _)] have : Measure.map X μ {g} = ∑ x, (Measure.map Z μ {x}) * (Measure.map X μ[|Z ⁻¹' {x}] {g}) := by simp_rw [Measure.map_apply hZ (measurableSet_singleton _)] have : Measure.map X μ {g} = Measure.map X (∑ x, μ (Z ⁻¹' {x}) • μ[|Z ⁻¹' {x}]) {g} := by rw [sum_meas_smul_cond_fiber hZ μ] rw [← MeasureTheory.Measure.sum_fintype, Measure.map_sum hX.aemeasurable] at this simpa using this nth_rewrite 1 [this] rw [ENNReal.toReal_sum (by simp [ENNReal.mul_eq_top]), Finset.sum_mul, ← Finset.sum_add_distrib] congr with s rw [ENNReal.toReal_mul, mul_assoc, ← mul_add, ← mul_add] rcases eq_or_ne (Measure.map Z μ {s}) 0 with hs | hs · simp [hs] rcases eq_or_ne (Measure.map X μ[|Z ⁻¹' {s}] {g}) 0 with hg | hg · simp [hg] have h'g : (Measure.map X μ[|Z ⁻¹' {s}] {g}).toReal ≠ 0 := by simp [ENNReal.toReal_eq_zero_iff, hg] congr have hXg : μ.map X {g} ≠ 0 := by intro h rw [this, Finset.sum_eq_zero_iff] at h specialize h s (Finset.mem_univ _) rw [mul_eq_zero] at h tauto have hXg' : (μ.map X {g}).toReal ≠ 0 := by simp [ENNReal.toReal_eq_zero_iff, hXg] have hYg : μ'.map Y {g} ≠ 0 := fun h ↦ hXg (habs _ h) have hYg' : (μ'.map Y {g}).toReal ≠ 0 := by simp [ENNReal.toReal_eq_zero_iff, hYg] rw [Real.log_div h'g hYg', Real.log_div hXg' hYg'] abel
pfr/blueprint/src/chapter/further_improvement.tex:65
pfr/PFR/Kullback.lean:332
PFR
condKLDiv_nonneg
\begin{lemma}[Conditional Gibbs inequality]\label{Conditional-Gibbs}\lean{condKLDiv_nonneg}\leanok $D_{KL}((X|W)\Vert Y) \geq 0$. \end{lemma} \begin{proof}\leanok \uses{Gibbs, ckl-div} Clear from Definition \ref{ckl-div} and Lemma \ref{Gibbs}. \end{proof}
/-- `KL(X|Z ‖ Y) ≥ 0`.-/ lemma condKLDiv_nonneg {S : Type*} [MeasurableSingletonClass G] [Fintype G] {X : Ω → G} {Y : Ω' → G} {Z : Ω → S} [IsZeroOrProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (habs : ∀ x, μ'.map Y {x} = 0 → μ.map X {x} = 0) : 0 ≤ KL[X | Z; μ # Y ; μ'] := by rw [condKLDiv] refine tsum_nonneg (fun i ↦ mul_nonneg (by simp) ?_) apply KLDiv_nonneg hX hY intro s hs specialize habs s hs rw [Measure.map_apply hX (measurableSet_singleton s)] at habs ⊢ exact cond_absolutelyContinuous habs
pfr/blueprint/src/chapter/further_improvement.tex:73
pfr/PFR/Kullback.lean:376
PFR
condMultiDist
\begin{definition}[Conditional multidistance]\label{cond-multidist-def}\uses{multidist-def}\lean{condMultiDist} \leanok If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are tuples of random variables, with the $X_i$ being $G$-valued (but the $Y_i$ need not be), then we define \begin{equation}\label{multi-def-cond-alt} D[ X_{[m]} | Y_{[m]} ] = \sum_{(y_i)_{1 \leq i \leq m}} \biggl(\prod_{1 \leq i \leq m} p_{Y_i}(y_i)\biggr) D[ (X_i \,|\, Y_i \mathop{=}y_i)_{1 \leq i \leq m}] \end{equation} where each $y_i$ ranges over the support of $p_{Y_i}$ for $1 \leq i \leq m$. \end{definition}
def condMultiDist {m : ℕ} {Ω : Fin m → Type*} (hΩ : ∀ i, MeasureSpace (Ω i)) {S : Type*} [Fintype S] (X : ∀ i, (Ω i) → G) (Y : ∀ i, (Ω i) → S) : ℝ := ∑ ω : Fin m → S, (∏ i, ((hΩ i).volume ((Y i) ⁻¹' {ω i})).toReal) * D[X; fun i ↦ ⟨cond (hΩ i).volume (Y i ⁻¹' {ω i})⟩] @[inherit_doc multiDist] notation3:max "D[" X " | " Y " ; " hΩ "]" => condMultiDist hΩ X Y
pfr/blueprint/src/chapter/torsion.tex:314
pfr/PFR/MoreRuzsaDist.lean:862
PFR
condMultiDist_eq
\begin{lemma}[Alternate form of conditional multidistance]\label{cond-multidist-alt}\lean{condMultiDist_eq}\leanok If the $(X_i,Y_i)$ are independent, \begin{equation}\label{multi-def-cond} D[ X_{[m]} | Y_{[m]}] := \bbH[\sum_{i=1}^m X_i \big| (Y_j)_{1 \leq j \leq m} ] - \frac{1}{m} \sum_{i=1}^m \bbH[ X_i | Y_i]. \end{equation} \end{lemma} \begin{proof}\uses{conditional-entropy-def, multidist-def, cond-multidist-def}\leanok This is routine from \Cref{conditional-entropy-def} and Definitions \ref{multidist-def} and \ref{cond-multidist-def}. \end{proof}
lemma condMultiDist_eq {m : ℕ} {Ω : Type*} [hΩ : MeasureSpace Ω] {S : Type*} [Fintype S] [hS : MeasurableSpace S] [MeasurableSingletonClass S] {X : Fin m → Ω → G} (hX : ∀ i, Measurable (X i)) {Y : Fin m → Ω → S} (hY : ∀ i, Measurable (Y i)) (h_indep: iIndepFun (fun i ↦ ⟨X i, Y i⟩)) : D[X | Y ; fun _ ↦ hΩ] = H[fun ω ↦ ∑ i, X i ω | fun ω ↦ (fun i ↦ Y i ω)] - (∑ i, H[X i | Y i])/m := by have : IsProbabilityMeasure (ℙ : Measure Ω) := h_indep.isProbabilityMeasure let E := fun i (yi:S) ↦ Y i ⁻¹' {yi} let E' := fun (y : Fin m → S) ↦ ⋂ i, E i (y i) let f := fun (y : Fin m → S) ↦ ∏ i, (ℙ (E i (y i))).toReal calc _ = ∑ y, (f y) * D[X; fun i ↦ ⟨cond ℙ (E i (y i))⟩] := by rfl _ = ∑ y, (f y) * (H[∑ i, X i; cond ℙ (E' y)] - (∑ i, H[X i; cond ℙ (E' y)]) / m) := by congr with y by_cases hf : f y = 0 . simp only [hf, zero_mul] congr 1 rw [multiDist_copy (fun i ↦ ⟨cond ℙ (E i (y i))⟩) (fun _ ↦ ⟨cond ℙ (E' y)⟩) X X (fun i ↦ ident_of_cond_of_indep hX hY h_indep y i (prob_nonzero_of_prod_prob_nonzero hf))] exact multiDist_indep _ _ <| h_indep.cond hY (prob_nonzero_of_prod_prob_nonzero hf) fun _ ↦ .singleton _ _ = ∑ y, (f y) * H[∑ i, X i; cond ℙ (E' y)] - (∑ i, ∑ y, (f y) * H[X i; cond ℙ (E' y)])/m := by rw [Finset.sum_comm, Finset.sum_div, ← Finset.sum_sub_distrib] congr with y rw [← Finset.mul_sum, mul_div_assoc, ← mul_sub] _ = _ := by congr · rw [condEntropy_eq_sum_fintype] · congr with y congr · calc _ = (∏ i, (ℙ (E i (y i)))).toReal := Eq.symm ENNReal.toReal_prod _ = (ℙ (⋂ i, (E i (y i)))).toReal := by congr exact (iIndepFun.meas_iInter h_indep fun _ ↦ mes_of_comap (.singleton _)).symm _ = _ := by congr ext x simp only [Set.mem_iInter, Set.mem_preimage, Set.mem_singleton_iff, E, Iff.symm funext_iff] · exact Finset.sum_fn Finset.univ fun c ↦ X c ext x simp only [Set.mem_iInter, Set.mem_preimage, Set.mem_singleton_iff, E'] exact Iff.symm funext_iff exact measurable_pi_lambda (fun ω i ↦ Y i ω) hY ext i calc _ = ∑ y, f y * H[X i; cond ℙ (E i (y i))] := by congr with y by_cases hf : f y = 0 . simp only [hf, zero_mul] congr 1 apply IdentDistrib.entropy_eq exact (ident_of_cond_of_indep hX hY h_indep y i (prob_nonzero_of_prod_prob_nonzero hf)).symm _ = ∑ y ∈ Fintype.piFinset (fun _ ↦ Finset.univ), ∏ i', (ℙ (E i' (y i'))).toReal * (if i'=i then H[X i; cond ℙ (E i (y i'))] else 1) := by simp only [Fintype.piFinset_univ] congr with y rw [Finset.prod_mul_distrib] congr rw [Fintype.prod_ite_eq'] _ = _ := by convert (Finset.prod_univ_sum (fun _ ↦ Finset.univ) (fun (i' : Fin m) (s : S) ↦ (ℙ (E i' s)).toReal * if i' = i then H[X i ; ℙ[|E i s]] else 1)).symm calc _ = ∏ i', if i' = i then H[X i' | Y i'] else 1 := by simp only [Finset.prod_ite_eq', Finset.mem_univ, ↓reduceIte] _ = _ := by congr with i' by_cases h : i' = i · simp only [h, ↓reduceIte, E] rw [condEntropy_eq_sum_fintype] exact hY i · simp only [h, ↓reduceIte, mul_one, E] exact (sum_measure_preimage_singleton' _ (hY i')).symm /-- If `(X_i, Y_i)`, `1 ≤ i ≤ m` are independent, then `D[X_[m] | Y_[m]] = ∑_{(y_i)_{1 ≤ i ≤ m}} P(Y_i=y_i ∀ i) D[(X_i | Y_i=y_i ∀ i)_{i=1}^m]` -/
pfr/blueprint/src/chapter/torsion.tex:322
pfr/PFR/MoreRuzsaDist.lean:999
PFR
condMultiDist_nonneg
\begin{lemma}[Conditional multidistance nonnegative]\label{cond-multidist-nonneg}\uses{cond-multidist-def}\lean{condMultiDist_nonneg}\leanok If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are tuples of random variables, then $D[ X_{[m]} | Y_{[m]} ] \geq 0$. \end{lemma} \begin{proof}\uses{multidist-nonneg}\leanok Clear from \Cref{multidist-nonneg} and \Cref{cond-multidist-def}, except that some care may need to be taken to deal with the $y_i$ where $p_{Y_i}$ vanish. \end{proof}
/--Conditional multidistance is nonnegative. -/ theorem condMultiDist_nonneg [Fintype G] {m : ℕ} {Ω : Fin m → Type*} (hΩ : ∀ i, MeasureSpace (Ω i)) (hprob : ∀ i, IsProbabilityMeasure (ℙ : Measure (Ω i))) {S : Type*} [Fintype S] (X : ∀ i, (Ω i) → G) (Y : ∀ i, (Ω i) → S) (hX : ∀ i, Measurable (X i)) : 0 ≤ D[X | Y; hΩ] := by dsimp [condMultiDist] apply Finset.sum_nonneg intro y _ by_cases h: ∀ i : Fin m, ℙ (Y i ⁻¹' {y i}) ≠ 0 . apply mul_nonneg . apply Finset.prod_nonneg intro i _ exact ENNReal.toReal_nonneg exact multiDist_nonneg (fun i => ⟨ℙ[|Y i ⁻¹' {y i}]⟩) (fun i => ProbabilityTheory.cond_isProbabilityMeasure (h i)) X hX simp only [ne_eq, not_forall, Decidable.not_not] at h obtain ⟨i, hi⟩ := h apply le_of_eq symm convert zero_mul ?_ apply Finset.prod_eq_zero (Finset.mem_univ i) simp only [hi, ENNReal.zero_toReal] /-- A technical lemma: can push a constant into a product at a specific term -/ private lemma Finset.prod_mul {α β:Type*} [Fintype α] [DecidableEq α] [CommMonoid β] (f:α → β) (c: β) (i₀:α) : (∏ i, f i) * c = ∏ i, (if i=i₀ then f i * c else f i) := calc _ = (∏ i, f i) * (∏ i, if i = i₀ then c else 1) := by congr simp only [prod_ite_eq', mem_univ, ↓reduceIte] _ = _ := by rw [← Finset.prod_mul_distrib] apply Finset.prod_congr rfl intro i _ by_cases h : i = i₀ . simp [h] simp [h] /-- A technical lemma: a preimage of a singleton of Y i is measurable with respect to the comap of <X i, Y i> -/ private lemma mes_of_comap {Ω S G : Type*} [hG : MeasurableSpace G] [hS : MeasurableSpace S] {X : Ω → G} {Y : Ω → S} {s : Set S} (hs : MeasurableSet s) : MeasurableSet[(hG.prod hS).comap fun ω ↦ (X ω, Y ω)] (Y ⁻¹' s) := ⟨.univ ×ˢ s, MeasurableSet.univ.prod hs, by ext; simp [eq_comm]⟩ /-- A technical lemma: two different ways of conditioning independent variables gives identical distributions -/ private lemma ident_of_cond_of_indep {G : Type*} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [Countable G] {m : ℕ} {Ω : Type*} [hΩ : MeasureSpace Ω] {S : Type*} [Fintype S] [hS : MeasurableSpace S] [MeasurableSingletonClass S] {X : Fin m → Ω → G} (hX : (i:Fin m) → Measurable (X i)) {Y : Fin m → Ω → S} (hY : (i:Fin m) → Measurable (Y i)) (h_indep : ProbabilityTheory.iIndepFun (fun i ↦ ⟨X i, Y i⟩)) (y : Fin m → S) (i : Fin m) (hy: ∀ i, ℙ (Y i ⁻¹' {y i}) ≠ 0) : IdentDistrib (X i) (X i) (cond ℙ (Y i ⁻¹' {y i})) (cond ℙ (⋂ i, Y i ⁻¹' {y i})) where aemeasurable_fst := Measurable.aemeasurable (hX i) aemeasurable_snd := Measurable.aemeasurable (hX i) map_eq := by ext s hs rw [Measure.map_apply (hX i) hs, Measure.map_apply (hX i) hs] let s' : Finset (Fin m) := {i} let f' := fun _ : Fin m ↦ X i ⁻¹' s have hf' : ∀ i' ∈ s', MeasurableSet[hG.comap (X i')] (f' i') := by intro i' hi' simp only [Finset.mem_singleton.mp hi'] exact MeasurableSet.preimage hs (comap_measurable (X i)) have h := cond_iInter hY h_indep hf' (fun _ _ ↦ hy _) fun _ ↦ .singleton _ simp only [Finset.mem_singleton, Set.iInter_iInter_eq_left, Finset.prod_singleton, s'] at h exact h.symm /-- A technical lemma: if a product of probabilities is nonzero, then each probability is individually non-zero -/ private lemma prob_nonzero_of_prod_prob_nonzero {m : ℕ} {Ω : Type*} [hΩ : MeasureSpace Ω] {S : Type*} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] {Y : Fin m → Ω → S} {y : Fin m → S} (hf : ∏ i, (ℙ (Y i ⁻¹' {y i})).toReal ≠ 0) : ∀ i, ℙ (Y i ⁻¹' {y i}) ≠ 0 := by simp [Finset.prod_ne_zero_iff, ENNReal.toReal_eq_zero_iff, forall_and] at hf exact hf.1 /-- If `(X_i, Y_i)`, `1 ≤ i ≤ m` are independent, then `D[X_[m] | Y_[m]] = H[∑ i, X_i | (Y_1, ..., Y_m)] - 1/m * ∑ i, H[X_i | Y_i]` -/
pfr/blueprint/src/chapter/torsion.tex:333
pfr/PFR/MoreRuzsaDist.lean:921
PFR
condRhoMinus_le
\begin{lemma}[Rho and conditioning]\label{rho-cond}\lean{condRhoMinus_le, condRhoPlus_le, condRho_le}\leanok If $X,Z$ are defined on the same space, one has $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$ $$ \rho^+(X|Z) \leq \rho^+(X)$$ and $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] ).$$ \end{lemma} \begin{proof}\leanok \uses{kl-cond} The first inequality follows from \Cref{kl-cond}. The second and third inequalities are direct corollaries of the first. \end{proof}
/-- $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$ -/ lemma condRhoMinus_le [IsZeroOrProbabilityMeasure μ] {S : Type*} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : Ω → S} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) : ρ⁻[X | Z ; μ # A] ≤ ρ⁻[X ; μ # A] + H[X ; μ] - H[X | Z ; μ] := by have : IsProbabilityMeasure (uniformOn (A : Set G)) := by apply uniformOn_isProbabilityMeasure A.finite_toSet hA suffices ρ⁻[X | Z ; μ # A] - H[X ; μ] + H[X | Z ; μ] ≤ ρ⁻[X ; μ # A] by linarith apply le_csInf (nonempty_rhoMinusSet hA) rintro - ⟨μ', hμ', habs, rfl⟩ rw [condRhoMinus, tsum_fintype] let _ : MeasureSpace (G × G) := ⟨μ'.prod (uniformOn (A : Set G))⟩ have hP : (ℙ : Measure (G × G)) = μ'.prod (uniformOn (A : Set G)) := rfl have : IsProbabilityMeasure (ℙ : Measure (G × G)) := by rw [hP]; infer_instance have : ∑ b : S, (μ (Z ⁻¹' {b})).toReal * ρ⁻[X ; μ[|Z ← b] # A] ≤ KL[ X | Z ; μ # (Prod.fst + Prod.snd : G × G → G) ; ℙ] := by rw [condKLDiv, tsum_fintype] apply Finset.sum_le_sum (fun i hi ↦ ?_) gcongr apply rhoMinus_le_def hX (fun y hy ↦ ?_) have T := habs y hy rw [Measure.map_apply hX (measurableSet_singleton _)] at T ⊢ exact cond_absolutelyContinuous T rw [condKLDiv_eq hX hZ (by exact habs)] at this rw [← hP] linarith
pfr/blueprint/src/chapter/further_improvement.tex:176
pfr/PFR/RhoFunctional.lean:937
PFR
condRhoPlus_le
\begin{lemma}[Rho and conditioning]\label{rho-cond}\lean{condRhoMinus_le, condRhoPlus_le, condRho_le}\leanok If $X,Z$ are defined on the same space, one has $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$ $$ \rho^+(X|Z) \leq \rho^+(X)$$ and $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] ).$$ \end{lemma} \begin{proof}\leanok \uses{kl-cond} The first inequality follows from \Cref{kl-cond}. The second and third inequalities are direct corollaries of the first. \end{proof}
/-- $$ \rho^+(X|Z) \leq \rho^+(X)$$ -/ lemma condRhoPlus_le [IsProbabilityMeasure μ] {S : Type*} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : Ω → S} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) : ρ⁺[X | Z ; μ # A] ≤ ρ⁺[X ; μ # A] := by have : IsProbabilityMeasure (Measure.map Z μ) := isProbabilityMeasure_map hZ.aemeasurable have I₁ := condRhoMinus_le hX hZ hA (μ := μ) simp_rw [condRhoPlus, rhoPlus, tsum_fintype] simp only [Nat.card_eq_fintype_card, Fintype.card_coe, mul_sub, mul_add, Finset.sum_sub_distrib, Finset.sum_add_distrib, tsub_le_iff_right] rw [← Finset.sum_mul, ← tsum_fintype, ← condRhoMinus, ← condEntropy_eq_sum_fintype _ _ _ hZ] simp_rw [← Measure.map_apply hZ (measurableSet_singleton _)] simp only [Finset.sum_toReal_measure_singleton, Finset.coe_univ, measure_univ, ENNReal.one_toReal, one_mul, sub_add_cancel, ge_iff_le] linarith omit [Fintype G] [DiscreteMeasurableSpace G] in
pfr/blueprint/src/chapter/further_improvement.tex:176
pfr/PFR/RhoFunctional.lean:964
PFR
condRho_le
\begin{lemma}[Rho and conditioning]\label{rho-cond}\lean{condRhoMinus_le, condRhoPlus_le, condRho_le}\leanok If $X,Z$ are defined on the same space, one has $$ \rho^-(X|Z) \leq \rho^-(X) + \bbH[X] - \bbH[X|Z]$$ $$ \rho^+(X|Z) \leq \rho^+(X)$$ and $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] ).$$ \end{lemma} \begin{proof}\leanok \uses{kl-cond} The first inequality follows from \Cref{kl-cond}. The second and third inequalities are direct corollaries of the first. \end{proof}
/-- $$ \rho(X|Z) \leq \rho(X) + \frac{1}{2}( \bbH[X] - \bbH[X|Z] )$$ -/ lemma condRho_le [IsProbabilityMeasure μ] {S : Type*} [MeasurableSpace S] [Fintype S] [MeasurableSingletonClass S] {Z : Ω → S} (hX : Measurable X) (hZ : Measurable Z) (hA : A.Nonempty) : ρ[X | Z ; μ # A] ≤ ρ[X ; μ # A] + (H[X ; μ] - H[X | Z ; μ]) / 2 := by rw [condRho_eq, rho] linarith [condRhoMinus_le hX hZ hA (μ := μ), condRhoPlus_le hX hZ hA (μ := μ)] omit [Fintype G] [DiscreteMeasurableSpace G] in
pfr/blueprint/src/chapter/further_improvement.tex:176
pfr/PFR/RhoFunctional.lean:987
PFR
condRho_of_injective
\begin{lemma}[Conditional rho and relabeling]\label{rho-cond-relabeled}\lean{condRho_of_injective}\leanok If $f$ is injective, then $\rho(X|f(Y))=\rho(X|Y)$. \end{lemma} \begin{proof}\leanok \uses{rho-cond-def} Clear from the definition. \end{proof}
/-- If $f$ is injective, then $\rho(X|f(Y))=\rho(X|Y)$. -/ lemma condRho_of_injective {S T : Type*} (Y : Ω → S) {A : Finset G} {f : S → T} (hf : Function.Injective f) : ρ[X | f ∘ Y ; μ # A] = ρ[X | Y ; μ # A] := by simp only [condRho] rw [← hf.tsum_eq] · have I c : f ∘ Y ⁻¹' {f c} = Y ⁻¹' {c} := by ext z; simp [hf.eq_iff] simp [I] · intro y hy have : f ∘ Y ⁻¹' {y} ≠ ∅ := by intro h simp [h] at hy rcases Set.nonempty_iff_ne_empty.2 this with ⟨a, ha⟩ simp only [mem_preimage, Function.comp_apply, mem_singleton_iff] at ha rw [← ha] exact mem_range_self (Y a)
pfr/blueprint/src/chapter/further_improvement.tex:168
pfr/PFR/RhoFunctional.lean:895
PFR
condRho_of_sum_le
\begin{lemma}[Rho and conditioning, symmetrized]\label{rho-cond-sym}\lean{condRho_of_sum_le}\leanok If $X,Y$ are independent, then $$ \rho(X | X+Y) \leq \frac{1}{2}(\rho(X)+\rho(Y) + d[X;Y]).$$ \end{lemma} \begin{proof}\leanok \uses{rho-invariant,rho-cond} First apply \Cref{rho-cond} to get $\rho(X|X+Y)\le \rho(X) + \frac{1}{2}(\bbH[X+Y]-\bbH[Y])$, and $\rho(Y|X+Y)\le \rho(Y)+\frac{1}{2}(\bbH[X+Y]-\bbH[X])$. Then apply \Cref{rho-invariant} to get $\rho(Y|X+Y)=\rho(X|X+Y)$ and take the average of the two inequalities. \end{proof}
lemma condRho_of_sum_le [IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hA : A.Nonempty) (h_indep : IndepFun X Y μ) : ρ[X | X + Y ; μ # A] ≤ (ρ[X ; μ # A] + ρ[Y ; μ # A] + d[ X ; μ # Y ; μ ]) / 2 := by have I : ρ[X | X + Y ; μ # A] ≤ ρ[X ; μ # A] + (H[X ; μ] - H[X | X + Y ; μ]) / 2 := condRho_le hX (by fun_prop) hA have I' : H[X ; μ] - H[X | X + Y ; μ] = H[X + Y ; μ] - H[Y ; μ] := by rw [ProbabilityTheory.chain_rule'' _ hX (by fun_prop), entropy_add_right hX hY, IndepFun.entropy_pair_eq_add hX hY h_indep] abel have J : ρ[Y | Y + X ; μ # A] ≤ ρ[Y ; μ # A] + (H[Y ; μ] - H[Y | Y + X ; μ]) / 2 := condRho_le hY (by fun_prop) hA have J' : H[Y ; μ] - H[Y | Y + X ; μ] = H[Y + X ; μ] - H[X ; μ] := by rw [ProbabilityTheory.chain_rule'' _ hY (by fun_prop), entropy_add_right hY hX, IndepFun.entropy_pair_eq_add hY hX h_indep.symm] abel have : Y + X = X + Y := by abel simp only [this] at J J' have : ρ[X | X + Y ; μ # A] = ρ[Y | X + Y ; μ # A] := by simp only [condRho] congr with s congr 1 have : ρ[X ; μ[|(X + Y) ⁻¹' {s}] # A] = ρ[fun ω ↦ X ω + s ; μ[|(X + Y) ⁻¹' {s}] # A] := by rw [rho_of_translate hX hA] rw [this] apply rho_eq_of_identDistrib apply IdentDistrib.of_ae_eq (by fun_prop) have : MeasurableSet ((X + Y) ⁻¹' {s}) := by have : Measurable (X + Y) := by fun_prop exact this (measurableSet_singleton _) filter_upwards [ae_cond_mem this] with a ha simp only [mem_preimage, Pi.add_apply, mem_singleton_iff] at ha rw [← ha] nth_rewrite 1 [← ZModModule.neg_eq_self (X a)] abel have : X - Y = X + Y := ZModModule.sub_eq_add _ _ rw [h_indep.rdist_eq hX hY, sub_eq_add_neg, this] linarith end
pfr/blueprint/src/chapter/further_improvement.tex:198
pfr/PFR/RhoFunctional.lean:1075
PFR
condRho_of_translate
\begin{lemma}[Conditional rho and translation]\label{rho-cond-invariant}\lean{condRho_of_translate}\leanok For any $s\in G$, $\rho(X+s|Y)=\rho(X|Y)$. \end{lemma} \begin{proof} \uses{rho-cond-def,rho-invariant}\leanok Direct corollary of \Cref{rho-invariant}. \end{proof}
/-- For any $s\in G$, $\rho(X+s|Y)=\rho(X|Y)$. -/ lemma condRho_of_translate {S : Type*} {Y : Ω → S} (hX : Measurable X) (hA : A.Nonempty) (s : G) : ρ[fun ω ↦ X ω + s | Y ; μ # A] = ρ[X | Y ; μ # A] := by simp [condRho, rho_of_translate hX hA] omit [Fintype G] [DiscreteMeasurableSpace G] in variable (X) in
pfr/blueprint/src/chapter/further_improvement.tex:160
pfr/PFR/RhoFunctional.lean:887
PFR
condRho_sum_le
\begin{lemma}\label{rho-increase}\lean{condRho_sum_le}\leanok For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $S:=Y_1+Y_2+Y_3+Y_4$, $T_1:=Y_1+Y_2$, $T_2:=Y_1+Y_3$. Then $$\rho(T_1|T_2,S)+\rho(T_2|T_1,S) - \frac{1}{2}\sum_{i} \rho(Y_i)\le \frac{1}{2}(d[Y_1;Y_2]+d[Y_3;Y_4]+d[Y_1;Y_3]+d[Y_2;Y_4]).$$ \end{lemma} \begin{proof}\leanok\uses{rho-sums-sym, rho-cond, rho-cond-sym, rho-cond-relabeled, cor-fibre} Let $T_1':=Y_3+Y_4$, $T_2':=Y_2+Y_4$. First note that \begin{align*} \rho(T_1|T_2,S) &\le \rho(T_1|S) + \frac{1}{2}\bbI(T_1:T_2\mid S) \\ &\le \frac{1}{2}(\rho(T_1)+\rho(T_1'))+\frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)) \\ &\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_2]+d[Y_3;Y_4]) + \frac{1}{2}(d[T_1;T_1']+\bbI(T_1:T_2\mid S)). \end{align*} by \Cref{rho-cond}, \Cref{rho-cond-sym}, \Cref{rho-sums-sym} respectively. On the other hand, observe that \begin{align*} \rho(T_1|T_2,S) &=\rho(Y_1+Y_2|T_2,T_2') \\ &\le \frac{1}{2}(\rho(Y_1|T_2)+\rho(Y_2|T_2'))+\frac{1}{2}(d[Y_1|T_2;Y_2|T_2']) \\ &\le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_3]+d[Y_2;Y_4]) + \frac{1}{2}(d[Y_1|T_2;Y_2|T_2']). \end{align*} by \Cref{rho-cond-relabeled}, \Cref{rho-sums-sym}, \Cref{rho-cond-sym} respectively. By replacing $(Y_1,Y_2,Y_3,Y_4)$ with $(Y_1,Y_3,Y_2,Y_4)$ in the above inequalities, one has $$\rho(T_2|T_1,S) \le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_3]+d[Y_2;Y_4]) + \frac{1}{2}(d[T_2;T_2']+\bbI(T_1:T_2\mid S))$$ and $$\rho(T_2|T_1,S) \le \frac{1}{4} \sum_{i} \rho(Y_i) +\frac{1}{4}(d[Y_1;Y_2]+d[Y_3;Y_4]) + \frac{1}{2}(d[Y_1|T_1;Y_3|T_1']).$$ Finally, take the sum of all four inequalities, apply \Cref{cor-fibre} on $(Y_1,Y_2,Y_3,Y_4)$ and $(Y_1,Y_3,Y_2,Y_4)$ to rewrite the sum of last terms in the four inequalities, and divide the result by $2$. \end{proof}
lemma condRho_sum_le {Y₁ Y₂ Y₃ Y₄ : Ω → G} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : iIndepFun ![Y₁, Y₂, Y₃, Y₄]) (hA : A.Nonempty) : ρ[Y₁ + Y₂ | ⟨Y₁ + Y₃, Y₁ + Y₂ + Y₃ + Y₄⟩ # A] + ρ[Y₁ + Y₃ | ⟨Y₁ + Y₂, Y₁ + Y₂ + Y₃ + Y₄⟩ # A] - (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 2 ≤ (d[Y₁ # Y₂] + d[Y₃ # Y₄] + d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 2 := by set S := Y₁ + Y₂ + Y₃ + Y₄ set T₁ := Y₁ + Y₂ set T₂ := Y₁ + Y₃ set T₁' := Y₃ + Y₄ set T₂' := Y₂ + Y₄ have J : ρ[T₁ | ⟨T₂, S⟩ # A] ≤ (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 4 + (d[Y₁ # Y₂] + d[Y₃ # Y₄] + d[Y₁ # Y₃] + d[Y₂ # Y₄]) / 8 + (d[Y₁ + Y₂ # Y₃ + Y₄] + I[Y₁ + Y₂ : Y₁ + Y₃ | Y₁ + Y₂ + Y₃ + Y₄] + d[Y₁ | Y₁ + Y₃ # Y₂ | Y₂ + Y₄]) / 4 := new_gen_ineq hY₁ hY₂ hY₃ hY₄ h_indep hA have J' : ρ[T₂ | ⟨T₁, Y₁ + Y₃ + Y₂ + Y₄⟩ # A] ≤ (ρ[Y₁ # A] + ρ[Y₃ # A] + ρ[Y₂ # A] + ρ[Y₄ # A]) / 4 + (d[Y₁ # Y₃] + d[Y₂ # Y₄] + d[Y₁ # Y₂] + d[Y₃ # Y₄]) / 8 + (d[Y₁ + Y₃ # Y₂ + Y₄] + I[Y₁ + Y₃ : Y₁ + Y₂|Y₁ + Y₃ + Y₂ + Y₄] + d[Y₁ | Y₁ + Y₂ # Y₃ | Y₃ + Y₄]) / 4 := new_gen_ineq hY₁ hY₃ hY₂ hY₄ h_indep.reindex_four_acbd hA have : Y₁ + Y₃ + Y₂ + Y₄ = S := by simp only [S]; abel rw [this] at J' have : d[Y₁ + Y₂ # Y₃ + Y₄] + I[Y₁ + Y₂ : Y₁ + Y₃ | Y₁ + Y₂ + Y₃ + Y₄] + d[Y₁ | Y₁ + Y₃ # Y₂ | Y₂ + Y₄] + d[Y₁ + Y₃ # Y₂ + Y₄] + I[Y₁ + Y₃ : Y₁ + Y₂|S] + d[Y₁ | Y₁ + Y₂ # Y₃ | Y₃ + Y₄] = (d[Y₁ # Y₂] + d[Y₃ # Y₄]) + (d[Y₁ # Y₃] + d[Y₂ # Y₄]) := by have K : Y₁ + Y₃ + Y₂ + Y₄ = S := by simp only [S]; abel have K' : I[Y₁ + Y₃ : Y₁ + Y₂|Y₁ + Y₂ + Y₃ + Y₄] = I[Y₁ + Y₃ : Y₃ + Y₄|Y₁ + Y₂ + Y₃ + Y₄] := by have : Measurable (Y₁ + Y₃) := by fun_prop rw [condMutualInfo_comm this (by fun_prop), condMutualInfo_comm this (by fun_prop)] have B := condMutualInfo_of_inj_map (X := Y₃ + Y₄) (Y := Y₁ + Y₃) (Z := Y₁ + Y₂ + Y₃ + Y₄) (by fun_prop) (by fun_prop) (by fun_prop) (fun a b ↦ a - b) (fun a ↦ sub_right_injective) (μ := ℙ) convert B with g simp have K'' : I[Y₁ + Y₂ : Y₁ + Y₃|Y₁ + Y₂ + Y₃ + Y₄] = I[Y₁ + Y₂ : Y₂ + Y₄|Y₁ + Y₂ + Y₃ + Y₄] := by have : Measurable (Y₁ + Y₂) := by fun_prop rw [condMutualInfo_comm this (by fun_prop), condMutualInfo_comm this (by fun_prop)] have B := condMutualInfo_of_inj_map (X := Y₂ + Y₄) (Y := Y₁ + Y₂) (Z := Y₁ + Y₂ + Y₃ + Y₄) (by fun_prop) (by fun_prop) (by fun_prop) (fun a b ↦ a - b) (fun a ↦ sub_right_injective) (μ := ℙ) convert B with g simp abel rw [sum_of_rdist_eq_char_2' Y₁ Y₂ Y₃ Y₄ h_indep hY₁ hY₂ hY₃ hY₄, sum_of_rdist_eq_char_2' Y₁ Y₃ Y₂ Y₄ h_indep.reindex_four_acbd hY₁ hY₃ hY₂ hY₄, K, K', K''] abel linarith /-- For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $T_1:=Y_1+Y_2, T_2:=Y_1+Y_3, T_3:=Y_2+Y_3$ and $S:=Y_1+Y_2+Y_3+Y_4$. Then $$\sum_{1 \leq i < j \leq 3} (\rho(T_i|T_j,S) + \rho(T_j|T_i,S) - \frac{1}{2}\sum_{i} \rho(Y_i))\le \sum_{1\leq i < j \leq 4}d[Y_i;Y_j]$$ -/
pfr/blueprint/src/chapter/further_improvement.tex:276
pfr/PFR/RhoFunctional.lean:1710
PFR
condRho_sum_le'
\begin{lemma}\label{rho-increase-symmetrized}\lean{condRho_sum_le'}\leanok For independent random variables $Y_1,Y_2,Y_3,Y_4$ over $G$, define $T_1:=Y_1+Y_2,T_2:=Y_1+Y_3,T_3:=Y_2+Y_3$ and $S:=Y_1+Y_2+Y_3+Y_4$. Then $$\sum_{1 \leq i<j \leq 3} (\rho(T_i|T_j,S) + \rho(T_j|T_i,S) - \frac{1}{2}\sum_{i} \rho(Y_i))\le \sum_{1\leq i < j \leq 4}d[Y_i;Y_j]$$ \end{lemma} \begin{proof}\uses{rho-increase}\leanok Apply Lemma \ref{rho-increase} on $(Y_i,Y_j,Y_k,Y_4)$ for $(i,j,k)=(1,2,3),(2,3,1),(1,3,2)$, and take the sum. \end{proof}
lemma condRho_sum_le' {Y₁ Y₂ Y₃ Y₄ : Ω → G} (hY₁ : Measurable Y₁) (hY₂ : Measurable Y₂) (hY₃ : Measurable Y₃) (hY₄ : Measurable Y₄) (h_indep : iIndepFun ![Y₁, Y₂, Y₃, Y₄]) (hA : A.Nonempty) : let S := Y₁ + Y₂ + Y₃ + Y₄ let T₁ := Y₁ + Y₂ let T₂ := Y₁ + Y₃ let T₃ := Y₂ + Y₃ ρ[T₁ | ⟨T₂, S⟩ # A] + ρ[T₂ | ⟨T₁, S⟩ # A] + ρ[T₁ | ⟨T₃, S⟩ # A] + ρ[T₃ | ⟨T₁, S⟩ # A] + ρ[T₂ | ⟨T₃, S⟩ # A] + ρ[T₃ | ⟨T₂, S⟩ # A] - 3 * (ρ[Y₁ # A] + ρ[Y₂ # A] + ρ[Y₃ # A] + ρ[Y₄ # A]) / 2 ≤ d[Y₁ # Y₂] + d[Y₁ # Y₃] + d[Y₁ # Y₄] + d[Y₂ # Y₃] + d[Y₂ # Y₄] + d[Y₃ # Y₄] := by have K₁ := condRho_sum_le hY₁ hY₂ hY₃ hY₄ h_indep hA have K₂ := condRho_sum_le hY₂ hY₁ hY₃ hY₄ h_indep.reindex_four_bacd hA have Y₂₁ : Y₂ + Y₁ = Y₁ + Y₂ := by abel have dY₂₁ : d[Y₂ # Y₁] = d[Y₁ # Y₂] := rdist_symm rw [Y₂₁, dY₂₁] at K₂ have K₃ := condRho_sum_le hY₃ hY₁ hY₂ hY₄ h_indep.reindex_four_cabd hA have Y₃₁ : Y₃ + Y₁ = Y₁ + Y₃ := by abel have Y₃₂ : Y₃ + Y₂ = Y₂ + Y₃ := by abel have S₃ : Y₁ + Y₃ + Y₂ + Y₄ = Y₁ + Y₂ + Y₃ + Y₄ := by abel have dY₃₁ : d[Y₃ # Y₁] = d[Y₁ # Y₃] := rdist_symm have dY₃₂ : d[Y₃ # Y₂] = d[Y₂ # Y₃] := rdist_symm rw [Y₃₁, Y₃₂, S₃, dY₃₁, dY₃₂] at K₃ linarith include hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_indep h_min hη in
pfr/blueprint/src/chapter/further_improvement.tex:306
pfr/PFR/RhoFunctional.lean:1764
PFR
condRuzsaDist
\begin{definition}[Conditioned Ruzsa distance]\label{cond-dist-def} \uses{ruz-dist-def} \lean{condRuzsaDist}\leanok If $(X, Z)$ and $(Y, W)$ are random variables (where $X$ and $Y$ are $G$-valued) we define $$ d[X | Z; Y | W] := \sum_{z,w} \bbP[Z=z] \bbP[W=w] d[(X|Z=z); (Y|(W=w))].$$ similarly $$ d[X ; Y | W] := \sum_{w} \bbP[W=w] d[X ; (Y|(W=w))].$$ \end{definition}
def condRuzsaDist (X : Ω → G) (Z : Ω → S) (Y : Ω' → G) (W : Ω' → T) (μ : Measure Ω := by volume_tac) [IsFiniteMeasure μ] (μ' : Measure Ω' := by volume_tac) [IsFiniteMeasure μ'] : ℝ := dk[condDistrib X Z μ ; μ.map Z # condDistrib Y W μ' ; μ'.map W] @[inherit_doc condRuzsaDist] notation3:max "d[" X " | " Z " ; " μ " # " Y " | " W " ; " μ'"]" => condRuzsaDist X Z Y W μ μ' @[inherit_doc condRuzsaDist] notation3:max "d[" X " | " Z " # " Y " | " W "]" => condRuzsaDist X Z Y W volume volume
pfr/blueprint/src/chapter/distance.tex:217
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:455
PFR
condRuzsaDist'_of_copy
\begin{lemma}[Alternate form of distance]\label{cond-dist-alt} \lean{condRuzsaDist_of_copy, condRuzsaDist'_of_copy, condRuzsaDist_of_indep, condRuzsaDist'_of_indep}\leanok The expression $d[X | Z;Y | W]$ is unchanged if $(X,Z)$ or $(Y,W)$ is replaced by a copy. Furthermore, if $(X,Z)$ and $(Y,W)$ are independent, then $$ d[X | Z;Y | W] = \bbH[X-Y|Z,W] - \bbH[X|Z]/2 - \bbH[Y|W]/2$$ and similarly $$ d[X ;Y | W] = \bbH[X-Y|W] - \bbH[X]/2 - \bbH[Y|W]/2.$$ \end{lemma} \begin{proof}\uses{copy-ent, ruz-copy, ruz-indep, cond-dist-def, conditional-entropy-def}\leanok Straightforward thanks to \Cref{copy-ent}, \Cref{ruz-copy}, \Cref{ruz-indep}, \Cref{cond-dist-def}, \Cref{conditional-entropy-def}. \end{proof}
lemma condRuzsaDist'_of_copy (X : Ω → G) {Y : Ω' → G} (hY : Measurable Y) {W : Ω' → T} (hW : Measurable W) (X' : Ω'' → G) {Y' : Ω''' → G} (hY' : Measurable Y') {W' : Ω''' → T} (hW' : Measurable W') [IsFiniteMeasure μ'] [IsFiniteMeasure μ'''] (h1 : IdentDistrib X X' μ μ'') (h2 : IdentDistrib (⟨Y, W⟩) (⟨Y', W'⟩) μ' μ''') [FiniteRange W] [FiniteRange W'] : d[X ; μ # Y | W ; μ'] = d[X' ; μ'' # Y' | W' ; μ'''] := by classical set A := (FiniteRange.toFinset W) ∪ (FiniteRange.toFinset W') have hfull : Measure.prod (dirac ()) (μ'.map W) ((Finset.univ (α := Unit) ×ˢ A : Finset (Unit × T)) : Set (Unit × T))ᶜ = 0 := by apply Measure.prod_of_full_measure_finset · simp simp only [A] rw [Measure.map_apply ‹_›] convert measure_empty (μ := μ) simp [← FiniteRange.range] measurability have hfull' : Measure.prod (dirac ()) (μ'''.map W') ((Finset.univ (α := Unit) ×ˢ A : Finset (Unit × T)) : Set (Unit × T))ᶜ = 0 := by apply Measure.prod_of_full_measure_finset · simp simp only [A] rw [Measure.map_apply ‹_›] convert measure_empty (μ := μ) simp [← FiniteRange.range] measurability rw [condRuzsaDist'_def, condRuzsaDist'_def, Kernel.rdist, Kernel.rdist, integral_eq_setIntegral hfull, integral_eq_setIntegral hfull', integral_finset _ _ IntegrableOn.finset, integral_finset _ _ IntegrableOn.finset] have hWW' : μ'.map W = μ'''.map W' := (h2.comp measurable_snd).map_eq simp_rw [Measure.prod_apply_singleton, ENNReal.toReal_mul, ← hWW', Measure.map_apply hW (.singleton _)] congr with x by_cases hw : μ' (W ⁻¹' {x.2}) = 0 · simp only [smul_eq_mul, mul_eq_mul_left_iff, mul_eq_zero] refine Or.inr (Or.inr ?_) simp [ENNReal.toReal_eq_zero_iff, measure_ne_top, hw] congr 2 · rw [Kernel.const_apply, Kernel.const_apply, h1.map_eq] · have hWW'x : μ' (W ⁻¹' {x.2}) = μ''' (W' ⁻¹' {x.2}) := by have : μ'.map W {x.2} = μ'''.map W' {x.2} := by rw [hWW'] rwa [Measure.map_apply hW (.singleton _), Measure.map_apply hW' (.singleton _)] at this ext s hs rw [condDistrib_apply' hY hW _ _ hw hs, condDistrib_apply' hY' hW' _ _ _ hs] swap; · rwa [hWW'x] at hw congr have : μ'.map (⟨Y, W⟩) (s ×ˢ {x.2}) = μ'''.map (⟨Y', W'⟩) (s ×ˢ {x.2}) := by rw [h2.map_eq] rwa [Measure.map_apply (hY.prodMk hW) (hs.prod (.singleton _)), Measure.map_apply (hY'.prodMk hW') (hs.prod (.singleton _)), Set.mk_preimage_prod, Set.mk_preimage_prod, Set.inter_comm, Set.inter_comm ((fun a ↦ Y' a) ⁻¹' s)] at this
pfr/blueprint/src/chapter/distance.tex:226
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:901
PFR
condRuzsaDist'_of_indep
\begin{lemma}[Alternate form of distance]\label{cond-dist-alt} \lean{condRuzsaDist_of_copy, condRuzsaDist'_of_copy, condRuzsaDist_of_indep, condRuzsaDist'_of_indep}\leanok The expression $d[X | Z;Y | W]$ is unchanged if $(X,Z)$ or $(Y,W)$ is replaced by a copy. Furthermore, if $(X,Z)$ and $(Y,W)$ are independent, then $$ d[X | Z;Y | W] = \bbH[X-Y|Z,W] - \bbH[X|Z]/2 - \bbH[Y|W]/2$$ and similarly $$ d[X ;Y | W] = \bbH[X-Y|W] - \bbH[X]/2 - \bbH[Y|W]/2.$$ \end{lemma} \begin{proof}\uses{copy-ent, ruz-copy, ruz-indep, cond-dist-def, conditional-entropy-def}\leanok Straightforward thanks to \Cref{copy-ent}, \Cref{ruz-copy}, \Cref{ruz-indep}, \Cref{cond-dist-def}, \Cref{conditional-entropy-def}. \end{proof}
/-- Formula for conditional Ruzsa distance for independent sets of variables. -/ lemma condRuzsaDist'_of_indep {X : Ω → G} {Y : Ω → G} {W : Ω → T} (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) (μ : Measure Ω) [IsProbabilityMeasure μ] (h : IndepFun X (⟨Y, W⟩) μ) [FiniteRange W] : d[X ; μ # Y | W ; μ] = H[X - Y | W ; μ] - H[X ; μ]/2 - H[Y | W ; μ]/2 := by have : IsProbabilityMeasure (μ.map W) := isProbabilityMeasure_map hW.aemeasurable rw [condRuzsaDist'_def, Kernel.rdist_eq', condEntropy_eq_kernel_entropy _ hW, condEntropy_eq_kernel_entropy hY hW, entropy_eq_kernel_entropy] rotate_left · exact hX.sub hY congr 2 let Z : Ω → Unit := fun _ ↦ () rw [← condDistrib_unit_right hX μ] have h' : IndepFun (⟨X,Z⟩) (⟨Y, W⟩) μ := by rw [indepFun_iff_measure_inter_preimage_eq_mul] intro s t hs ht have : ⟨X, Z⟩ ⁻¹' s = X ⁻¹' ((fun c ↦ (c, ())) ⁻¹' s) := by ext1 y; simp rw [this] rw [indepFun_iff_measure_inter_preimage_eq_mul] at h exact h _ _ (measurable_prodMk_right hs) ht have h_indep := condDistrib_eq_prod_of_indepFun hX measurable_const hY hW _ h' have h_meas_eq : μ.map (⟨Z, W⟩) = (Measure.dirac ()).prod (μ.map W) := by ext s hs rw [Measure.map_apply (measurable_const.prodMk hW) hs, Measure.prod_apply hs, lintegral_dirac, Measure.map_apply hW (measurable_prodMk_left hs)] congr rw [← h_meas_eq] have : Kernel.map (Kernel.prodMkRight T (condDistrib X Z μ) ×ₖ Kernel.prodMkLeft Unit (condDistrib Y W μ)) (fun x ↦ x.1 - x.2) =ᵐ[μ.map (⟨Z, W⟩)] Kernel.map (condDistrib (⟨X, Y⟩) (⟨Z, W⟩) μ) (fun x ↦ x.1 - x.2) := by filter_upwards [h_indep] with y hy conv_rhs => rw [Kernel.map_apply _ (by fun_prop), hy] rw [← Kernel.mapOfMeasurable_eq_map _ (by fun_prop)] rfl rw [Kernel.entropy_congr this] have : Kernel.map (condDistrib (⟨X, Y⟩) (⟨Z, W⟩) μ) (fun x ↦ x.1 - x.2) =ᵐ[μ.map (⟨Z, W⟩)] condDistrib (X - Y) (⟨Z, W⟩) μ := (condDistrib_comp (hX.prodMk hY) (measurable_const.prodMk hW) _ _).symm rw [Kernel.entropy_congr this] have h_meas : μ.map (⟨Z, W⟩) = (μ.map W).map (Prod.mk ()) := by ext s hs rw [Measure.map_apply measurable_prodMk_left hs, h_meas_eq, Measure.prod_apply hs, lintegral_dirac] have h_ker : condDistrib (X - Y) (⟨Z, W⟩) μ =ᵐ[μ.map (⟨Z, W⟩)] Kernel.prodMkLeft Unit (condDistrib (X - Y) W μ) := by rw [Filter.EventuallyEq, ae_iff_of_countable] intro x hx rw [Measure.map_apply (measurable_const.prodMk hW) (.singleton _)] at hx ext s hs have h_preimage_eq : (fun a ↦ (PUnit.unit, W a)) ⁻¹' {x} = W ⁻¹' {x.2} := by conv_lhs => rw [← Prod.eta x, ← Set.singleton_prod_singleton, Set.mk_preimage_prod] ext1 y simp rw [Kernel.prodMkLeft_apply, condDistrib_apply' _ (measurable_const.prodMk hW) _ _ hx hs, condDistrib_apply' _ hW _ _ _ hs] rotate_left · exact hX.sub hY · convert hx exact h_preimage_eq.symm · exact hX.sub hY congr rw [Kernel.entropy_congr h_ker, h_meas, Kernel.entropy_prodMkLeft_unit] end omit [Countable S] in /-- The conditional Ruzsa distance is unchanged if the sets of random variables are replaced with copies. -/
pfr/blueprint/src/chapter/distance.tex:226
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:757
PFR
condRuzsaDist_diff_le
\begin{lemma}[Comparison of Ruzsa distances, I]\label{first-useful} \lean{condRuzsaDist_diff_le, condRuzsaDist_diff_le', condRuzsaDist_diff_le'', condRuzsaDist_diff_le'''}\leanok Let $X, Y, Z$ be random variables taking values in some abelian group of characteristic $2$, and with $Y, Z$ independent. Then we have \begin{align}\nonumber d[X ; Y + Z] -d[X ; Y] & \leq \tfrac{1}{2} (\bbH[Y+ Z] - \bbH[Y]) \\ & = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} \bbH[Z] - \tfrac{1}{4} \bbH[Y]. \label{lem51-a} \end{align} and \begin{align}\nonumber d[X ;Y|Y+ Z] - d[X ;Y] & \leq \tfrac{1}{2} \bigl(\bbH[Y+ Z] - \bbH[Z]\bigr) \\ & = \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} \bbH[Y] - \tfrac{1}{4} \bbH[Z]. \label{ruzsa-3} \end{align} \end{lemma} \begin{proof} \uses{ruz-copy, independent-exist, kv, ruz-indep, relabeled-entropy, cond-dist-fact}\leanok We first prove~\eqref{lem51-a}. We may assume (taking an independent copy, using \Cref{independent-exist} and \Cref{ruz-copy}, \ref{ruz-indep}) that $X$ is independent of $Y, Z$. Then we have \begin{align*} d[X ;Y+ Z] & - d[X ;Y] \\ & = \bbH[X + Y + Z] - \bbH[X + Y] - \tfrac{1}{2}\bbH[Y + Z] + \tfrac{1}{2} \bbH[Y].\end{align*} Combining this with \Cref{kv} gives the required bound. The second form of the result is immediate \Cref{ruz-indep}. Turning to~\eqref{ruzsa-3}, we have from \Cref{information-def} and \Cref{relabeled-entropy} \begin{align*} \bbI[Y : Y+ Z] & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Y + Z] \\ & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Z] = \bbH[Y + Z] - \bbH[Z],\end{align*} and so~\eqref{ruzsa-3} is a consequence of \Cref{cond-dist-fact}. Once again the second form of the result is immediate from \Cref{ruz-indep}. \end{proof}
lemma condRuzsaDist_diff_le [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y+ Z ; μ'] - d[X ; μ # Y ; μ'] ≤ (H[Y + Z; μ'] - H[Y; μ']) / 2 := (comparison_of_ruzsa_distances μ hX hY hZ h).1 variable (μ) [Module (ZMod 2) G] in
pfr/blueprint/src/chapter/distance.tex:322
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1386
PFR
condRuzsaDist_diff_le'
\begin{lemma}[Comparison of Ruzsa distances, I]\label{first-useful} \lean{condRuzsaDist_diff_le, condRuzsaDist_diff_le', condRuzsaDist_diff_le'', condRuzsaDist_diff_le'''}\leanok Let $X, Y, Z$ be random variables taking values in some abelian group of characteristic $2$, and with $Y, Z$ independent. Then we have \begin{align}\nonumber d[X ; Y + Z] -d[X ; Y] & \leq \tfrac{1}{2} (\bbH[Y+ Z] - \bbH[Y]) \\ & = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} \bbH[Z] - \tfrac{1}{4} \bbH[Y]. \label{lem51-a} \end{align} and \begin{align}\nonumber d[X ;Y|Y+ Z] - d[X ;Y] & \leq \tfrac{1}{2} \bigl(\bbH[Y+ Z] - \bbH[Z]\bigr) \\ & = \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} \bbH[Y] - \tfrac{1}{4} \bbH[Z]. \label{ruzsa-3} \end{align} \end{lemma} \begin{proof} \uses{ruz-copy, independent-exist, kv, ruz-indep, relabeled-entropy, cond-dist-fact}\leanok We first prove~\eqref{lem51-a}. We may assume (taking an independent copy, using \Cref{independent-exist} and \Cref{ruz-copy}, \ref{ruz-indep}) that $X$ is independent of $Y, Z$. Then we have \begin{align*} d[X ;Y+ Z] & - d[X ;Y] \\ & = \bbH[X + Y + Z] - \bbH[X + Y] - \tfrac{1}{2}\bbH[Y + Z] + \tfrac{1}{2} \bbH[Y].\end{align*} Combining this with \Cref{kv} gives the required bound. The second form of the result is immediate \Cref{ruz-indep}. Turning to~\eqref{ruzsa-3}, we have from \Cref{information-def} and \Cref{relabeled-entropy} \begin{align*} \bbI[Y : Y+ Z] & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Y + Z] \\ & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Z] = \bbH[Y + Z] - \bbH[Z],\end{align*} and so~\eqref{ruzsa-3} is a consequence of \Cref{cond-dist-fact}. Once again the second form of the result is immediate from \Cref{ruz-indep}. \end{proof}
lemma condRuzsaDist_diff_le' [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y + Z; μ'] - d[X ; μ # Y; μ'] ≤ d[Y; μ' # Z; μ'] / 2 + H[Z; μ'] / 4 - H[Y; μ'] / 4 := by linarith [condRuzsaDist_diff_le μ hX hY hZ h, entropy_sub_entropy_eq_condRuzsaDist_add μ hX hY hZ h] variable (μ) in
pfr/blueprint/src/chapter/distance.tex:322
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1402
PFR
condRuzsaDist_diff_le''
\begin{lemma}[Comparison of Ruzsa distances, I]\label{first-useful} \lean{condRuzsaDist_diff_le, condRuzsaDist_diff_le', condRuzsaDist_diff_le'', condRuzsaDist_diff_le'''}\leanok Let $X, Y, Z$ be random variables taking values in some abelian group of characteristic $2$, and with $Y, Z$ independent. Then we have \begin{align}\nonumber d[X ; Y + Z] -d[X ; Y] & \leq \tfrac{1}{2} (\bbH[Y+ Z] - \bbH[Y]) \\ & = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} \bbH[Z] - \tfrac{1}{4} \bbH[Y]. \label{lem51-a} \end{align} and \begin{align}\nonumber d[X ;Y|Y+ Z] - d[X ;Y] & \leq \tfrac{1}{2} \bigl(\bbH[Y+ Z] - \bbH[Z]\bigr) \\ & = \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} \bbH[Y] - \tfrac{1}{4} \bbH[Z]. \label{ruzsa-3} \end{align} \end{lemma} \begin{proof} \uses{ruz-copy, independent-exist, kv, ruz-indep, relabeled-entropy, cond-dist-fact}\leanok We first prove~\eqref{lem51-a}. We may assume (taking an independent copy, using \Cref{independent-exist} and \Cref{ruz-copy}, \ref{ruz-indep}) that $X$ is independent of $Y, Z$. Then we have \begin{align*} d[X ;Y+ Z] & - d[X ;Y] \\ & = \bbH[X + Y + Z] - \bbH[X + Y] - \tfrac{1}{2}\bbH[Y + Z] + \tfrac{1}{2} \bbH[Y].\end{align*} Combining this with \Cref{kv} gives the required bound. The second form of the result is immediate \Cref{ruz-indep}. Turning to~\eqref{ruzsa-3}, we have from \Cref{information-def} and \Cref{relabeled-entropy} \begin{align*} \bbI[Y : Y+ Z] & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Y + Z] \\ & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Z] = \bbH[Y + Z] - \bbH[Z],\end{align*} and so~\eqref{ruzsa-3} is a consequence of \Cref{cond-dist-fact}. Once again the second form of the result is immediate from \Cref{ruz-indep}. \end{proof}
lemma condRuzsaDist_diff_le'' [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y|Y+ Z ; μ'] - d[X ; μ # Y ; μ'] ≤ (H[Y+ Z ; μ'] - H[Z ; μ'])/2 := by rw [← mutualInfo_add_right hY hZ h] linarith [condRuzsaDist_le' (W := Y + Z) μ μ' hX hY (by fun_prop)] variable (μ) [Module (ZMod 2) G] in
pfr/blueprint/src/chapter/distance.tex:322
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1411
PFR
condRuzsaDist_diff_le'''
\begin{lemma}[Comparison of Ruzsa distances, I]\label{first-useful} \lean{condRuzsaDist_diff_le, condRuzsaDist_diff_le', condRuzsaDist_diff_le'', condRuzsaDist_diff_le'''}\leanok Let $X, Y, Z$ be random variables taking values in some abelian group of characteristic $2$, and with $Y, Z$ independent. Then we have \begin{align}\nonumber d[X ; Y + Z] -d[X ; Y] & \leq \tfrac{1}{2} (\bbH[Y+ Z] - \bbH[Y]) \\ & = \tfrac{1}{2} d[Y; Z] + \tfrac{1}{4} \bbH[Z] - \tfrac{1}{4} \bbH[Y]. \label{lem51-a} \end{align} and \begin{align}\nonumber d[X ;Y|Y+ Z] - d[X ;Y] & \leq \tfrac{1}{2} \bigl(\bbH[Y+ Z] - \bbH[Z]\bigr) \\ & = \tfrac{1}{2} d[Y;Z] + \tfrac{1}{4} \bbH[Y] - \tfrac{1}{4} \bbH[Z]. \label{ruzsa-3} \end{align} \end{lemma} \begin{proof} \uses{ruz-copy, independent-exist, kv, ruz-indep, relabeled-entropy, cond-dist-fact}\leanok We first prove~\eqref{lem51-a}. We may assume (taking an independent copy, using \Cref{independent-exist} and \Cref{ruz-copy}, \ref{ruz-indep}) that $X$ is independent of $Y, Z$. Then we have \begin{align*} d[X ;Y+ Z] & - d[X ;Y] \\ & = \bbH[X + Y + Z] - \bbH[X + Y] - \tfrac{1}{2}\bbH[Y + Z] + \tfrac{1}{2} \bbH[Y].\end{align*} Combining this with \Cref{kv} gives the required bound. The second form of the result is immediate \Cref{ruz-indep}. Turning to~\eqref{ruzsa-3}, we have from \Cref{information-def} and \Cref{relabeled-entropy} \begin{align*} \bbI[Y : Y+ Z] & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Y + Z] \\ & = \bbH[Y] + \bbH[Y + Z] - \bbH[Y, Z] = \bbH[Y + Z] - \bbH[Z],\end{align*} and so~\eqref{ruzsa-3} is a consequence of \Cref{cond-dist-fact}. Once again the second form of the result is immediate from \Cref{ruz-indep}. \end{proof}
lemma condRuzsaDist_diff_le''' [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y|Y+ Z ; μ'] - d[X ; μ # Y ; μ'] ≤ d[Y ; μ' # Z ; μ']/2 + H[Y ; μ']/4 - H[Z ; μ']/4 := by linarith [condRuzsaDist_diff_le'' μ hX hY hZ h, entropy_sub_entropy_eq_condRuzsaDist_add μ hX hY hZ h] variable (μ) in
pfr/blueprint/src/chapter/distance.tex:322
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1420
PFR
condRuzsaDist_diff_ofsum_le
\begin{lemma}[Comparison of Ruzsa distances, II]\label{second-useful} \lean{condRuzsaDist_diff_ofsum_le}\leanok Let $X, Y, Z, Z'$ be random variables taking values in some abelian group, and with $Y, Z, Z'$ independent. Then we have \begin{align}\nonumber & d[X ;Y + Z | Y + Z + Z'] - d[X ;Y] \\ & \qquad \leq \tfrac{1}{2} ( \bbH[Y + Z + Z'] + \bbH[Y + Z] - \bbH[Y] - \bbH[Z']).\label{7111} \end{align} \end{lemma} \begin{proof} \uses{first-useful}\leanok By \Cref{first-useful} (with a change of variables) we have \[d[X ; Y + Z | Y + Z + Z'] - d[X ; Y + Z] \leq \tfrac{1}{2}( \bbH[Y + Z + Z'] - \bbH[Z']).\] Adding this to~\eqref{lem51-a} gives the result. \end{proof}
lemma condRuzsaDist_diff_ofsum_le [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] {X : Ω → G} {Y Z Z' : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (hZ' : Measurable Z') (h : iIndepFun ![Y, Z, Z'] μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] [FiniteRange Z'] : d[X ; μ # Y + Z | Y + Z + Z'; μ'] - d[X ; μ # Y; μ'] ≤ (H[Y + Z + Z'; μ'] + H[Y + Z; μ'] - H[Y ; μ'] - H[Z' ; μ'])/2 := by have hadd : IndepFun (Y + Z) Z' μ' := (h.indepFun_add_left (Fin.cases hY <| Fin.cases hZ <| Fin.cases hZ' Fin.rec0) 0 1 2 (show 0 ≠ 2 by decide) (show 1 ≠ 2 by decide)) have h1 := condRuzsaDist_diff_le'' μ hX (show Measurable (Y + Z) by fun_prop) hZ' hadd have h2 := condRuzsaDist_diff_le μ hX hY hZ (h.indepFun (show 0 ≠ 1 by decide)) linarith [h1, h2]
pfr/blueprint/src/chapter/distance.tex:344
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1429
PFR
condRuzsaDist_le
\begin{lemma}[Upper bound on conditioned Ruzsa distance]\label{cond-dist-fact} \uses{cond-dist-def, information-def} \lean{condRuzsaDist_le, condRuzsaDist_le'}\leanok Suppose that $(X, Z)$ and $(Y, W)$ are random variables, where $X, Y$ take values in an abelian group. Then \[ d[X | Z;Y | W] \leq d[X ; Y] + \tfrac{1}{2} \bbI[X : Z] + \tfrac{1}{2} \bbI[Y : W].\] In particular, \[ d[X ;Y | W] \leq d[X ; Y] + \tfrac{1}{2} \bbI[Y : W].\] \end{lemma} \begin{proof} \uses{cond-dist-alt, independent-exist, cond-reduce}\leanok Using \Cref{cond-dist-alt} and \Cref{independent-exist}, if $(X',Z'), (Y',W')$ are independent copies of the variables $(X,Z)$, $(Y,W)$, we have \begin{align*} d[X | Z; Y | W]&= \bbH[X'-Y'|Z',W'] - \tfrac{1}{2} \bbH[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\ &\le \bbH[X'-Y']- \tfrac{1}{2} \bbH[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\ &= d[X';Y'] + \tfrac{1}{2} \bbI[X' : Z'] + \tfrac{1}{2} \bbI[Y' : W']. \end{align*} Here, in the middle step we used \Cref{cond-reduce}, and in the last step we used \Cref{ruz-dist-def} and \Cref{information-def}. \end{proof}
lemma condRuzsaDist_le [Countable T] {X : Ω → G} {Z : Ω → S} {Y : Ω' → G} {W : Ω' → T} [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) [FiniteRange X] [FiniteRange Z] [FiniteRange Y] [FiniteRange W] : d[X | Z ; μ # Y|W ; μ'] ≤ d[X ; μ # Y ; μ'] + I[X : Z ; μ]/2 + I[Y : W ; μ']/2 := by have hXZ : Measurable (⟨X, Z⟩ : Ω → G × S):= hX.prodMk hZ have hYW : Measurable (⟨Y, W⟩ : Ω' → G × T):= hY.prodMk hW obtain ⟨ν, XZ', YW', _, hXZ', hYW', hind, hIdXZ, hIdYW, _, _⟩ := independent_copies_finiteRange hXZ hYW μ μ' let X' := Prod.fst ∘ XZ' let Z' := Prod.snd ∘ XZ' let Y' := Prod.fst ∘ YW' let W' := Prod.snd ∘ YW' have hX' : Measurable X' := hXZ'.fst have hZ' : Measurable Z' := hXZ'.snd have hY' : Measurable Y' := hYW'.fst have hW' : Measurable W' := hYW'.snd have : FiniteRange W' := instFiniteRangeComp .. have : FiniteRange X' := instFiniteRangeComp .. have : FiniteRange Y' := instFiniteRangeComp .. have : FiniteRange Z' := instFiniteRangeComp .. have hind' : IndepFun X' Y' ν := hind.comp measurable_fst measurable_fst rw [show XZ' = ⟨X', Z'⟩ by rfl] at hIdXZ hind rw [show YW' = ⟨Y', W'⟩ by rfl] at hIdYW hind rw [← condRuzsaDist_of_copy hX' hZ' hY' hW' hX hZ hY hW hIdXZ hIdYW, condRuzsaDist_of_indep hX' hZ' hY' hW' _ hind] have hIdX : IdentDistrib X X' μ ν := hIdXZ.symm.comp measurable_fst have hIdY : IdentDistrib Y Y' μ' ν := hIdYW.symm.comp measurable_fst rw [hIdX.rdist_eq hIdY, hIdXZ.symm.mutualInfo_eq, hIdYW.symm.mutualInfo_eq, hind'.rdist_eq hX' hY', mutualInfo_eq_entropy_sub_condEntropy hX' hZ', mutualInfo_eq_entropy_sub_condEntropy hY' hW'] have h := condEntropy_le_entropy ν (X := X' - Y') (hX'.sub hY') (hZ'.prodMk hW') linarith [h, entropy_nonneg Z' ν, entropy_nonneg W' ν] variable (μ μ') in
pfr/blueprint/src/chapter/distance.tex:302
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1289
PFR
condRuzsaDist_le'
\begin{lemma}[Upper bound on conditioned Ruzsa distance]\label{cond-dist-fact} \uses{cond-dist-def, information-def} \lean{condRuzsaDist_le, condRuzsaDist_le'}\leanok Suppose that $(X, Z)$ and $(Y, W)$ are random variables, where $X, Y$ take values in an abelian group. Then \[ d[X | Z;Y | W] \leq d[X ; Y] + \tfrac{1}{2} \bbI[X : Z] + \tfrac{1}{2} \bbI[Y : W].\] In particular, \[ d[X ;Y | W] \leq d[X ; Y] + \tfrac{1}{2} \bbI[Y : W].\] \end{lemma} \begin{proof} \uses{cond-dist-alt, independent-exist, cond-reduce}\leanok Using \Cref{cond-dist-alt} and \Cref{independent-exist}, if $(X',Z'), (Y',W')$ are independent copies of the variables $(X,Z)$, $(Y,W)$, we have \begin{align*} d[X | Z; Y | W]&= \bbH[X'-Y'|Z',W'] - \tfrac{1}{2} \bbH[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\ &\le \bbH[X'-Y']- \tfrac{1}{2} \bbH[X'|Z'] - \tfrac{1}{2}H[Y'|W'] \\ &= d[X';Y'] + \tfrac{1}{2} \bbI[X' : Z'] + \tfrac{1}{2} \bbI[Y' : W']. \end{align*} Here, in the middle step we used \Cref{cond-reduce}, and in the last step we used \Cref{ruz-dist-def} and \Cref{information-def}. \end{proof}
lemma condRuzsaDist_le' [Countable T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) [FiniteRange X] [FiniteRange Y] [FiniteRange W] : d[X ; μ # Y|W ; μ'] ≤ d[X ; μ # Y ; μ'] + I[Y : W ; μ']/2 := by rw [← condRuzsaDist_of_const hX _ _ (0 : Fin 1)] refine (condRuzsaDist_le μ μ' hX measurable_const hY hW).trans ?_ simp [mutualInfo_const hX (0 : Fin 1)] variable (μ μ') in
pfr/blueprint/src/chapter/distance.tex:302
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:1324
PFR
condRuzsaDist_of_copy
\begin{lemma}[Alternate form of distance]\label{cond-dist-alt} \lean{condRuzsaDist_of_copy, condRuzsaDist'_of_copy, condRuzsaDist_of_indep, condRuzsaDist'_of_indep}\leanok The expression $d[X | Z;Y | W]$ is unchanged if $(X,Z)$ or $(Y,W)$ is replaced by a copy. Furthermore, if $(X,Z)$ and $(Y,W)$ are independent, then $$ d[X | Z;Y | W] = \bbH[X-Y|Z,W] - \bbH[X|Z]/2 - \bbH[Y|W]/2$$ and similarly $$ d[X ;Y | W] = \bbH[X-Y|W] - \bbH[X]/2 - \bbH[Y|W]/2.$$ \end{lemma} \begin{proof}\uses{copy-ent, ruz-copy, ruz-indep, cond-dist-def, conditional-entropy-def}\leanok Straightforward thanks to \Cref{copy-ent}, \Cref{ruz-copy}, \Cref{ruz-indep}, \Cref{cond-dist-def}, \Cref{conditional-entropy-def}. \end{proof}
lemma condRuzsaDist_of_copy {X : Ω → G} (hX : Measurable X) {Z : Ω → S} (hZ : Measurable Z) {Y : Ω' → G} (hY : Measurable Y) {W : Ω' → T} (hW : Measurable W) {X' : Ω'' → G} (hX' : Measurable X') {Z' : Ω'' → S} (hZ' : Measurable Z') {Y' : Ω''' → G} (hY' : Measurable Y') {W' : Ω''' → T} (hW' : Measurable W') [IsFiniteMeasure μ] [IsFiniteMeasure μ'] [IsFiniteMeasure μ''] [IsFiniteMeasure μ'''] (h1 : IdentDistrib (⟨X, Z⟩) (⟨X', Z'⟩) μ μ'') (h2 : IdentDistrib (⟨Y, W⟩) (⟨Y', W'⟩) μ' μ''') [FiniteRange Z] [FiniteRange W] [FiniteRange Z'] [FiniteRange W'] : d[X | Z ; μ # Y | W ; μ'] = d[X' | Z' ; μ'' # Y' | W' ; μ'''] := by classical set A := (FiniteRange.toFinset Z) ∪ (FiniteRange.toFinset Z') set B := (FiniteRange.toFinset W) ∪ (FiniteRange.toFinset W') have hfull : Measure.prod (μ.map Z) (μ'.map W) ((A ×ˢ B : Finset (S × T)): Set (S × T))ᶜ = 0 := by simp only [A, B] apply Measure.prod_of_full_measure_finset all_goals { rw [Measure.map_apply ‹_›] convert measure_empty (μ := μ) simp [← FiniteRange.range] measurability } have hfull' : Measure.prod (μ''.map Z') (μ'''.map W') ((A ×ˢ B : Finset (S × T)): Set (S × T))ᶜ = 0 := by simp only [A, B] apply Measure.prod_of_full_measure_finset all_goals { rw [Measure.map_apply ‹_›] convert measure_empty (μ := μ) simp [← FiniteRange.range] measurability } rw [condRuzsaDist_def, condRuzsaDist_def, Kernel.rdist, Kernel.rdist, integral_eq_setIntegral hfull, integral_eq_setIntegral hfull', integral_finset _ _ IntegrableOn.finset, integral_finset _ _ IntegrableOn.finset] have hZZ' : μ.map Z = μ''.map Z' := (h1.comp measurable_snd).map_eq have hWW' : μ'.map W = μ'''.map W' := (h2.comp measurable_snd).map_eq simp_rw [Measure.prod_apply_singleton, ENNReal.toReal_mul, ← hZZ', ← hWW', Measure.map_apply hZ (.singleton _), Measure.map_apply hW (.singleton _)] congr with x by_cases hz : μ (Z ⁻¹' {x.1}) = 0 · simp only [smul_eq_mul, mul_eq_mul_left_iff, mul_eq_zero] refine Or.inr (Or.inl ?_) simp [ENNReal.toReal_eq_zero_iff, measure_ne_top, hz] by_cases hw : μ' (W ⁻¹' {x.2}) = 0 · simp only [smul_eq_mul, mul_eq_mul_left_iff, mul_eq_zero] refine Or.inr (Or.inr ?_) simp [ENNReal.toReal_eq_zero_iff, measure_ne_top, hw] congr 2 · have hZZ'x : μ (Z ⁻¹' {x.1}) = μ'' (Z' ⁻¹' {x.1}) := by have : μ.map Z {x.1} = μ''.map Z' {x.1} := by rw [hZZ'] rwa [Measure.map_apply hZ (.singleton _), Measure.map_apply hZ' (.singleton _)] at this ext s hs rw [condDistrib_apply' hX hZ _ _ hz hs, condDistrib_apply' hX' hZ' _ _ _ hs] swap; · rwa [hZZ'x] at hz congr have : μ.map (⟨X, Z⟩) (s ×ˢ {x.1}) = μ''.map (⟨X', Z'⟩) (s ×ˢ {x.1}) := by rw [h1.map_eq] rwa [Measure.map_apply (hX.prodMk hZ) (hs.prod (.singleton _)), Measure.map_apply (hX'.prodMk hZ') (hs.prod (.singleton _)), Set.mk_preimage_prod, Set.mk_preimage_prod, Set.inter_comm, Set.inter_comm ((fun a ↦ X' a) ⁻¹' s)] at this · have hWW'x : μ' (W ⁻¹' {x.2}) = μ''' (W' ⁻¹' {x.2}) := by have : μ'.map W {x.2} = μ'''.map W' {x.2} := by rw [hWW'] rwa [Measure.map_apply hW (.singleton _), Measure.map_apply hW' (.singleton _)] at this ext s hs rw [condDistrib_apply' hY hW _ _ hw hs, condDistrib_apply' hY' hW' _ _ _ hs] swap; · rwa [hWW'x] at hw congr have : μ'.map (⟨Y, W⟩) (s ×ˢ {x.2}) = μ'''.map (⟨Y', W'⟩) (s ×ˢ {x.2}) := by rw [h2.map_eq] rwa [Measure.map_apply (hY.prodMk hW) (hs.prod (.singleton _)), Measure.map_apply (hY'.prodMk hW') (hs.prod (.singleton _)), Set.mk_preimage_prod, Set.mk_preimage_prod, Set.inter_comm, Set.inter_comm ((fun a ↦ Y' a) ⁻¹' s)] at this
pfr/blueprint/src/chapter/distance.tex:226
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:826
PFR
condRuzsaDist_of_indep
\begin{lemma}[Alternate form of distance]\label{cond-dist-alt} \lean{condRuzsaDist_of_copy, condRuzsaDist'_of_copy, condRuzsaDist_of_indep, condRuzsaDist'_of_indep}\leanok The expression $d[X | Z;Y | W]$ is unchanged if $(X,Z)$ or $(Y,W)$ is replaced by a copy. Furthermore, if $(X,Z)$ and $(Y,W)$ are independent, then $$ d[X | Z;Y | W] = \bbH[X-Y|Z,W] - \bbH[X|Z]/2 - \bbH[Y|W]/2$$ and similarly $$ d[X ;Y | W] = \bbH[X-Y|W] - \bbH[X]/2 - \bbH[Y|W]/2.$$ \end{lemma} \begin{proof}\uses{copy-ent, ruz-copy, ruz-indep, cond-dist-def, conditional-entropy-def}\leanok Straightforward thanks to \Cref{copy-ent}, \Cref{ruz-copy}, \Cref{ruz-indep}, \Cref{cond-dist-def}, \Cref{conditional-entropy-def}. \end{proof}
lemma condRuzsaDist_of_indep {X : Ω → G} {Z : Ω → S} {Y : Ω → G} {W : Ω → T} (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) (μ : Measure Ω) [IsProbabilityMeasure μ] (h : IndepFun (⟨X, Z⟩) (⟨Y, W⟩) μ) [FiniteRange Z] [FiniteRange W] : d[X | Z ; μ # Y | W ; μ] = H[X - Y | ⟨Z, W⟩ ; μ] - H[X | Z ; μ]/2 - H[Y | W ; μ]/2 := by have : IsProbabilityMeasure (μ.map Z) := isProbabilityMeasure_map hZ.aemeasurable have : IsProbabilityMeasure (μ.map W) := isProbabilityMeasure_map hW.aemeasurable rw [condRuzsaDist_def, Kernel.rdist_eq', condEntropy_eq_kernel_entropy _ (hZ.prodMk hW), condEntropy_eq_kernel_entropy hX hZ, condEntropy_eq_kernel_entropy hY hW] swap; · exact hX.sub hY congr 2 have hZW : IndepFun Z W μ := h.comp measurable_snd measurable_snd have hZW_map : μ.map (⟨Z, W⟩) = (μ.map Z).prod (μ.map W) := (indepFun_iff_map_prod_eq_prod_map_map hZ.aemeasurable hW.aemeasurable).mp hZW rw [← hZW_map] refine Kernel.entropy_congr ?_ have : Kernel.map (condDistrib (⟨X, Y⟩) (⟨Z, W⟩) μ) (fun x ↦ x.1 - x.2) =ᵐ[μ.map (⟨Z, W⟩)] condDistrib (X - Y) (⟨Z, W⟩) μ := (condDistrib_comp (hX.prodMk hY) (hZ.prodMk hW) _ _).symm refine (this.symm.trans ?_).symm suffices Kernel.prodMkRight T (condDistrib X Z μ) ×ₖ Kernel.prodMkLeft S (condDistrib Y W μ) =ᵐ[μ.map (⟨Z, W⟩)] condDistrib (⟨X, Y⟩) (⟨Z, W⟩) μ by filter_upwards [this] with x hx rw [Kernel.map_apply _ (by fun_prop), Kernel.map_apply _ (by fun_prop), hx] exact (condDistrib_eq_prod_of_indepFun hX hZ hY hW μ h).symm
pfr/blueprint/src/chapter/distance.tex:226
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:729
PFR
condRuzsaDist_of_sums_ge
\begin{lemma}[Lower bound on conditional distances]\label{first-cond} \lean{condRuzsaDist_of_sums_ge}\leanok We have \begin{align*} & d[X_1|X_1+\tilde X_2; X_2|X_2+\tilde X_1] \\ & \qquad\quad \geq k - \eta (d[X^0_1; X_1 | X_1 + \tilde X_2] - d[X^0_1; X_1]) \\ & \qquad\qquad\qquad\qquad - \eta(d[X^0_2; X_2 | X_2 + \tilde X_1] - d[X^0_2; X_2]). \end{align*} \end{lemma} \begin{proof}\uses{cond-distance-lower}\leanok Immediate from \Cref{cond-distance-lower}. \end{proof}
lemma condRuzsaDist_of_sums_ge : d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] ≥ k - p.η * (d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂]) := condRuzsaDistance_ge_of_min _ h_min hX₁ hX₂ _ _ (by fun_prop) (by fun_prop)
pfr/blueprint/src/chapter/entropy_pfr.tex:103
pfr/PFR/FirstEstimate.lean:84
PFR
condRuzsaDistance_ge_of_min
\begin{lemma}[Conditional distance lower bound]\label{cond-distance-lower} \uses{tau-min-def, cond-dist-def} \lean{condRuzsaDistance_ge_of_min}\leanok For any $G$-valued random variables $X'_1,X'_2$ and random variables $Z,W$, one has $$ d[X'_1|Z;X'_2|W] \geq k - \eta (d[X^0_1;X'_1|Z] - d[X^0_1;X_1] ) - \eta (d[X^0_2;X'_2|W] - d[X^0_2;X_2] ).$$ \end{lemma} \begin{proof}\uses{distance-lower}\leanok Apply \Cref{distance-lower} to conditioned random variables and then average. \end{proof}
lemma condRuzsaDistance_ge_of_min [MeasurableSingletonClass G] [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] [Fintype T] [MeasurableSpace T] [MeasurableSingletonClass T] (h : tau_minimizes p X₁ X₂) (h1 : Measurable X₁') (h2 : Measurable X₂') (Z : Ω'₁ → S) (W : Ω'₂ → T) (hZ : Measurable Z) (hW : Measurable W) : d[X₁ # X₂] - p.η * (d[p.X₀₁ # X₁' | Z] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂' | W] - d[p.X₀₂ # X₂]) ≤ d[X₁' | Z # X₂' | W] := by have hz (a : ℝ) : a = ∑ z ∈ FiniteRange.toFinset Z, (ℙ (Z ⁻¹' {z})).toReal * a := by simp_rw [← Finset.sum_mul,← Measure.map_apply hZ (MeasurableSet.singleton _), Finset.sum_toReal_measure_singleton] rw [FiniteRange.full hZ] simp have hw (a : ℝ) : a = ∑ w ∈ FiniteRange.toFinset W, (ℙ (W ⁻¹' {w})).toReal * a := by simp_rw [← Finset.sum_mul,← Measure.map_apply hW (MeasurableSet.singleton _), Finset.sum_toReal_measure_singleton] rw [FiniteRange.full hW] simp rw [condRuzsaDist_eq_sum h1 hZ h2 hW, condRuzsaDist'_eq_sum h1 hZ, hz d[X₁ # X₂], hz d[p.X₀₁ # X₁], hz (p.η * (d[p.X₀₂ # X₂' | W] - d[p.X₀₂ # X₂])), ← Finset.sum_sub_distrib, Finset.mul_sum, ← Finset.sum_sub_distrib, ← Finset.sum_sub_distrib] apply Finset.sum_le_sum intro z _ rw [condRuzsaDist'_eq_sum h2 hW, hw d[p.X₀₂ # X₂], hw ((ℙ (Z ⁻¹' {z})).toReal * d[X₁ # X₂] - p.η * ((ℙ (Z ⁻¹' {z})).toReal * d[p.X₀₁ ; ℙ # X₁' ; ℙ[|Z ← z]] - (ℙ (Z ⁻¹' {z})).toReal * d[p.X₀₁ # X₁])), ← Finset.sum_sub_distrib, Finset.mul_sum, Finset.mul_sum, ← Finset.sum_sub_distrib] apply Finset.sum_le_sum intro w _ rcases eq_or_ne (ℙ (Z ⁻¹' {z})) 0 with hpz | hpz · simp [hpz] rcases eq_or_ne (ℙ (W ⁻¹' {w})) 0 with hpw | hpw · simp [hpw] set μ := (hΩ₁.volume)[|Z ← z] have hμ : IsProbabilityMeasure μ := cond_isProbabilityMeasure hpz set μ' := ℙ[|W ← w] have hμ' : IsProbabilityMeasure μ' := cond_isProbabilityMeasure hpw suffices d[X₁ # X₂] - p.η * (d[p.X₀₁; volume # X₁'; μ] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂; volume # X₂'; μ'] - d[p.X₀₂ # X₂]) ≤ d[X₁' ; μ # X₂'; μ'] by replace this := mul_le_mul_of_nonneg_left this (show 0 ≤ (ℙ (Z ⁻¹' {z})).toReal * (ℙ (W ⁻¹' {w})).toReal by positivity) convert this using 1 ring exact distance_ge_of_min' p h h1 h2
pfr/blueprint/src/chapter/entropy_pfr.tex:60
pfr/PFR/TauFunctional.lean:207
PFR
cond_multiDist_chainRule
\begin{lemma}[Conditional multidistance chain rule]\label{multidist-chain-rule-cond}\lean{cond_multiDist_chainRule}\leanok Let $\pi \colon G \to H$ be a homomorphism of abelian groups. Let $I$ be a finite index set and let $X_{[m]}$ be a tuple of $G$-valued random variables. Let $Y_{[m]}$ be another tuple of random variables (not necessarily $G$-valued). Suppose that the pairs $(X_i, Y_i)$ are jointly independent of one another (but $X_i$ need not be independent of $Y_i$). Then \begin{align}\nonumber D[ X_{[m]} | Y_{[m]} ] &= D[ X_{[m]} \,|\, \pi(X_{[m]}), Y_{[m]}] + D[ \pi(X_{[m]}) \,|\, Y_{[m]}] \\ &\quad\qquad + \bbI[ \sum_{i=1}^m X_i : \pi(X_{[m]}) \; \big| \; \pi\bigl(\sum_{i=1}^m X_i \bigr), Y_{[m]} ].\label{chain-eq-cond} \end{align} \end{lemma} \begin{proof}\uses{multidist-chain-rule}\leanok For each $y_i$ in the support of $p_{Y_i}$, apply \Cref{multidist-chain-rule} with $X_i$ replaced by the conditioned random variable $(X_i|Y_i=y_i)$, and the claim~\eqref{chain-eq-cond} follows by averaging~\eqref{chain-eq} in the $y_i$ using the weights $p_{Y_i}$. \end{proof}
lemma cond_multiDist_chainRule {G H : Type*} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Fintype G] [hH : MeasurableSpace H] [MeasurableSingletonClass H] [AddCommGroup H] [Fintype H] (π : G →+ H) {S : Type*} [Fintype S] [hS : MeasurableSpace S] [MeasurableSingletonClass S] {m : ℕ} {Ω : Type*} [hΩ : MeasureSpace Ω] {X : Fin m → Ω → G} (hX : ∀ i, Measurable (X i)) {Y : Fin m → Ω → S} (hY : ∀ i, Measurable (Y i)) (h_indep : iIndepFun (fun i ↦ ⟨X i, Y i⟩)) : D[X | Y; fun _ ↦ hΩ] = D[X | fun i ↦ ⟨π ∘ X i, Y i⟩; fun _ ↦ hΩ] + D[fun i ↦ π ∘ X i | Y; fun _ ↦ hΩ] + I[∑ i, X i : fun ω ↦ (fun i ↦ π (X i ω)) | ⟨π ∘ (∑ i, X i), fun ω ↦ (fun i ↦ Y i ω)⟩] := by have : IsProbabilityMeasure (ℙ : Measure Ω) := h_indep.isProbabilityMeasure set E' := fun (y : Fin m → S) ↦ ⋂ i, Y i ⁻¹' {y i} set f := fun (y : Fin m → S) ↦ (ℙ (E' y)).toReal set hΩc : (Fin m → S) → MeasureSpace Ω := fun y ↦ ⟨cond ℙ (E' y)⟩ calc _ = ∑ y, (f y) * D[X; fun _ ↦ hΩc y] := condMultiDist_eq' hX hY h_indep _ = ∑ y, (f y) * D[X | fun i ↦ π ∘ X i; fun _ ↦ hΩc y] + ∑ y, (f y) * D[fun i ↦ π ∘ X i; fun _ ↦ hΩc y] + ∑ y, (f y) * I[∑ i, X i : fun ω ↦ (fun i ↦ π (X i ω)) | π ∘ (∑ i, X i); (hΩc y).volume] := by simp_rw [← Finset.sum_add_distrib, ← left_distrib] congr with y by_cases hf : f y = 0 . simp only [hf, zero_mul] congr 1 convert multiDist_chainRule π (hΩc y) hX _ refine h_indep.cond hY ?_ fun _ ↦ .singleton _ apply prob_nonzero_of_prod_prob_nonzero convert hf rw [← ENNReal.toReal_prod] congr exact (iIndepFun.meas_iInter h_indep fun _ ↦ mes_of_comap <| .singleton _).symm _ = _ := by have hmes : Measurable (π ∘ ∑ i : Fin m, X i) := by apply Measurable.comp .of_discrete convert Finset.measurable_sum (f := X) Finset.univ _ with ω . exact Fintype.sum_apply ω X exact (fun i _ ↦ hX i) have hpi_indep : iIndepFun (fun i ↦ ⟨π ∘ X i, Y i⟩) ℙ := by set g : G × S → H × S := fun p ↦ ⟨π p.1, p.2⟩ convert iIndepFun.comp h_indep (fun _ ↦ g) _ intro i exact .of_discrete have hpi_indep' : iIndepFun (fun i ↦ ⟨X i, ⟨π ∘ X i, Y i⟩⟩) ℙ := by set g : G × S → G × (H × S) := fun p ↦ ⟨p.1, ⟨π p.1, p.2⟩⟩ convert iIndepFun.comp h_indep (fun _ ↦ g) _ intro i exact .of_discrete have hey_mes : ∀ y, MeasurableSet (E' y) := by intro y apply MeasurableSet.iInter intro i exact MeasurableSet.preimage (MeasurableSet.singleton (y i)) (hY i) congr 2 . rw [condMultiDist_eq' hX _ hpi_indep'] . rw [← Equiv.sum_comp (Equiv.arrowProdEquivProdArrow _ _ _).symm, Fintype.sum_prod_type, Finset.sum_comm] congr with y by_cases pey : ℙ (E' y) = 0 . simp only [pey, ENNReal.zero_toReal, zero_mul, f] apply (Finset.sum_eq_zero _).symm intro s _ convert zero_mul _ convert ENNReal.zero_toReal apply measure_mono_null _ pey intro ω hω simp [E', Equiv.arrowProdEquivProdArrow] at hω ⊢ intro i exact (hω i).2 rw [condMultiDist_eq' (hΩ := hΩc y) hX, Finset.mul_sum] . congr with s dsimp [f, E', Equiv.arrowProdEquivProdArrow] rw [← mul_assoc, ← ENNReal.toReal_mul] congr 2 . rw [mul_comm] convert ProbabilityTheory.cond_mul_eq_inter (hey_mes y) ?_ _ . rw [← Set.iInter_inter_distrib] apply Set.iInter_congr intro i ext ω simp only [Set.mem_preimage, Set.mem_singleton_iff, Prod.mk.injEq, comp_apply, Set.mem_inter_iff] exact And.comm infer_instance funext _ congr 1 dsimp [hΩc, E'] rw [ProbabilityTheory.cond_cond_eq_cond_inter (hey_mes y), ← Set.iInter_inter_distrib] . congr 1 apply Set.iInter_congr intro i ext ω simp only [Set.mem_inter_iff, Set.mem_preimage, Set.mem_singleton_iff, comp_apply, Prod.mk.injEq] exact And.comm apply MeasurableSet.iInter intro i apply MeasurableSet.preimage (MeasurableSet.singleton _) exact Measurable.comp .of_discrete (hX i) . intro i exact Measurable.comp .of_discrete (hX i) set g : G → G × H := fun x ↦ ⟨x, π x⟩ refine iIndepFun.comp ?_ (fun _ ↦ g) fun _ ↦ .of_discrete . refine h_indep.cond hY ?_ fun _ ↦ .singleton _ rw [iIndepFun.meas_iInter h_indep fun _ ↦ mes_of_comap <| .singleton _] at pey contrapose! pey obtain ⟨i, hi⟩ := pey exact Finset.prod_eq_zero (Finset.mem_univ i) hi intro i exact Measurable.prodMk (Measurable.comp .of_discrete (hX i)) (hY i) . rw [condMultiDist_eq' _ hY hpi_indep] intro i apply Measurable.comp .of_discrete (hX i) rw [condMutualInfo_eq_sum', Fintype.sum_prod_type, Finset.sum_comm] . congr with y by_cases pey : ℙ (E' y) = 0 . simp only [pey, ENNReal.zero_toReal, zero_mul, f] apply (Finset.sum_eq_zero _).symm intro s _ convert zero_mul _ convert ENNReal.zero_toReal apply measure_mono_null _ pey intro ω hω simp [E'] at hω ⊢ rw [← hω.2] simp only [implies_true] have : IsProbabilityMeasure (hΩc y).volume := cond_isProbabilityMeasure pey rw [condMutualInfo_eq_sum' hmes, Finset.mul_sum] congr with x dsimp [f, E'] rw [← mul_assoc, ← ENNReal.toReal_mul] congr 2 . rw [mul_comm] convert ProbabilityTheory.cond_mul_eq_inter (hey_mes y) ?_ _ . ext ω simp only [Set.mem_preimage, Set.mem_singleton_iff, Prod.mk.injEq, comp_apply, Finset.sum_apply, _root_.map_sum, Set.mem_inter_iff, Set.mem_iInter, E'] rw [and_comm] apply and_congr_left intro _ exact funext_iff infer_instance dsimp [hΩc, E'] rw [ProbabilityTheory.cond_cond_eq_cond_inter (hey_mes y)] . congr ext ω simp only [Set.mem_inter_iff, Set.mem_iInter, Set.mem_preimage, Set.mem_singleton_iff, comp_apply, Finset.sum_apply, _root_.map_sum, Prod.mk.injEq, E'] rw [and_comm] apply and_congr_right intro _ exact Iff.symm funext_iff exact MeasurableSet.preimage (MeasurableSet.singleton x) hmes exact Measurable.prodMk hmes (measurable_pi_lambda (fun ω i ↦ Y i ω) hY)
pfr/blueprint/src/chapter/torsion.tex:390
pfr/PFR/MoreRuzsaDist.lean:1190
PFR
construct_good_improved'
\begin{lemma}[Constructing good variables, II']\label{construct-good-improv}\lean{construct_good_improved'}\leanok One has \begin{align*} k & \leq \delta + \frac{\eta}{6} \sum_{i=1}^2 \sum_{1 \leq j,l \leq 3; j \neq l} (d[X^0_i;T_j|T_l] - d[X^0_i; X_i]) \end{align*} \end{lemma} \begin{proof} \uses{construct-good-prelim-improv}\leanok Average \Cref{construct-good-prelim-improv} over all six permutations of $T_1,T_2,T_3$. \end{proof}
lemma construct_good_improved' : k ≤ δ + (p.η / 6) * ((d[p.X₀₁ # T₁ | T₂] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # T₂ | T₁] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # T₂ | T₃] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # T₃ | T₁] - d[p.X₀₁ # X₁]) + (d[p.X₀₁ # T₃ | T₂] - d[p.X₀₁ # X₁]) + (d[p.X₀₂ # T₁ | T₂] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # T₁ | T₃] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # T₂ | T₁] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # T₃ | T₁] - d[p.X₀₂ # X₂]) + (d[p.X₀₂ # T₃ | T₂] - d[p.X₀₂ # X₂])) := by have I1 : I[T₂ : T₁] = I[T₁ : T₂] := mutualInfo_comm hT₂ hT₁ _ have I2 : I[T₃ : T₁] = I[T₁ : T₃] := mutualInfo_comm hT₃ hT₁ _ have I3 : I[T₃ : T₂] = I[T₂ : T₃] := mutualInfo_comm hT₃ hT₂ _ have Z123 := construct_good_prelim' h_min hT hT₁ hT₂ hT₃ have h132 : T₁ + T₃ + T₂ = 0 := by rw [← hT]; abel have Z132 := construct_good_prelim' h_min h132 hT₁ hT₃ hT₂ have h213 : T₂ + T₁ + T₃ = 0 := by rw [← hT]; abel have Z213 := construct_good_prelim' h_min h213 hT₂ hT₁ hT₃ have h231 : T₂ + T₃ + T₁ = 0 := by rw [← hT]; abel have Z231 := construct_good_prelim' h_min h231 hT₂ hT₃ hT₁ have h312 : T₃ + T₁ + T₂ = 0 := by rw [← hT]; abel have Z312 := construct_good_prelim' h_min h312 hT₃ hT₁ hT₂ have h321 : T₃ + T₂ + T₁ = 0 := by rw [← hT]; abel have Z321 := construct_good_prelim' h_min h321 hT₃ hT₂ hT₁ simp only [I1, I2, I3] at Z123 Z132 Z213 Z231 Z312 Z321 linarith include h_min in omit [IsProbabilityMeasure (ℙ : Measure Ω₀₁)] [IsProbabilityMeasure (ℙ : Measure Ω₀₂)] [IsProbabilityMeasure (ℙ : Measure Ω)] in /-- Rephrase `construct_good_improved'` with an explicit probability measure, as we will apply it to (varying) conditional measures. -/
pfr/blueprint/src/chapter/improved_exponent.tex:57
pfr/PFR/ImprovedPFR.lean:384
PFR
construct_good_prelim
\begin{lemma}[Constructing good variables, I]\label{construct-good-prelim} \lean{construct_good_prelim}\leanok One has \begin{align*} k \leq \delta + \eta (& d[X^0_1;T_1]-d[X^0_1;X_1]) + \eta (d[X^0_2;T_2]-d[X^0_2;X_2]) \\ & + \tfrac12 \eta \bbI[T_1:T_3] + \tfrac12 \eta \bbI[T_2:T_3]. \end{align*} \end{lemma}
lemma construct_good_prelim : k ≤ δ + p.η * c[T₁ # T₂] + p.η * (I[T₁: T₃] + I[T₂ : T₃])/2 := by let sum1 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[T₁; ℙ[|T₃ ⁻¹' {t}] # T₂; ℙ[|T₃ ⁻¹' {t}]]] let sum2 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[p.X₀₁; ℙ # T₁; ℙ[|T₃ ⁻¹' {t}]] - d[p.X₀₁ # X₁]] let sum3 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[p.X₀₂; ℙ # T₂; ℙ[|T₃ ⁻¹' {t}]] - d[p.X₀₂ # X₂]] let sum4 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ ψ[T₁; ℙ[|T₃ ⁻¹' {t}] # T₂; ℙ[|T₃ ⁻¹' {t}]]] have hp.η : 0 ≤ p.η := by linarith [p.hη] have hP : IsProbabilityMeasure (Measure.map T₃ ℙ) := isProbabilityMeasure_map hT₃.aemeasurable have h2T₃ : T₃ = T₁ + T₂ := calc T₃ = T₁ + T₂ + T₃ - T₃ := by rw [hT, zero_sub]; simp [ZModModule.neg_eq_self] _ = T₁ + T₂ := by rw [add_sub_cancel_right] have h2T₁ : T₁ = T₂ + T₃ := by simp [h2T₃, add_left_comm, ZModModule.add_self] have h2T₂ : T₂ = T₃ + T₁ := by simp [h2T₁, add_left_comm, ZModModule.add_self] have h1 : sum1 ≤ δ := by have h1 : sum1 ≤ 3 * I[T₁ : T₂] + 2 * H[T₃] - H[T₁] - H[T₂] := by subst h2T₃; exact ent_bsg hT₁ hT₂ have h2 : H[⟨T₂, T₃⟩] = H[⟨T₁, T₂⟩] := by rw [h2T₃, entropy_add_right', entropy_comm] <;> assumption have h3 : H[⟨T₁, T₂⟩] = H[⟨T₃, T₁⟩] := by rw [h2T₃, entropy_add_left, entropy_comm] <;> assumption simp_rw [mutualInfo_def] at h1 ⊢; linarith have h2 : p.η * sum2 ≤ p.η * (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + I[T₁ : T₃] / 2) := by have : sum2 = d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁] := by simp only [integral_sub .of_finite .of_finite, integral_const, measure_univ, ENNReal.one_toReal, smul_eq_mul, one_mul, sub_left_inj, sum2] simp_rw [condRuzsaDist'_eq_sum hT₁ hT₃, integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ IntegrableOn.finset, Measure.map_apply hT₃ (.singleton _), smul_eq_mul] gcongr linarith [condRuzsaDist_le' ℙ ℙ p.hmeas1 hT₁ hT₃] have h3 : p.η * sum3 ≤ p.η * (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂] + I[T₂ : T₃] / 2) := by have : sum3 = d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂] := by simp only [integral_sub .of_finite .of_finite, integral_const, measure_univ, ENNReal.one_toReal, smul_eq_mul, one_mul, sub_left_inj, sum3] simp_rw [condRuzsaDist'_eq_sum hT₂ hT₃, integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ IntegrableOn.finset, Measure.map_apply hT₃ (.singleton _), smul_eq_mul] gcongr linarith [condRuzsaDist_le' ℙ ℙ p.hmeas2 hT₂ hT₃] have h4 : sum4 ≤ δ + p.η * c[T₁ # T₂] + p.η * (I[T₁ : T₃] + I[T₂ : T₃]) / 2 := by suffices sum4 = sum1 + p.η * (sum2 + sum3) by linarith simp only [sum1, sum2, sum3, sum4, integral_add .of_finite .of_finite, integral_mul_left] have hk : k ≤ sum4 := by suffices (Measure.map T₃ ℙ)[fun _ ↦ k] ≤ sum4 by simpa using this refine integral_mono_ae .of_finite .of_finite $ ae_iff_of_countable.2 fun t ht ↦ ?_ have : IsProbabilityMeasure (ℙ[|T₃ ⁻¹' {t}]) := cond_isProbabilityMeasure (by simpa [hT₃] using ht) dsimp only linarith only [distance_ge_of_min' (μ := ℙ[|T₃ ⁻¹' {t}]) (μ' := ℙ[|T₃ ⁻¹' {t}]) p h_min hT₁ hT₂] exact hk.trans h4 include hT₁ hT₂ hT₃ hT h_min in /-- If $T_1, T_2, T_3$ are $G$-valued random variables with $T_1+T_2+T_3=0$ holds identically and - $$ \delta := \sum_{1 \leq i < j \leq 3} I[T_i;T_j]$$ Then there exist random variables $T'_1, T'_2$ such that $$ d[T'_1;T'_2] + \eta (d[X_1^0;T'_1] - d[X_1^0;X _1]) + \eta(d[X_2^0;T'_2] - d[X_2^0;X_2])$$ is at most $$\delta + \frac{\eta}{3} \biggl( \delta + \sum_{i=1}^2 \sum_{j = 1}^3 (d[X^0_i;T_j] - d[X^0_i; X_i]) \biggr).$$ -/
pfr/blueprint/src/chapter/entropy_pfr.tex:327
pfr/PFR/Endgame.lean:367
PFR
construct_good_prelim'
\begin{lemma}[Constructing good variables, I']\label{construct-good-prelim-improv}\lean{construct_good_prelim'}\leanok One has \begin{align*} k \leq \delta + \eta (& d[X^0_1;T_1|T_3]-d[X^0_1;X_1]) + \eta (d[X^0_2;T_2|T_3]-d[X^0_2;X_2]). \end{align*} \end{lemma} \begin{proof} \uses{entropic-bsg,distance-lower}\leanok We apply \Cref{entropic-bsg} with $(A,B) = (T_1, T_2)$ there. Since $T_1 + T_2 = T_3$, the conclusion is that \begin{align} \nonumber \sum_{t_3} \bbP[T_3 = t_3] & d[(T_1 | T_3 = t_3); (T_2 | T_3 = t_3)] \\ & \leq 3 \bbI[T_1 : T_2] + 2 \bbH[T_3] - \bbH[T_1] - \bbH[T_2].\label{bsg-t1t2'} \end{align} The right-hand side in~\eqref{bsg-t1t2'} can be rearranged as \begin{align*} & 2( \bbH[T_1] + \bbH[T_2] + \bbH[T_3]) - 3 \bbH[T_1,T_2] \\ & = 2(\bbH[T_1] + \bbH[T_2] + \bbH[T_3]) - \bbH[T_1,T_2] - \bbH[T_2,T_3] - \bbH[T_1, T_3] = \delta,\end{align*} using the fact (from \Cref{relabeled-entropy}) that all three terms $\bbH[T_i,T_j]$ are equal to $\bbH[T_1,T_2,T_3]$ and hence to each other. We also have \begin{align*} & \sum_{t_3} P[T_3 = t_3] \bigl(d[X^0_1; (T_1 | T_3=t_3)] - d[X^0_1;X_1]\bigr) \\ &\quad = d[X^0_1; T_1 | T_3] - d[X^0_1;X_1] \end{align*} and similarly \begin{align*} & \sum_{t_3} \bbP[T_3 = t_3] (d[X^0_2;(T_2 | T_3=t_3)] - d[X^0_2; X_2]) \\ &\quad\quad\quad\quad\quad\quad \leq d[X^0_2;T_2|T_3] - d[X^0_2;X_2]. \end{align*} Putting the above observations together, we have \begin{align*} \sum_{t_3} \bbP[T_3=t_3] \psi[(T_1 | T_3=t_3); (T_2 | T_3=t_3)] \leq \delta + \eta (d[X^0_1;T_1|T_3]-d[X^0_1;X_1]) \\ + \eta (d[X^0_2;T_2|T_3]-d[X^0_2;X_2]) \end{align*} where we introduce the notation \[\psi[Y_1; Y_2] := d[Y_1;Y_2] + \eta (d[X_1^0;Y_1] - d[X_1^0;X_1]) + \eta(d[X_2^0;Y_2] - d[X_2^0;X_2]).\] On the other hand, from \Cref{distance-lower} we have $k \leq \psi[Y_1;Y_2]$, and the claim follows. \end{proof}
lemma construct_good_prelim' : k ≤ δ + p.η * c[T₁ | T₃ # T₂ | T₃] := by let sum1 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[T₁; ℙ[|T₃ ⁻¹' {t}] # T₂; ℙ[|T₃ ⁻¹' {t}]]] let sum2 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[p.X₀₁; ℙ # T₁; ℙ[|T₃ ⁻¹' {t}]] - d[p.X₀₁ # X₁]] let sum3 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ d[p.X₀₂; ℙ # T₂; ℙ[|T₃ ⁻¹' {t}]] - d[p.X₀₂ # X₂]] let sum4 : ℝ := (Measure.map T₃ ℙ)[fun t ↦ ψ[T₁; ℙ[|T₃ ⁻¹' {t}] # T₂; ℙ[|T₃ ⁻¹' {t}]]] have h2T₃ : T₃ = T₁ + T₂ := by calc T₃ = T₁ + T₂ + T₃ - T₃ := by simp [hT, ZModModule.neg_eq_self] _ = T₁ + T₂ := by rw [add_sub_cancel_right] have hP : IsProbabilityMeasure (Measure.map T₃ ℙ) := isProbabilityMeasure_map hT₃.aemeasurable -- control sum1 with entropic BSG have h1 : sum1 ≤ δ := by have h1 : sum1 ≤ 3 * I[T₁ : T₂] + 2 * H[T₃] - H[T₁] - H[T₂] := by subst h2T₃; exact ent_bsg hT₁ hT₂ have h2 : H[⟨T₂, T₃⟩] = H[⟨T₁, T₂⟩] := by rw [h2T₃, entropy_add_right', entropy_comm] <;> assumption have h3 : H[⟨T₁, T₂⟩] = H[⟨T₃, T₁⟩] := by rw [h2T₃, entropy_add_left, entropy_comm] <;> assumption simp_rw [mutualInfo_def] at h1 ⊢; linarith -- rewrite sum2 and sum3 as Rusza distances have h2 : sum2 = d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁] := by simp only [sum2, integral_sub .of_finite .of_finite, integral_const, measure_univ, ENNReal.one_toReal, smul_eq_mul, one_mul, sub_left_inj] simp_rw [condRuzsaDist'_eq_sum hT₁ hT₃, integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ .finset, Measure.map_apply hT₃ (.singleton _), smul_eq_mul] have h3 : sum3 = d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂] := by simp only [sum3, integral_sub .of_finite .of_finite, integral_const, measure_univ, ENNReal.one_toReal, smul_eq_mul, one_mul, sub_left_inj] simp_rw [condRuzsaDist'_eq_sum hT₂ hT₃, integral_eq_setIntegral (FiniteRange.null_of_compl _ T₃), integral_finset _ _ .finset, Measure.map_apply hT₃ (.singleton _), smul_eq_mul] -- put all these estimates together to bound sum4 have h4 : sum4 ≤ δ + p.η * ((d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁]) + (d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂])) := by have : sum4 = sum1 + p.η * (sum2 + sum3) := by simp only [sum1, sum2, sum3, sum4, integral_add .of_finite .of_finite, integral_mul_left] rw [this, h2, h3, add_assoc, mul_add] linarith have hk : k ≤ sum4 := by suffices (Measure.map T₃ ℙ)[fun _ ↦ k] ≤ sum4 by simpa using this refine integral_mono_ae .of_finite .of_finite $ ae_iff_of_countable.2 fun t ht ↦ ?_ have : IsProbabilityMeasure (ℙ[|T₃ ⁻¹' {t}]) := cond_isProbabilityMeasure (by simpa [hT₃] using ht) dsimp only linarith only [distance_ge_of_min' (μ := ℙ[|T₃ ⁻¹' {t}]) (μ' := ℙ[|T₃ ⁻¹' {t}]) p h_min hT₁ hT₂] exact hk.trans h4 open Module include hT hT₁ hT₂ hT₃ h_min in omit [IsProbabilityMeasure (ℙ : Measure Ω₀₁)] [IsProbabilityMeasure (ℙ : Measure Ω₀₂)] [IsProbabilityMeasure (ℙ : Measure Ω)] in /-- In fact $k$ is at most $$ \delta + \frac{\eta}{6} \sum_{i=1}^2 \sum_{1 \leq j,l \leq 3; j \neq l} (d[X^0_i;T_j|T_l] - d[X^0_i; X_i]).$$ -/
pfr/blueprint/src/chapter/improved_exponent.tex:19
pfr/PFR/ImprovedPFR.lean:326
PFR
cor_multiDist_chainRule
\begin{corollary}\label{cor-multid}\lean{cor_multiDist_chainRule}\leanok Let $G$ be an abelian group and let $m \geq 2$. Suppose that $X_{i,j}$, $1 \leq i, j \leq m$, are independent $G$-valued random variables. Then \begin{align*} &\bbI[ \bigl(\sum_{i=1}^m X_{i,j}\bigr)_{j =1}^{m} : \bigl(\sum_{j=1}^m X_{i,j}\bigr)_{i = 1}^m \; \big| \; \sum_{i=1}^m \sum_{j = 1}^m X_{i,j} ] \\ &\quad \leq \sum_{j=1}^{m-1} \Bigl(D[(X_{i, j})_{i = 1}^m] - D[ (X_{i, j})_{i = 1}^m \; \big| \; (X_{i,j} + \cdots + X_{i,m})_{i =1}^m ]\Bigr) \\ & \qquad\qquad\qquad\qquad + D[(X_{i,m})_{i=1}^m] - D[ \bigl(\sum_{j=1}^m X_{i,j}\bigr)_{i=1}^m ], \end{align*} where all the multidistances here involve the indexing set $\{1,\dots, m\}$. \end{corollary} \begin{proof}\uses{multidist-chain-rule-iter, add-entropy} In \Cref{multidist-chain-rule-iter} we take $G_d := G^d$ with the maps $\pi_d \colon G^m \to G^d$ for $d=1,\dots,m$ defined by \[ \pi_d(x_1,\dots,x_m) := (x_1,\dots,x_{d-1}, x_d + \cdots + x_m) \] with $\pi_0=0$. Since $\pi_{d-1}(x)$ can be obtained from $\pi_{d}(x)$ by applying a homomorphism, we obtain a sequence of the form~\eqref{g-seq}. Now we apply \Cref{multidist-chain-rule-iter} with $I = \{1,\dots, m\}$ and $X_i := (X_{i,j})_{j = 1}^m$. Using joint independence and \Cref{add-entropy}, we find that \[ D[ X_{[m]} ] = \sum_{j=1}^m D[ (X_{i,j})_{1 \leq i \leq m} ]. \] On the other hand, for $1 \leq j \leq m-1$, we see that once $\pi_{j}(X_i)$ is fixed, $\pi_{j+1}(X_i)$ is determined by $X_{i, j}$ and vice versa, so \[ D[ \pi_{j+1}(X_{[m]}) \; | \; \pi_{j}(X_{[m]}) ] = D[ (X_{i, j})_{1 \leq i \leq m} \; | \; \pi_{j}(X_{[m]} )]. \] Since the $X_{i,j}$ are jointly independent, we may further simplify: \[ D[ (X_{i, j})_{1 \leq i \leq m} \; | \; \pi_{j}(X_{[m]})] = D[ (X_{i,j})_{1 \leq i \leq m} \; | \; ( X_{i, j} + \cdots + X_{i, m})_{1 \leq i \leq m} ]. \] Putting all this into the conclusion of \Cref{multidist-chain-rule-iter}, we obtain \[ \sum_{j=1}^{m} D[ (X_{i,j})_{1 \leq i \leq m} ] \geq \begin{aligned}[t] &\sum_{j=1}^{m-1} D[ (X_{i,j})_{1 \leq i \leq m} \; | \; (X_{i,j} + \cdots + X_{i,m})_{1 \leq i \leq m} ] \\ &\!\!\!+ D[ \bigl(\sum_{j=1}^m X_{i,j}\bigr)_{1 \leq i \leq m}] \\ &\!\!\!+\bbI[ \bigl(\sum_{i=1}^m X_{i,j}\bigr)_{j =1}^{m} : \bigl(\sum_{j=1}^m X_{i,j}\bigr)_{i = 1}^m \; \big| \; \sum_{i=1}^m \sum_{j = 1}^m X_{i,j} ] \end{aligned} \] and the claim follows by rearranging. \end{proof}
lemma cor_multiDist_chainRule [Fintype G] {m:ℕ} (hm: m ≥ 1) {Ω : Type*} (hΩ : MeasureSpace Ω) (X : Fin (m + 1) × Fin (m + 1) → Ω → G) (h_indep : iIndepFun X) : I[fun ω ↦ (fun j ↦ ∑ i, X (i, j) ω) : fun ω ↦ (fun i ↦ ∑ j, X (i, j) ω) | ∑ p, X p] ≤ ∑ j, (D[fun i ↦ X (i, j); fun _ ↦ hΩ] - D[fun i ↦ X (i, j) | fun i ↦ ∑ k ∈ Finset.Ici j, X (i, k); fun _ ↦ hΩ]) + D[fun i ↦ X (i, m); fun _ ↦ hΩ] - D[fun i ↦ ∑ j, X (i, j); fun _ ↦ hΩ] := by sorry end multiDistance_chainRule
pfr/blueprint/src/chapter/torsion.tex:440
pfr/PFR/MoreRuzsaDist.lean:1489
PFR
diff_ent_le_rdist
\begin{lemma}[Distance controls entropy difference]\label{ruzsa-diff} \uses{ruz-dist-def} \lean{diff_ent_le_rdist}\leanok If $X,Y$ are $G$-valued random variables, then $$|\bbH[X]-H[Y]| \leq 2 d[X ;Y].$$ \end{lemma} \begin{proof} \uses{sumset-lower, neg-ent} \leanok Immediate from \Cref{sumset-lower} and \Cref{ruz-dist-def}, and also \Cref{neg-ent}. \end{proof}
/-- `|H[X] - H[Y]| ≤ 2 d[X ; Y]`. -/ lemma diff_ent_le_rdist [IsProbabilityMeasure μ] [IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) : |H[X ; μ] - H[Y ; μ']| ≤ 2 * d[X ; μ # Y ; μ'] := by obtain ⟨ν, X', Y', _, hX', hY', hind, hIdX, hIdY, _, _⟩ := independent_copies_finiteRange hX hY μ μ' rw [← hIdX.rdist_eq hIdY, hind.rdist_eq hX' hY', ← hIdX.entropy_eq, ← hIdY.entropy_eq, abs_le] have := max_entropy_le_entropy_sub hX' hY' hind constructor · linarith[le_max_right H[X'; ν] H[Y'; ν]] · linarith[le_max_left H[X'; ν] H[Y'; ν]]
pfr/blueprint/src/chapter/distance.tex:128
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:243
PFR
diff_ent_le_rdist'
\begin{lemma}[Distance controls entropy growth]\label{ruzsa-growth} \uses{ruz-dist-def} \lean{diff_ent_le_rdist', diff_ent_le_rdist''}\leanok If $X,Y$ are independent $G$-valued random variables, then $$ \bbH[X-Y] - \bbH[X], \bbH[X-Y] - \bbH[Y] \leq 2d[X ;Y].$$ \end{lemma} \begin{proof} \uses{sumset-lower, neg-ent} \leanok Immediate from \Cref{sumset-lower} and \Cref{ruz-dist-def}, and also \Cref{neg-ent}. \end{proof}
/-- `H[X - Y] - H[X] ≤ 2d[X ; Y]`. -/ lemma diff_ent_le_rdist' [IsProbabilityMeasure μ] {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (h : IndepFun X Y μ) [FiniteRange Y]: H[X - Y ; μ] - H[X ; μ] ≤ 2 * d[X ; μ # Y ; μ] := by rw [h.rdist_eq hX hY] linarith[max_entropy_le_entropy_sub hX hY h, le_max_right H[X ; μ] H[Y; μ]]
pfr/blueprint/src/chapter/distance.tex:138
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:254
PFR
diff_ent_le_rdist''
\begin{lemma}[Distance controls entropy growth]\label{ruzsa-growth} \uses{ruz-dist-def} \lean{diff_ent_le_rdist', diff_ent_le_rdist''}\leanok If $X,Y$ are independent $G$-valued random variables, then $$ \bbH[X-Y] - \bbH[X], \bbH[X-Y] - \bbH[Y] \leq 2d[X ;Y].$$ \end{lemma} \begin{proof} \uses{sumset-lower, neg-ent} \leanok Immediate from \Cref{sumset-lower} and \Cref{ruz-dist-def}, and also \Cref{neg-ent}. \end{proof}
/-- `H[X - Y] - H[Y] ≤ 2d[X ; Y]`. -/ lemma diff_ent_le_rdist'' [IsProbabilityMeasure μ] {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (h : IndepFun X Y μ) [FiniteRange Y]: H[X - Y ; μ] - H[Y ; μ] ≤ 2 * d[X ; μ # Y ; μ] := by rw [h.rdist_eq hX hY] linarith[max_entropy_le_entropy_sub hX hY h, le_max_left H[X ; μ] H[Y; μ]]
pfr/blueprint/src/chapter/distance.tex:138
pfr/PFR/ForMathlib/Entropy/RuzsaDist.lean:261
PFR
diff_rdist_le_1
\begin{lemma}[Upper bound on distance differences]\label{first-upper}\leanok \lean{diff_rdist_le_1, diff_rdist_le_2, diff_rdist_le_3, diff_rdist_le_4} We have \begin{align*} d[X^0_1; X_1+\tilde X_2] - d[X^0_1; X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]\\ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2], \\ d[X_1^0;X_1|X_1+\tilde X_2] - d[X_1^0;X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2] \\ d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] &\leq \tfrac{1}{2}k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]. \end{align*} \end{lemma} \begin{proof}\uses{first-useful} \leanok Immediate from \Cref{first-useful} (and recalling that $k$ is defined to be $d[X_1;X_2]$). \end{proof}
/--`d[X₀₁ # X₁ + X₂'] - d[X₀₁ # X₁] ≤ k/2 + H[X₂]/4 - H[X₁]/4`. -/ lemma diff_rdist_le_1 [IsProbabilityMeasure (ℙ : Measure Ω₀₁)] : d[p.X₀₁ # X₁ + X₂'] - d[p.X₀₁ # X₁] ≤ k/2 + H[X₂]/4 - H[X₁]/4 := by have h : IndepFun X₁ X₂' := by simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 2 by decide) convert condRuzsaDist_diff_le' ℙ p.hmeas1 hX₁ hX₂' h using 4 · exact (IdentDistrib.refl hX₁.aemeasurable).rdist_eq h₂ · exact h₂.entropy_eq include hX₁' hX₂ h_indep h₁ in
pfr/blueprint/src/chapter/entropy_pfr.tex:115
pfr/PFR/FirstEstimate.lean:93
PFR
diff_rdist_le_2
\begin{lemma}[Upper bound on distance differences]\label{first-upper}\leanok \lean{diff_rdist_le_1, diff_rdist_le_2, diff_rdist_le_3, diff_rdist_le_4} We have \begin{align*} d[X^0_1; X_1+\tilde X_2] - d[X^0_1; X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]\\ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2], \\ d[X_1^0;X_1|X_1+\tilde X_2] - d[X_1^0;X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2] \\ d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] &\leq \tfrac{1}{2}k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]. \end{align*} \end{lemma} \begin{proof}\uses{first-useful} \leanok Immediate from \Cref{first-useful} (and recalling that $k$ is defined to be $d[X_1;X_2]$). \end{proof}
/-- $$ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] \leq \tfrac{1}{2} k + \tfrac{1}{4} \mathbb{H}[X_1] - \tfrac{1}{4} \mathbb{H}[X_2].$$ -/ lemma diff_rdist_le_2 [IsProbabilityMeasure (ℙ : Measure Ω₀₂)] : d[p.X₀₂ # X₂ + X₁'] - d[p.X₀₂ # X₂] ≤ k/2 + H[X₁]/4 - H[X₂]/4 := by have h : IndepFun X₂ X₁' := by simpa using h_indep.indepFun (show (1 : Fin 4) ≠ 3 by decide) convert condRuzsaDist_diff_le' ℙ p.hmeas2 hX₂ hX₁' h using 4 · rw [rdist_symm] exact (IdentDistrib.refl hX₂.aemeasurable).rdist_eq h₁ · exact h₁.entropy_eq include h_indep hX₁ hX₂' h₂ in /-- $$ d[X_1^0;X_1|X_1+\tilde X_2] - d[X_1^0;X_1] \leq \tfrac{1}{2} k + \tfrac{1}{4} \mathbb{H}[X_1] - \tfrac{1}{4} \mathbb{H}[X_2].$$ -/
pfr/blueprint/src/chapter/entropy_pfr.tex:115
pfr/PFR/FirstEstimate.lean:102
PFR
diff_rdist_le_3
\begin{lemma}[Upper bound on distance differences]\label{first-upper}\leanok \lean{diff_rdist_le_1, diff_rdist_le_2, diff_rdist_le_3, diff_rdist_le_4} We have \begin{align*} d[X^0_1; X_1+\tilde X_2] - d[X^0_1; X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]\\ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2], \\ d[X_1^0;X_1|X_1+\tilde X_2] - d[X_1^0;X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2] \\ d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] &\leq \tfrac{1}{2}k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]. \end{align*} \end{lemma} \begin{proof}\uses{first-useful} \leanok Immediate from \Cref{first-useful} (and recalling that $k$ is defined to be $d[X_1;X_2]$). \end{proof}
lemma diff_rdist_le_3 [IsProbabilityMeasure (ℙ : Measure Ω₀₁)] : d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁] ≤ k/2 + H[X₁]/4 - H[X₂]/4 := by have h : IndepFun X₁ X₂' := by simpa using h_indep.indepFun (show (0 : Fin 4) ≠ 2 by decide) convert condRuzsaDist_diff_le''' ℙ p.hmeas1 hX₁ hX₂' h using 3 · rw [(IdentDistrib.refl hX₁.aemeasurable).rdist_eq h₂] · apply h₂.entropy_eq include h_indep hX₂ hX₁' h₁ /-- $$ d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] \leq \tfrac{1}{2}k + \tfrac{1}{4} \mathbb{H}[X_2] - \tfrac{1}{4} \mathbb{H}[X_1].$$ -/
pfr/blueprint/src/chapter/entropy_pfr.tex:115
pfr/PFR/FirstEstimate.lean:114
PFR
diff_rdist_le_4
\begin{lemma}[Upper bound on distance differences]\label{first-upper}\leanok \lean{diff_rdist_le_1, diff_rdist_le_2, diff_rdist_le_3, diff_rdist_le_4} We have \begin{align*} d[X^0_1; X_1+\tilde X_2] - d[X^0_1; X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]\\ d[X^0_2;X_2+\tilde X_1] - d[X^0_2; X_2] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2], \\ d[X_1^0;X_1|X_1+\tilde X_2] - d[X_1^0;X_1] &\leq \tfrac{1}{2} k + \tfrac{1}{4} \bbH[X_1] - \tfrac{1}{4} \bbH[X_2] \\ d[X_2^0; X_2|X_2+\tilde X_1] - d[X_2^0; X_2] &\leq \tfrac{1}{2}k + \tfrac{1}{4} \bbH[X_2] - \tfrac{1}{4} \bbH[X_1]. \end{align*} \end{lemma} \begin{proof}\uses{first-useful} \leanok Immediate from \Cref{first-useful} (and recalling that $k$ is defined to be $d[X_1;X_2]$). \end{proof}
lemma diff_rdist_le_4 [IsProbabilityMeasure (ℙ : Measure Ω₀₂)] : d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂] ≤ k/2 + H[X₂]/4 - H[X₁]/4 := by have h : IndepFun X₂ X₁' := by simpa using h_indep.indepFun (show (1 : Fin 4) ≠ 3 by decide) convert condRuzsaDist_diff_le''' ℙ p.hmeas2 hX₂ hX₁' h using 3 · rw [rdist_symm, (IdentDistrib.refl hX₂.aemeasurable).rdist_eq h₁] · apply h₁.entropy_eq include hX₁ hX₂ hX₁' hX₂' h₁ h₂ h_min in
pfr/blueprint/src/chapter/entropy_pfr.tex:115
pfr/PFR/FirstEstimate.lean:124
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
37