Add conversion script
Browse files
script.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
id_to_original = {
|
7 |
+
"1": "5-5-10-H-A1000C 100h-30k-3-crop",
|
8 |
+
"2": "5-5-A1000C 100h-30k-9 crop",
|
9 |
+
"3": "5-5-A1000C 100h-30k-9 crop2",
|
10 |
+
"4": "5-5-A1000C 100h-30k-9-crop",
|
11 |
+
"5": "5k-Cr-10-10-20Fe-H-Ageing1200C 4h-6-crop",
|
12 |
+
"6": "Cr-5-5-10Fe-A1200C 4h-6 crop1",
|
13 |
+
"7": "Cr-5-5-10Fe-A1200C 4h-6 crop2",
|
14 |
+
"8": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop1",
|
15 |
+
"9": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-9crop2",
|
16 |
+
"10": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop",
|
17 |
+
"11": "Cr-5-5-10Fe-H1400-20h-A800-240h-80k-10 crop2",
|
18 |
+
"12": "Cr-5-5-10Fe-H1400-20h-A1000-20h-50k-10 crop",
|
19 |
+
"13": "Cr-5-5-10Fe-H1400-20h-A1000-240h-30k-8 crop2",
|
20 |
+
"14": "Cr-5-5-A1200C 4h-20k-5-crop1",
|
21 |
+
"15": "Cr-5-5-A1200C 4h-20k-5-crop2",
|
22 |
+
"16": "Cr-10-10-20Fe-H20h-A1200C 20h-7-crop1",
|
23 |
+
"17": "J955-H2-7-crop1",
|
24 |
+
"18": "J955-H2-7-crop2",
|
25 |
+
"19": "Cr-10-10-20Fe-A100h-1-crop1",
|
26 |
+
"20": "Cr-10-10-20Fe-A100h-4-crop1",
|
27 |
+
"21": "Cr-10Ni-10Al-20Fe-8 crop1",
|
28 |
+
"22": "Cr-10Ni-10Al-20Fe-8 crop2",
|
29 |
+
"23": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop1",
|
30 |
+
"24": "Cr-10Ni-10Al-20Fe-H1400C20h-9 crop2",
|
31 |
+
}
|
32 |
+
ids_split = {
|
33 |
+
datasets.Split.TEST: [
|
34 |
+
"1",
|
35 |
+
"5",
|
36 |
+
"9",
|
37 |
+
"14",
|
38 |
+
"20",
|
39 |
+
],
|
40 |
+
datasets.Split.VALIDATION: [
|
41 |
+
"2",
|
42 |
+
"7",
|
43 |
+
"18",
|
44 |
+
"22",
|
45 |
+
],
|
46 |
+
datasets.Split.TRAIN: [
|
47 |
+
"3",
|
48 |
+
"4",
|
49 |
+
"6",
|
50 |
+
"8",
|
51 |
+
"10",
|
52 |
+
"11",
|
53 |
+
"12",
|
54 |
+
"13",
|
55 |
+
"15",
|
56 |
+
"16",
|
57 |
+
"17",
|
58 |
+
"19",
|
59 |
+
"21",
|
60 |
+
"23",
|
61 |
+
"24",
|
62 |
+
]
|
63 |
+
}
|
64 |
+
|
65 |
+
_CITATION = """\
|
66 |
+
@article{xia2023Accurate,
|
67 |
+
author = {Zeyu Xia and Kan Ma and Sibo Cheng and Thomas Blackburn and Ziling Peng and Kewei Zhu and Weihang Zhang and Dunhui Xiao and Alexander J Knowles and Rossella Arcucci},
|
68 |
+
copyright = {CC BY-NC 3.0},
|
69 |
+
doi = {10.1039/d3cp00402c},
|
70 |
+
issn = {1463-9076},
|
71 |
+
journal = {Physical Chemistry Chemical Physics},
|
72 |
+
keywords = {},
|
73 |
+
language = {English},
|
74 |
+
month = {6},
|
75 |
+
number = {23},
|
76 |
+
pages = {15970--15987},
|
77 |
+
pmid = {37265373},
|
78 |
+
publisher = {Royal Society of Chemistry (RSC)},
|
79 |
+
title = {Accurate Identification and Measurement of the Precipitate Area by Two-Stage Deep Neural Networks in Novel Chromium-Based Alloy},
|
80 |
+
url = {https://doi.org/10.1039/d3cp00402c},
|
81 |
+
volume = {25},
|
82 |
+
year = {2023}
|
83 |
+
}
|
84 |
+
"""
|
85 |
+
|
86 |
+
_DESCRIPTION = 'A comprehensive, two-tiered deep learning approach designed for precise object detection and segmentation in electron microscopy (EM) images.'
|
87 |
+
|
88 |
+
_CATEGORIES = ["precipitate"]
|
89 |
+
|
90 |
+
_HOMEPAGE = 'https://github.com/xiazeyu/DT_SegNet'
|
91 |
+
|
92 |
+
_LICENSE = 'CC BY-NC 3.0'
|
93 |
+
|
94 |
+
|
95 |
+
def convert_image(image_path):
|
96 |
+
with open(image_path, "rb") as image_file:
|
97 |
+
return image_file.read()
|
98 |
+
# return Image.open(image_path)
|
99 |
+
|
100 |
+
|
101 |
+
def convert_json(json_path):
|
102 |
+
with open(json_path, "r") as json_file:
|
103 |
+
json_str = json.dumps(json.load(json_file))
|
104 |
+
return json_str # .encode('utf-8')
|
105 |
+
|
106 |
+
|
107 |
+
def convert_txt(txt_path):
|
108 |
+
yolo_data = {"bbox": [], "category": []}
|
109 |
+
|
110 |
+
# Open and read the text file
|
111 |
+
with open(txt_path, "r") as file:
|
112 |
+
for line in file:
|
113 |
+
# Split each line into components
|
114 |
+
parts = line.strip().split()
|
115 |
+
|
116 |
+
# The first part is the category, which is added directly to the 'category' list
|
117 |
+
yolo_data["category"].append(int(parts[0]))
|
118 |
+
|
119 |
+
# The rest of the parts are the bounding box coordinates, which need to be converted to floats
|
120 |
+
# and added as a sublist to the 'bbox' list
|
121 |
+
bbox = [float(coord) for coord in parts[1:]]
|
122 |
+
yolo_data["bbox"].append(bbox)
|
123 |
+
|
124 |
+
return yolo_data
|
125 |
+
|
126 |
+
|
127 |
+
def get_ds(pfx):
|
128 |
+
image_array = []
|
129 |
+
seg_annotation_array = []
|
130 |
+
raw_seg_annotation_array = []
|
131 |
+
det_annotation_array = []
|
132 |
+
|
133 |
+
for img_idx in ids_split[pfx]:
|
134 |
+
ydt = convert_txt(f"{pfx}/{img_idx}_label.txt")
|
135 |
+
det_annotation_array.append({
|
136 |
+
"bbox": ydt["bbox"],
|
137 |
+
"category": ydt["category"],
|
138 |
+
})
|
139 |
+
image_array.append(convert_image(f"{pfx}/{img_idx}.png"))
|
140 |
+
seg_annotation_array.append(convert_image(f"{pfx}/{img_idx}_label.png"))
|
141 |
+
raw_seg_annotation_array.append(convert_json(f"{pfx}/{img_idx}.json"))
|
142 |
+
|
143 |
+
data = {
|
144 |
+
"id": ids_split[pfx],
|
145 |
+
"original_name": [id_to_original[file] for file in ids_split[pfx]],
|
146 |
+
"image": image_array,
|
147 |
+
"det_annotation": det_annotation_array,
|
148 |
+
"seg_annotation": seg_annotation_array,
|
149 |
+
"raw_seg_annotation": raw_seg_annotation_array,
|
150 |
+
}
|
151 |
+
|
152 |
+
df = pd.DataFrame(data)
|
153 |
+
|
154 |
+
features = datasets.Features({
|
155 |
+
'id': datasets.Value('int8'),
|
156 |
+
'original_name': datasets.Value('string'),
|
157 |
+
'image': datasets.Image(),
|
158 |
+
"det_annotation": datasets.Sequence(
|
159 |
+
{
|
160 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
161 |
+
"category": datasets.ClassLabel(num_classes=1, names=_CATEGORIES),
|
162 |
+
}
|
163 |
+
),
|
164 |
+
'seg_annotation': datasets.Image(),
|
165 |
+
'raw_seg_annotation': datasets.Value(dtype='string'),
|
166 |
+
})
|
167 |
+
|
168 |
+
data_info = datasets.DatasetInfo(
|
169 |
+
description=_DESCRIPTION,
|
170 |
+
features=features,
|
171 |
+
homepage=_HOMEPAGE,
|
172 |
+
license=_LICENSE,
|
173 |
+
citation=_CITATION,
|
174 |
+
)
|
175 |
+
|
176 |
+
ds = datasets.Dataset.from_pandas(df,
|
177 |
+
features=features,
|
178 |
+
info=data_info,
|
179 |
+
split=pfx)
|
180 |
+
|
181 |
+
ds.VERSION = datasets.Version("1.0.0")
|
182 |
+
|
183 |
+
return ds
|
184 |
+
|
185 |
+
|
186 |
+
ddd = datasets.DatasetDict(
|
187 |
+
{
|
188 |
+
str(datasets.Split.TRAIN): get_ds(datasets.Split.TRAIN),
|
189 |
+
str(datasets.Split.VALIDATION): get_ds(datasets.Split.VALIDATION),
|
190 |
+
str(datasets.Split.TEST): get_ds(datasets.Split.TEST),
|
191 |
+
}
|
192 |
+
)
|
193 |
+
|
194 |
+
# ddd.save_to_disk('data/')
|
195 |
+
# ddd.push_to_hub('xiazeyu/DT_SegNet')
|