Datasets:
File size: 3,619 Bytes
3b8888a aa1b484 3b8888a 9d7d36f 3b8888a aa1b484 3b8888a aa1b484 3b8888a 1d8e210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CIFAR-10 Data Set"""
import pickle
import numpy as np
import datasets
from datasets.tasks import ImageClassification
_CITATION = """\
@TECHREPORT{Krizhevsky09learningmultiple,
author = {Alex Krizhevsky},
title = {Learning multiple layers of features from tiny images},
institution = {},
year = {2009}
}
"""
_DESCRIPTION = """\
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images.
"""
_DATA_URL = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
_NAMES = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
class dataset_copied(datasets.GeneratorBasedBuilder):
"""CIFAR-10 Data Set"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
version=datasets.Version("1.0.0", ""),
description="Plain text import of CIFAR-10 Data Set",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"img": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("img", "label"),
homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
citation=_CITATION,
task_templates=ImageClassification(image_column="img", label_column="label"),
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
),
]
def _generate_examples(self, files, split):
"""This function returns the examples in the raw (text) form."""
if split == "train":
batches = ["data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5"]
if split == "test":
batches = ["test_batch"]
batches = [f"cifar-10-batches-py/{filename}" for filename in batches]
for path, fo in files:
if path in batches:
dict = pickle.load(fo, encoding="bytes")
labels = dict[b"labels"]
images = dict[b"data"]
for idx, _ in enumerate(images):
img_reshaped = np.transpose(np.reshape(images[idx], (3, 32, 32)), (1, 2, 0))
yield f"{path}_{idx}", {
"img": img_reshaped,
"label": labels[idx],
} |