Datasets:
parquet-converter
commited on
Commit
·
bc6b67e
1
Parent(s):
bea9988
Update parquet files
Browse files- README.md +0 -368
- dataset_infos.json +0 -1
- fr-de/wmt19-train-00000-of-00005.parquet +3 -0
- fr-de/wmt19-train-00001-of-00005.parquet +3 -0
- fr-de/wmt19-train-00002-of-00005.parquet +3 -0
- fr-de/wmt19-train-00003-of-00005.parquet +3 -0
- fr-de/wmt19-train-00004-of-00005.parquet +3 -0
- fr-de/wmt19-validation.parquet +3 -0
- wmt19.py +0 -80
- wmt_utils.py +0 -1025
README.md
DELETED
@@ -1,368 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- no-annotation
|
4 |
-
language_creators:
|
5 |
-
- found
|
6 |
-
language:
|
7 |
-
- cs
|
8 |
-
- de
|
9 |
-
- en
|
10 |
-
- fi
|
11 |
-
- fr
|
12 |
-
- gu
|
13 |
-
- kk
|
14 |
-
- lt
|
15 |
-
- ru
|
16 |
-
- zh
|
17 |
-
license:
|
18 |
-
- unknown
|
19 |
-
multilinguality:
|
20 |
-
- translation
|
21 |
-
size_categories:
|
22 |
-
- 10M<n<100M
|
23 |
-
source_datasets:
|
24 |
-
- extended|europarl_bilingual
|
25 |
-
- extended|news_commentary
|
26 |
-
- extended|opus_paracrawl
|
27 |
-
- extended|un_multi
|
28 |
-
task_categories:
|
29 |
-
- translation
|
30 |
-
task_ids: []
|
31 |
-
pretty_name: WMT19
|
32 |
-
paperswithcode_id: null
|
33 |
-
dataset_info:
|
34 |
-
- config_name: cs-en
|
35 |
-
features:
|
36 |
-
- name: translation
|
37 |
-
dtype:
|
38 |
-
translation:
|
39 |
-
languages:
|
40 |
-
- cs
|
41 |
-
- en
|
42 |
-
splits:
|
43 |
-
- name: train
|
44 |
-
num_bytes: 1314871994
|
45 |
-
num_examples: 7270695
|
46 |
-
- name: validation
|
47 |
-
num_bytes: 696229
|
48 |
-
num_examples: 2983
|
49 |
-
download_size: 2018537046
|
50 |
-
dataset_size: 1315568223
|
51 |
-
- config_name: de-en
|
52 |
-
features:
|
53 |
-
- name: translation
|
54 |
-
dtype:
|
55 |
-
translation:
|
56 |
-
languages:
|
57 |
-
- de
|
58 |
-
- en
|
59 |
-
splits:
|
60 |
-
- name: train
|
61 |
-
num_bytes: 8420967590
|
62 |
-
num_examples: 38690334
|
63 |
-
- name: validation
|
64 |
-
num_bytes: 757649
|
65 |
-
num_examples: 2998
|
66 |
-
download_size: 10422475109
|
67 |
-
dataset_size: 8421725239
|
68 |
-
- config_name: fi-en
|
69 |
-
features:
|
70 |
-
- name: translation
|
71 |
-
dtype:
|
72 |
-
translation:
|
73 |
-
languages:
|
74 |
-
- fi
|
75 |
-
- en
|
76 |
-
splits:
|
77 |
-
- name: train
|
78 |
-
num_bytes: 1422922267
|
79 |
-
num_examples: 6587448
|
80 |
-
- name: validation
|
81 |
-
num_bytes: 691841
|
82 |
-
num_examples: 3000
|
83 |
-
download_size: 1006124909
|
84 |
-
dataset_size: 1423614108
|
85 |
-
- config_name: gu-en
|
86 |
-
features:
|
87 |
-
- name: translation
|
88 |
-
dtype:
|
89 |
-
translation:
|
90 |
-
languages:
|
91 |
-
- gu
|
92 |
-
- en
|
93 |
-
splits:
|
94 |
-
- name: train
|
95 |
-
num_bytes: 590763
|
96 |
-
num_examples: 11670
|
97 |
-
- name: validation
|
98 |
-
num_bytes: 774621
|
99 |
-
num_examples: 1998
|
100 |
-
download_size: 38891457
|
101 |
-
dataset_size: 1365384
|
102 |
-
- config_name: kk-en
|
103 |
-
features:
|
104 |
-
- name: translation
|
105 |
-
dtype:
|
106 |
-
translation:
|
107 |
-
languages:
|
108 |
-
- kk
|
109 |
-
- en
|
110 |
-
splits:
|
111 |
-
- name: train
|
112 |
-
num_bytes: 9157438
|
113 |
-
num_examples: 126583
|
114 |
-
- name: validation
|
115 |
-
num_bytes: 846857
|
116 |
-
num_examples: 2066
|
117 |
-
download_size: 41558315
|
118 |
-
dataset_size: 10004295
|
119 |
-
- config_name: lt-en
|
120 |
-
features:
|
121 |
-
- name: translation
|
122 |
-
dtype:
|
123 |
-
translation:
|
124 |
-
languages:
|
125 |
-
- lt
|
126 |
-
- en
|
127 |
-
splits:
|
128 |
-
- name: train
|
129 |
-
num_bytes: 513084361
|
130 |
-
num_examples: 2344893
|
131 |
-
- name: validation
|
132 |
-
num_bytes: 541953
|
133 |
-
num_examples: 2000
|
134 |
-
download_size: 411309952
|
135 |
-
dataset_size: 513626314
|
136 |
-
- config_name: ru-en
|
137 |
-
features:
|
138 |
-
- name: translation
|
139 |
-
dtype:
|
140 |
-
translation:
|
141 |
-
languages:
|
142 |
-
- ru
|
143 |
-
- en
|
144 |
-
splits:
|
145 |
-
- name: train
|
146 |
-
num_bytes: 13721377178
|
147 |
-
num_examples: 37492126
|
148 |
-
- name: validation
|
149 |
-
num_bytes: 1085596
|
150 |
-
num_examples: 3000
|
151 |
-
download_size: 4134147853
|
152 |
-
dataset_size: 13722462774
|
153 |
-
- config_name: zh-en
|
154 |
-
features:
|
155 |
-
- name: translation
|
156 |
-
dtype:
|
157 |
-
translation:
|
158 |
-
languages:
|
159 |
-
- zh
|
160 |
-
- en
|
161 |
-
splits:
|
162 |
-
- name: train
|
163 |
-
num_bytes: 5584359748
|
164 |
-
num_examples: 25984574
|
165 |
-
- name: validation
|
166 |
-
num_bytes: 1107522
|
167 |
-
num_examples: 3981
|
168 |
-
download_size: 2195879129
|
169 |
-
dataset_size: 5585467270
|
170 |
-
- config_name: fr-de
|
171 |
-
features:
|
172 |
-
- name: translation
|
173 |
-
dtype:
|
174 |
-
translation:
|
175 |
-
languages:
|
176 |
-
- fr
|
177 |
-
- de
|
178 |
-
splits:
|
179 |
-
- name: train
|
180 |
-
num_bytes: 2358413485
|
181 |
-
num_examples: 9824476
|
182 |
-
- name: validation
|
183 |
-
num_bytes: 441426
|
184 |
-
num_examples: 1512
|
185 |
-
download_size: 757345846
|
186 |
-
dataset_size: 2358854911
|
187 |
-
---
|
188 |
-
|
189 |
-
# Dataset Card for "wmt19"
|
190 |
-
|
191 |
-
## Table of Contents
|
192 |
-
- [Dataset Description](#dataset-description)
|
193 |
-
- [Dataset Summary](#dataset-summary)
|
194 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
195 |
-
- [Languages](#languages)
|
196 |
-
- [Dataset Structure](#dataset-structure)
|
197 |
-
- [Data Instances](#data-instances)
|
198 |
-
- [Data Fields](#data-fields)
|
199 |
-
- [Data Splits](#data-splits)
|
200 |
-
- [Dataset Creation](#dataset-creation)
|
201 |
-
- [Curation Rationale](#curation-rationale)
|
202 |
-
- [Source Data](#source-data)
|
203 |
-
- [Annotations](#annotations)
|
204 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
205 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
206 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
207 |
-
- [Discussion of Biases](#discussion-of-biases)
|
208 |
-
- [Other Known Limitations](#other-known-limitations)
|
209 |
-
- [Additional Information](#additional-information)
|
210 |
-
- [Dataset Curators](#dataset-curators)
|
211 |
-
- [Licensing Information](#licensing-information)
|
212 |
-
- [Citation Information](#citation-information)
|
213 |
-
- [Contributions](#contributions)
|
214 |
-
|
215 |
-
## Dataset Description
|
216 |
-
|
217 |
-
- **Homepage:** [http://www.statmt.org/wmt19/translation-task.html](http://www.statmt.org/wmt19/translation-task.html)
|
218 |
-
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
219 |
-
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
220 |
-
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
221 |
-
- **Size of downloaded dataset files:** 1924.57 MB
|
222 |
-
- **Size of the generated dataset:** 1254.62 MB
|
223 |
-
- **Total amount of disk used:** 3179.19 MB
|
224 |
-
|
225 |
-
### Dataset Summary
|
226 |
-
|
227 |
-
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
|
228 |
-
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
|
229 |
-
<ul>
|
230 |
-
<li>Non-English files contain many English sentences.</li>
|
231 |
-
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
|
232 |
-
</ul>
|
233 |
-
<p>We have contacted the WMT organizers.</p>
|
234 |
-
</div>
|
235 |
-
|
236 |
-
Translation dataset based on the data from statmt.org.
|
237 |
-
|
238 |
-
Versions exist for different years using a combination of data
|
239 |
-
sources. The base `wmt` allows you to create a custom dataset by choosing
|
240 |
-
your own data/language pair. This can be done as follows:
|
241 |
-
|
242 |
-
```python
|
243 |
-
from datasets import inspect_dataset, load_dataset_builder
|
244 |
-
|
245 |
-
inspect_dataset("wmt19", "path/to/scripts")
|
246 |
-
builder = load_dataset_builder(
|
247 |
-
"path/to/scripts/wmt_utils.py",
|
248 |
-
language_pair=("fr", "de"),
|
249 |
-
subsets={
|
250 |
-
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
251 |
-
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
252 |
-
},
|
253 |
-
)
|
254 |
-
|
255 |
-
# Standard version
|
256 |
-
builder.download_and_prepare()
|
257 |
-
ds = builder.as_dataset()
|
258 |
-
|
259 |
-
# Streamable version
|
260 |
-
ds = builder.as_streaming_dataset()
|
261 |
-
```
|
262 |
-
|
263 |
-
### Supported Tasks and Leaderboards
|
264 |
-
|
265 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
266 |
-
|
267 |
-
### Languages
|
268 |
-
|
269 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
270 |
-
|
271 |
-
## Dataset Structure
|
272 |
-
|
273 |
-
### Data Instances
|
274 |
-
|
275 |
-
#### cs-en
|
276 |
-
|
277 |
-
- **Size of downloaded dataset files:** 1924.57 MB
|
278 |
-
- **Size of the generated dataset:** 1254.62 MB
|
279 |
-
- **Total amount of disk used:** 3179.19 MB
|
280 |
-
|
281 |
-
An example of 'validation' looks as follows.
|
282 |
-
```
|
283 |
-
|
284 |
-
```
|
285 |
-
|
286 |
-
### Data Fields
|
287 |
-
|
288 |
-
The data fields are the same among all splits.
|
289 |
-
|
290 |
-
#### cs-en
|
291 |
-
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
|
292 |
-
|
293 |
-
### Data Splits
|
294 |
-
|
295 |
-
|name | train |validation|
|
296 |
-
|-----|------:|---------:|
|
297 |
-
|cs-en|7270695| 2983|
|
298 |
-
|
299 |
-
## Dataset Creation
|
300 |
-
|
301 |
-
### Curation Rationale
|
302 |
-
|
303 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
304 |
-
|
305 |
-
### Source Data
|
306 |
-
|
307 |
-
#### Initial Data Collection and Normalization
|
308 |
-
|
309 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
310 |
-
|
311 |
-
#### Who are the source language producers?
|
312 |
-
|
313 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
314 |
-
|
315 |
-
### Annotations
|
316 |
-
|
317 |
-
#### Annotation process
|
318 |
-
|
319 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
320 |
-
|
321 |
-
#### Who are the annotators?
|
322 |
-
|
323 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
324 |
-
|
325 |
-
### Personal and Sensitive Information
|
326 |
-
|
327 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
328 |
-
|
329 |
-
## Considerations for Using the Data
|
330 |
-
|
331 |
-
### Social Impact of Dataset
|
332 |
-
|
333 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
334 |
-
|
335 |
-
### Discussion of Biases
|
336 |
-
|
337 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
338 |
-
|
339 |
-
### Other Known Limitations
|
340 |
-
|
341 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
342 |
-
|
343 |
-
## Additional Information
|
344 |
-
|
345 |
-
### Dataset Curators
|
346 |
-
|
347 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
348 |
-
|
349 |
-
### Licensing Information
|
350 |
-
|
351 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
352 |
-
|
353 |
-
### Citation Information
|
354 |
-
|
355 |
-
```
|
356 |
-
|
357 |
-
@ONLINE {wmt19translate,
|
358 |
-
author = "Wikimedia Foundation",
|
359 |
-
title = "ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News",
|
360 |
-
url = "http://www.statmt.org/wmt19/translation-task.html"
|
361 |
-
}
|
362 |
-
|
363 |
-
```
|
364 |
-
|
365 |
-
|
366 |
-
### Contributions
|
367 |
-
|
368 |
-
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"cs-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["cs", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "cs", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "cs-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1314871994, "num_examples": 7270695, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 696229, "num_examples": 2983, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.cs-en.tsv.gz": {"num_bytes": 68176874, "checksum": "e5e46de957439cf14e5048fc4127656d91315646822f2ac6c0193b5758617f60"}, "https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-cs.bicleaner07.tmx.gz": {"num_bytes": 957135146, "checksum": "404bd17f9988f74f6544f7f9762bfbc4e52f7532779c28187e34dc8a5176960e"}, "https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip": {"num_bytes": 918734483, "checksum": "5ffe980072ea29adfd84568d099bea366d9f72772b988e670794ae851b4e5627"}, "http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.cs-en.tsv.gz": {"num_bytes": 28119465, "checksum": "b0ef38b810bc67811eb908080243e0211062c26a7a71cc05996c96ea6c55e0ff"}, "http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip": {"num_bytes": 2544381, "checksum": "e66466e00aecd392daaf547275590a9264bbc6aed70118c5c7cfd6946daf24ac"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.cs-en.tsv.gz": {"num_bytes": 5112423, "checksum": "54c9899b3cf897aaa520645436843d57e36ba9cce22f2c544a63a62493e18002"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 2018537046, "post_processing_size": null, "dataset_size": 1315568223, "size_in_bytes": 3334105269}, "de-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["de", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "de", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "de-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8420967590, "num_examples": 38690334, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 757649, "num_examples": 2998, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.de-en.tsv.gz": {"num_bytes": 204454328, "checksum": "c2aef75d81bf06b22e4a9237319c1d53ba9668a13cb155c6b1361182cd3abc84"}, "https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-de.bicleaner07.tmx.gz": {"num_bytes": 9091373722, "checksum": "fbeef288e4f1d294534be3afbf43469cf59938553436108d717873c1c50d34c7"}, "https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip": {"num_bytes": 918734483, "checksum": "5ffe980072ea29adfd84568d099bea366d9f72772b988e670794ae851b4e5627"}, "http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-en.tsv.gz": {"num_bytes": 39390551, "checksum": "8aaa98a77d38bd39dcbdbcb775f3b6c633700e4c10fd915cf3dc6b9bfd0f2dca"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.de-en.tsv.gz": {"num_bytes": 17919359, "checksum": "24b0222ee87b6b8b3142c92f1b6f3c49374503fb066c46f190f00bf717a67102"}, "https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip": {"num_bytes": 111888392, "checksum": "ed5a10e57092715020334b918f6e114e5b6c7206bee3e956f2a1e2937c59c2e7"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 10422475109, "post_processing_size": null, "dataset_size": 8421725239, "size_in_bytes": 18844200348}, "fi-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["fi", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "fi", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "fi-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1422922267, "num_examples": 6587448, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 691841, "num_examples": 3000, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.fi-en.tsv.gz": {"num_bytes": 194574376, "checksum": "6bd65e497db4cc783b08f8be62aaa4b85c67c1e260a09e785cef77ff9e4488e8"}, "https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-fi.bicleaner07.tmx.gz": {"num_bytes": 726455593, "checksum": "d7741612d6d82b9479819b1acc1149343c5bed7d4953f982e8889f2156a8bf17"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.fi-en.tsv.gz": {"num_bytes": 5101486, "checksum": "01906ddfc88b20039939e69652c5ba9b335c4671be5131c00d76ec0420760fad"}, "https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-fi.tmx.zip": {"num_bytes": 41279180, "checksum": "2a3ad1343cded48241b8ed38db9a963d89f924eb46429f9c3eace56b1f56ba4e"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 1006124909, "post_processing_size": null, "dataset_size": 1423614108, "size_in_bytes": 2429739017}, "gu-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["gu", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "gu", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "gu-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 590763, "num_examples": 11670, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 774621, "num_examples": 1998, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.gu-en.tsv.gz": {"num_bytes": 177183, "checksum": "d07da4ff7e648e1e1bc3ac1303cd7c51df15704a13b8e6ce7ed46e938ef4ae8d"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 38891457, "post_processing_size": null, "dataset_size": 1365384, "size_in_bytes": 40256841}, "kk-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["kk", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "kk", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "kk-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9157438, "num_examples": 126583, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 846857, "num_examples": 2066, "dataset_name": "wmt19"}}, "download_checksums": {"http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-kk.tsv.gz": {"num_bytes": 1269004, "checksum": "bc0fdd1dd040c53409ace60c019a8a58450a36f128bc1e4263fcb5d4fc1bf0cb"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.kk-en.tsv.gz": {"num_bytes": 1575037, "checksum": "6117eb91ca5538298c15fb366fb7f15e5294c12ef7993f249f307f93c52ae504"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 41558315, "post_processing_size": null, "dataset_size": 10004295, "size_in_bytes": 51562610}, "lt-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["lt", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "lt", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "lt-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 513084361, "num_examples": 2344893, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 541953, "num_examples": 2000, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.lt-en.tsv.gz": {"num_bytes": 64351345, "checksum": "9ff4cf5ab95603a6f2c9b6342dd8fdaa9ab307dce3ba25b4317cc6da98069a2d"}, "https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-lt.bicleaner07.tmx.gz": {"num_bytes": 286088883, "checksum": "8943d6770a4d0ac152436a42105052fb18cba0e8a6df401daa18390b9439693c"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.lt-en.tsv.gz": {"num_bytes": 1725255, "checksum": "4ee533538e441811cb98caf08ad749e8d407905952d3b880e2eb1e795f1f28fc"}, "https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-lt.tmx.zip": {"num_bytes": 20430195, "checksum": "a61ffccc45d6763aaa3046708e1b19207f1c2dadab456312652892dd6a54c3f5"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 411309952, "post_processing_size": null, "dataset_size": 513626314, "size_in_bytes": 924936266}, "ru-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["ru", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "ru", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "ru-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 13721377178, "num_examples": 37492126, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 1085596, "num_examples": 3000, "dataset_name": "wmt19"}}, "download_checksums": {"https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz": {"num_bytes": 667981874, "checksum": "d4902407ef462034e88fbf5d8712a11c4b32a6e0e82d3a1b4f42a6f33d94f3c0"}, "https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip": {"num_bytes": 918734483, "checksum": "5ffe980072ea29adfd84568d099bea366d9f72772b988e670794ae851b4e5627"}, "http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-ru.tsv.gz": {"num_bytes": 41411245, "checksum": "09aef10a0bb51104622ff6852cdf4f693b5906de970156b4e8db1e64ec55340c"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.ru-en.tsv.gz": {"num_bytes": 20299017, "checksum": "5da4f340b3ac684dca016bb5fc0730b00fc9808f0a4891a6d745aaa686a600e4"}, "https://huggingface.co/datasets/wmt/uncorpus/resolve/main-zip/UNv1.0.en-ru.zip": {"num_bytes": 2447006960, "checksum": "72c2670fa6aadb36d541cba91cd26b9da291a976bf1a2748177a57baf8261f4c"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 4134147853, "post_processing_size": null, "dataset_size": 13722462774, "size_in_bytes": 17856610627}, "zh-en": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["zh", "en"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "zh", "output": "en"}, "task_templates": null, "builder_name": "wmt19", "config_name": "zh-en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5584359748, "num_examples": 25984574, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 1107522, "num_examples": 3981, "dataset_name": "wmt19"}}, "download_checksums": {"http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-zh.tsv.gz": {"num_bytes": 36696769, "checksum": "fc9cc3f28ad62872d8eece1dffb1148f972baf6621bc87ba049a3ae0aab4025b"}, "https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.zh-en.tsv.gz": {"num_bytes": 12974754, "checksum": "78a8d371c0c1de14786bcbaaa08049d7f77ed58ecef3bc95a305ad17944f1fcb"}, "https://huggingface.co/datasets/wmt/uncorpus/resolve/main-zip/UNv1.0.en-zh.zip": {"num_bytes": 1385832125, "checksum": "97f5ce0892084cdbb2332b52ffcc0299a649ba0a43712d921575fe2b7edfb4b4"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/casia2015.zip": {"num_bytes": 98159063, "checksum": "c939f1528f96c419e9bbffb9caad869616a969e7704ffac896e245a02aff59a9"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/casict2011.zip": {"num_bytes": 166957775, "checksum": "606adc0ccc5d8fc7c47f8589991286616342a1a379a571ce3038918731ae0182"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/casict2015.zip": {"num_bytes": 106836569, "checksum": "eef8e25b297c1aff12ab24719247d3588e756d7a4e2c30d4d34fcb4d05ab1050"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/datum2015.zip": {"num_bytes": 100118018, "checksum": "654afce6731485c40ce856514ab80cd2bfd836126bcaf48cdb911ebc32b021a4"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/datum2017.zip": {"num_bytes": 99278067, "checksum": "737455c139596f4abf3b1da73bc38932b3ef9534549328eff47d867e29950ed2"}, "https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/neu2017.zip": {"num_bytes": 150311715, "checksum": "5c5ea9ac5cbc43c974bd53796a3a29829800865b6398b52cda0a3854cb0d2e03"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 2195879129, "post_processing_size": null, "dataset_size": 5585467270, "size_in_bytes": 7781346399}, "fr-de": {"description": "Translate dataset based on the data from statmt.org.\n\nVersions exists for the different years using a combination of multiple data\nsources. The base `wmt_translate` allows you to create your own config to choose\nyour own data/language pair by creating a custom `datasets.translate.wmt.WmtConfig`.\n\n```\nconfig = datasets.wmt.WmtConfig(\n version=\"0.0.1\",\n language_pair=(\"fr\", \"de\"),\n subsets={\n datasets.Split.TRAIN: [\"commoncrawl_frde\"],\n datasets.Split.VALIDATION: [\"euelections_dev2019\"],\n },\n)\nbuilder = datasets.builder(\"wmt_translate\", config=config)\n```\n\n", "citation": "\n@ONLINE {wmt19translate,\n author = {Wikimedia Foundation},\n title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},\n url = {http://www.statmt.org/wmt19/translation-task.html}\n}\n", "homepage": "http://www.statmt.org/wmt19/translation-task.html", "license": "", "features": {"translation": {"languages": ["fr", "de"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": {"input": "fr", "output": "de"}, "task_templates": null, "builder_name": "wmt19", "config_name": "fr-de", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2358413485, "num_examples": 9824476, "dataset_name": "wmt19"}, "validation": {"name": "validation", "num_bytes": 441426, "num_examples": 1512, "dataset_name": "wmt19"}}, "download_checksums": {"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.fr.gz": {"num_bytes": 93157785, "checksum": "a065d9e973cd126f0fe72437e2ae03af0cb4b102d51f711e7985034daf60de96"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.de.gz": {"num_bytes": 97417749, "checksum": "6850fac194d2cf74a732588ac78b04488a63b79c5481779e77cbab7d0e655a1e"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz": {"num_bytes": 216045091, "checksum": "cc71eb1f4772acc12314827d91fbaea6a5a73678b97b1a699fb9505430c23bc8"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz": {"num_bytes": 212226219, "checksum": "c5c6c94c8c0d574fa93a8ed57f5a43baf2cf77844bb77bc0d81dbbae77444e52"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.fr.gz": {"num_bytes": 32607032, "checksum": "cf4e89b6a8058243d7d91a978624b124f1e3a47dea4e124a7e25085e2455a5a6"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.de.gz": {"num_bytes": 33273148, "checksum": "1bbbc4502130dd8152286cb0b8cadeeaeb4eff5b3f8cf1e710f6c023733cf5da"}, "http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz": {"num_bytes": 33904548, "checksum": "31a7735fe2ae6d6841847fdebb5aed03d5da1c15500695154d3c35d40c29cb09"}, "https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip": {"num_bytes": 38714274, "checksum": "d796e363740fdc4261aa6f5a3d2f8223e3adaee7d737b7724863325b8956dfd1"}}, "download_size": 757345846, "post_processing_size": null, "dataset_size": 2358854911, "size_in_bytes": 3116200757}}
|
|
|
|
fr-de/wmt19-train-00000-of-00005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb174be76d4a9cfb159c06c8cbc0456803fd211c871ad96cc45794d800dac54
|
3 |
+
size 281073703
|
fr-de/wmt19-train-00001-of-00005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9a4b6ed119267b442132012d6bea0bb640e5d52adb5d9af375a16c58ef44a7
|
3 |
+
size 249011163
|
fr-de/wmt19-train-00002-of-00005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f73c5585fd7b4eac3be0b4cc091fbef3bd9c99e5aa744169f782aba2a8a9d777
|
3 |
+
size 257061643
|
fr-de/wmt19-train-00003-of-00005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:309f91d84fadacd6960f749ea2b5b604a0fbb6bf88b8854c9c653b25c097f5cd
|
3 |
+
size 267595751
|
fr-de/wmt19-train-00004-of-00005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f92820dcb82d29b8429ab89028f1f5468b63aaf2b473e8fa736402de367c458d
|
3 |
+
size 206830756
|
fr-de/wmt19-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37e4f09dc2ad63c3d63f2cc28fd599e7fc87a1188e8ce115e376a61c15d491d
|
3 |
+
size 263123
|
wmt19.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""WMT19: Translate dataset."""
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
from .wmt_utils import CWMT_SUBSET_NAMES, Wmt, WmtConfig
|
22 |
-
|
23 |
-
|
24 |
-
_URL = "http://www.statmt.org/wmt19/translation-task.html"
|
25 |
-
# TODO(adarob): Update with citation of overview paper once it is published.
|
26 |
-
_CITATION = """
|
27 |
-
@ONLINE {wmt19translate,
|
28 |
-
author = {Wikimedia Foundation},
|
29 |
-
title = {ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News},
|
30 |
-
url = {http://www.statmt.org/wmt19/translation-task.html}
|
31 |
-
}
|
32 |
-
"""
|
33 |
-
|
34 |
-
_LANGUAGE_PAIRS = [(lang, "en") for lang in ["cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"]] + [("fr", "de")]
|
35 |
-
|
36 |
-
|
37 |
-
class Wmt19(Wmt):
|
38 |
-
"""WMT 19 translation datasets for {(xx, "en")} + ("fr", "de") pairs."""
|
39 |
-
|
40 |
-
# Version history:
|
41 |
-
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
|
42 |
-
BUILDER_CONFIGS = [
|
43 |
-
WmtConfig( # pylint:disable=g-complex-comprehension
|
44 |
-
description="WMT 2019 %s-%s translation task dataset." % (l1, l2),
|
45 |
-
url=_URL,
|
46 |
-
citation=_CITATION,
|
47 |
-
language_pair=(l1, l2),
|
48 |
-
version=datasets.Version("1.0.0"),
|
49 |
-
)
|
50 |
-
for l1, l2 in _LANGUAGE_PAIRS
|
51 |
-
]
|
52 |
-
|
53 |
-
@property
|
54 |
-
def manual_download_instructions(self):
|
55 |
-
if self.config.language_pair[1] in ["cs", "hi", "ru"]:
|
56 |
-
return "Please download the data manually as explained. TODO(PVP)"
|
57 |
-
|
58 |
-
@property
|
59 |
-
def _subsets(self):
|
60 |
-
return {
|
61 |
-
datasets.Split.TRAIN: [
|
62 |
-
"europarl_v9",
|
63 |
-
"europarl_v7_frde",
|
64 |
-
"paracrawl_v3",
|
65 |
-
"paracrawl_v1_ru",
|
66 |
-
"paracrawl_v3_frde",
|
67 |
-
"commoncrawl",
|
68 |
-
"commoncrawl_frde",
|
69 |
-
"newscommentary_v14",
|
70 |
-
"newscommentary_v14_frde",
|
71 |
-
"czeng_17",
|
72 |
-
"yandexcorpus",
|
73 |
-
"wikititles_v1",
|
74 |
-
"uncorpus_v1",
|
75 |
-
"rapid_2016_ltfi",
|
76 |
-
"rapid_2019",
|
77 |
-
]
|
78 |
-
+ CWMT_SUBSET_NAMES,
|
79 |
-
datasets.Split.VALIDATION: ["euelections_dev2019", "newsdev2019", "newstest2018"],
|
80 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wmt_utils.py
DELETED
@@ -1,1025 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""WMT: Translate dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import codecs
|
21 |
-
import functools
|
22 |
-
import glob
|
23 |
-
import gzip
|
24 |
-
import itertools
|
25 |
-
import os
|
26 |
-
import re
|
27 |
-
import xml.etree.cElementTree as ElementTree
|
28 |
-
|
29 |
-
import datasets
|
30 |
-
|
31 |
-
|
32 |
-
logger = datasets.logging.get_logger(__name__)
|
33 |
-
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
Translation dataset based on the data from statmt.org.
|
37 |
-
|
38 |
-
Versions exist for different years using a combination of data
|
39 |
-
sources. The base `wmt` allows you to create a custom dataset by choosing
|
40 |
-
your own data/language pair. This can be done as follows:
|
41 |
-
|
42 |
-
```python
|
43 |
-
from datasets import inspect_dataset, load_dataset_builder
|
44 |
-
|
45 |
-
inspect_dataset("wmt19", "path/to/scripts")
|
46 |
-
builder = load_dataset_builder(
|
47 |
-
"path/to/scripts/wmt_utils.py",
|
48 |
-
language_pair=("fr", "de"),
|
49 |
-
subsets={
|
50 |
-
datasets.Split.TRAIN: ["commoncrawl_frde"],
|
51 |
-
datasets.Split.VALIDATION: ["euelections_dev2019"],
|
52 |
-
},
|
53 |
-
)
|
54 |
-
|
55 |
-
# Standard version
|
56 |
-
builder.download_and_prepare()
|
57 |
-
ds = builder.as_dataset()
|
58 |
-
|
59 |
-
# Streamable version
|
60 |
-
ds = builder.as_streaming_dataset()
|
61 |
-
```
|
62 |
-
|
63 |
-
"""
|
64 |
-
|
65 |
-
|
66 |
-
CWMT_SUBSET_NAMES = ["casia2015", "casict2011", "casict2015", "datum2015", "datum2017", "neu2017"]
|
67 |
-
|
68 |
-
|
69 |
-
class SubDataset:
|
70 |
-
"""Class to keep track of information on a sub-dataset of WMT."""
|
71 |
-
|
72 |
-
def __init__(self, name, target, sources, url, path, manual_dl_files=None):
|
73 |
-
"""Sub-dataset of WMT.
|
74 |
-
|
75 |
-
Args:
|
76 |
-
name: `string`, a unique dataset identifier.
|
77 |
-
target: `string`, the target language code.
|
78 |
-
sources: `set<string>`, the set of source language codes.
|
79 |
-
url: `string` or `(string, string)`, URL(s) or URL template(s) specifying
|
80 |
-
where to download the raw data from. If two strings are provided, the
|
81 |
-
first is used for the source language and the second for the target.
|
82 |
-
Template strings can either contain '{src}' placeholders that will be
|
83 |
-
filled in with the source language code, '{0}' and '{1}' placeholders
|
84 |
-
that will be filled in with the source and target language codes in
|
85 |
-
alphabetical order, or all 3.
|
86 |
-
path: `string` or `(string, string)`, path(s) or path template(s)
|
87 |
-
specifing the path to the raw data relative to the root of the
|
88 |
-
downloaded archive. If two strings are provided, the dataset is assumed
|
89 |
-
to be made up of parallel text files, the first being the source and the
|
90 |
-
second the target. If one string is provided, both languages are assumed
|
91 |
-
to be stored within the same file and the extension is used to determine
|
92 |
-
how to parse it. Template strings should be formatted the same as in
|
93 |
-
`url`.
|
94 |
-
manual_dl_files: `<list>(string)` (optional), the list of files that must
|
95 |
-
be manually downloaded to the data directory.
|
96 |
-
"""
|
97 |
-
self._paths = (path,) if isinstance(path, str) else path
|
98 |
-
self._urls = (url,) if isinstance(url, str) else url
|
99 |
-
self._manual_dl_files = manual_dl_files if manual_dl_files else []
|
100 |
-
self.name = name
|
101 |
-
self.target = target
|
102 |
-
self.sources = set(sources)
|
103 |
-
|
104 |
-
def _inject_language(self, src, strings):
|
105 |
-
"""Injects languages into (potentially) template strings."""
|
106 |
-
if src not in self.sources:
|
107 |
-
raise ValueError(f"Invalid source for '{self.name}': {src}")
|
108 |
-
|
109 |
-
def _format_string(s):
|
110 |
-
if "{0}" in s and "{1}" and "{src}" in s:
|
111 |
-
return s.format(*sorted([src, self.target]), src=src)
|
112 |
-
elif "{0}" in s and "{1}" in s:
|
113 |
-
return s.format(*sorted([src, self.target]))
|
114 |
-
elif "{src}" in s:
|
115 |
-
return s.format(src=src)
|
116 |
-
else:
|
117 |
-
return s
|
118 |
-
|
119 |
-
return [_format_string(s) for s in strings]
|
120 |
-
|
121 |
-
def get_url(self, src):
|
122 |
-
return self._inject_language(src, self._urls)
|
123 |
-
|
124 |
-
def get_manual_dl_files(self, src):
|
125 |
-
return self._inject_language(src, self._manual_dl_files)
|
126 |
-
|
127 |
-
def get_path(self, src):
|
128 |
-
return self._inject_language(src, self._paths)
|
129 |
-
|
130 |
-
|
131 |
-
# Subsets used in the training sets for various years of WMT.
|
132 |
-
_TRAIN_SUBSETS = [
|
133 |
-
# pylint:disable=line-too-long
|
134 |
-
SubDataset(
|
135 |
-
name="commoncrawl",
|
136 |
-
target="en", # fr-de pair in commoncrawl_frde
|
137 |
-
sources={"cs", "de", "es", "fr", "ru"},
|
138 |
-
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-commoncrawl.zip",
|
139 |
-
path=("commoncrawl.{src}-en.{src}", "commoncrawl.{src}-en.en"),
|
140 |
-
),
|
141 |
-
SubDataset(
|
142 |
-
name="commoncrawl_frde",
|
143 |
-
target="de",
|
144 |
-
sources={"fr"},
|
145 |
-
url=(
|
146 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.fr.gz",
|
147 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/commoncrawl.de.gz",
|
148 |
-
),
|
149 |
-
path=("", ""),
|
150 |
-
),
|
151 |
-
SubDataset(
|
152 |
-
name="czeng_10",
|
153 |
-
target="en",
|
154 |
-
sources={"cs"},
|
155 |
-
url="http://ufal.mff.cuni.cz/czeng/czeng10",
|
156 |
-
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
157 |
-
# Each tar contains multiple files, which we process specially in
|
158 |
-
# _parse_czeng.
|
159 |
-
path=("data.plaintext-format/??train.gz",) * 10,
|
160 |
-
),
|
161 |
-
SubDataset(
|
162 |
-
name="czeng_16pre",
|
163 |
-
target="en",
|
164 |
-
sources={"cs"},
|
165 |
-
url="http://ufal.mff.cuni.cz/czeng/czeng16pre",
|
166 |
-
manual_dl_files=["czeng16pre.deduped-ignoring-sections.txt.gz"],
|
167 |
-
path="",
|
168 |
-
),
|
169 |
-
SubDataset(
|
170 |
-
name="czeng_16",
|
171 |
-
target="en",
|
172 |
-
sources={"cs"},
|
173 |
-
url="http://ufal.mff.cuni.cz/czeng",
|
174 |
-
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
175 |
-
# Each tar contains multiple files, which we process specially in
|
176 |
-
# _parse_czeng.
|
177 |
-
path=("data.plaintext-format/??train.gz",) * 10,
|
178 |
-
),
|
179 |
-
SubDataset(
|
180 |
-
# This dataset differs from the above in the filtering that is applied
|
181 |
-
# during parsing.
|
182 |
-
name="czeng_17",
|
183 |
-
target="en",
|
184 |
-
sources={"cs"},
|
185 |
-
url="http://ufal.mff.cuni.cz/czeng",
|
186 |
-
manual_dl_files=["data-plaintext-format.%d.tar" % i for i in range(10)],
|
187 |
-
# Each tar contains multiple files, which we process specially in
|
188 |
-
# _parse_czeng.
|
189 |
-
path=("data.plaintext-format/??train.gz",) * 10,
|
190 |
-
),
|
191 |
-
SubDataset(
|
192 |
-
name="dcep_v1",
|
193 |
-
target="en",
|
194 |
-
sources={"lv"},
|
195 |
-
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/dcep.lv-en.v1.zip",
|
196 |
-
path=("dcep.en-lv/dcep.lv", "dcep.en-lv/dcep.en"),
|
197 |
-
),
|
198 |
-
SubDataset(
|
199 |
-
name="europarl_v7",
|
200 |
-
target="en",
|
201 |
-
sources={"cs", "de", "es", "fr"},
|
202 |
-
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-europarl-v7.zip",
|
203 |
-
path=("training/europarl-v7.{src}-en.{src}", "training/europarl-v7.{src}-en.en"),
|
204 |
-
),
|
205 |
-
SubDataset(
|
206 |
-
name="europarl_v7_frde",
|
207 |
-
target="de",
|
208 |
-
sources={"fr"},
|
209 |
-
url=(
|
210 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.fr.gz",
|
211 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/europarl-v7.de.gz",
|
212 |
-
),
|
213 |
-
path=("", ""),
|
214 |
-
),
|
215 |
-
SubDataset(
|
216 |
-
name="europarl_v8_18",
|
217 |
-
target="en",
|
218 |
-
sources={"et", "fi"},
|
219 |
-
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-ep-v8.zip",
|
220 |
-
path=("training/europarl-v8.{src}-en.{src}", "training/europarl-v8.{src}-en.en"),
|
221 |
-
),
|
222 |
-
SubDataset(
|
223 |
-
name="europarl_v8_16",
|
224 |
-
target="en",
|
225 |
-
sources={"fi", "ro"},
|
226 |
-
url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-ep-v8.zip",
|
227 |
-
path=("training-parallel-ep-v8/europarl-v8.{src}-en.{src}", "training-parallel-ep-v8/europarl-v8.{src}-en.en"),
|
228 |
-
),
|
229 |
-
SubDataset(
|
230 |
-
name="europarl_v9",
|
231 |
-
target="en",
|
232 |
-
sources={"cs", "de", "fi", "lt"},
|
233 |
-
url="https://huggingface.co/datasets/wmt/europarl/resolve/main/v9/training/europarl-v9.{src}-en.tsv.gz",
|
234 |
-
path="",
|
235 |
-
),
|
236 |
-
SubDataset(
|
237 |
-
name="gigafren",
|
238 |
-
target="en",
|
239 |
-
sources={"fr"},
|
240 |
-
url="https://huggingface.co/datasets/wmt/wmt10/resolve/main-zip/training-giga-fren.zip",
|
241 |
-
path=("giga-fren.release2.fixed.fr.gz", "giga-fren.release2.fixed.en.gz"),
|
242 |
-
),
|
243 |
-
SubDataset(
|
244 |
-
name="hindencorp_01",
|
245 |
-
target="en",
|
246 |
-
sources={"hi"},
|
247 |
-
url="http://ufallab.ms.mff.cuni.cz/~bojar/hindencorp",
|
248 |
-
manual_dl_files=["hindencorp0.1.gz"],
|
249 |
-
path="",
|
250 |
-
),
|
251 |
-
SubDataset(
|
252 |
-
name="leta_v1",
|
253 |
-
target="en",
|
254 |
-
sources={"lv"},
|
255 |
-
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/leta.v1.zip",
|
256 |
-
path=("LETA-lv-en/leta.lv", "LETA-lv-en/leta.en"),
|
257 |
-
),
|
258 |
-
SubDataset(
|
259 |
-
name="multiun",
|
260 |
-
target="en",
|
261 |
-
sources={"es", "fr"},
|
262 |
-
url="https://huggingface.co/datasets/wmt/wmt13/resolve/main-zip/training-parallel-un.zip",
|
263 |
-
path=("un/undoc.2000.{src}-en.{src}", "un/undoc.2000.{src}-en.en"),
|
264 |
-
),
|
265 |
-
SubDataset(
|
266 |
-
name="newscommentary_v9",
|
267 |
-
target="en",
|
268 |
-
sources={"cs", "de", "fr", "ru"},
|
269 |
-
url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/training-parallel-nc-v9.zip",
|
270 |
-
path=("training/news-commentary-v9.{src}-en.{src}", "training/news-commentary-v9.{src}-en.en"),
|
271 |
-
),
|
272 |
-
SubDataset(
|
273 |
-
name="newscommentary_v10",
|
274 |
-
target="en",
|
275 |
-
sources={"cs", "de", "fr", "ru"},
|
276 |
-
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/training-parallel-nc-v10.zip",
|
277 |
-
path=("news-commentary-v10.{src}-en.{src}", "news-commentary-v10.{src}-en.en"),
|
278 |
-
),
|
279 |
-
SubDataset(
|
280 |
-
name="newscommentary_v11",
|
281 |
-
target="en",
|
282 |
-
sources={"cs", "de", "ru"},
|
283 |
-
url="https://huggingface.co/datasets/wmt/wmt16/resolve/main-zip/translation-task/training-parallel-nc-v11.zip",
|
284 |
-
path=(
|
285 |
-
"training-parallel-nc-v11/news-commentary-v11.{src}-en.{src}",
|
286 |
-
"training-parallel-nc-v11/news-commentary-v11.{src}-en.en",
|
287 |
-
),
|
288 |
-
),
|
289 |
-
SubDataset(
|
290 |
-
name="newscommentary_v12",
|
291 |
-
target="en",
|
292 |
-
sources={"cs", "de", "ru", "zh"},
|
293 |
-
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/training-parallel-nc-v12.zip",
|
294 |
-
path=("training/news-commentary-v12.{src}-en.{src}", "training/news-commentary-v12.{src}-en.en"),
|
295 |
-
),
|
296 |
-
SubDataset(
|
297 |
-
name="newscommentary_v13",
|
298 |
-
target="en",
|
299 |
-
sources={"cs", "de", "ru", "zh"},
|
300 |
-
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/training-parallel-nc-v13.zip",
|
301 |
-
path=(
|
302 |
-
"training-parallel-nc-v13/news-commentary-v13.{src}-en.{src}",
|
303 |
-
"training-parallel-nc-v13/news-commentary-v13.{src}-en.en",
|
304 |
-
),
|
305 |
-
),
|
306 |
-
SubDataset(
|
307 |
-
name="newscommentary_v14",
|
308 |
-
target="en", # fr-de pair in newscommentary_v14_frde
|
309 |
-
sources={"cs", "de", "kk", "ru", "zh"},
|
310 |
-
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.{0}-{1}.tsv.gz",
|
311 |
-
path="",
|
312 |
-
),
|
313 |
-
SubDataset(
|
314 |
-
name="newscommentary_v14_frde",
|
315 |
-
target="de",
|
316 |
-
sources={"fr"},
|
317 |
-
url="http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.de-fr.tsv.gz",
|
318 |
-
path="",
|
319 |
-
),
|
320 |
-
SubDataset(
|
321 |
-
name="onlinebooks_v1",
|
322 |
-
target="en",
|
323 |
-
sources={"lv"},
|
324 |
-
url="https://huggingface.co/datasets/wmt/wmt17/resolve/main-zip/translation-task/books.lv-en.v1.zip",
|
325 |
-
path=("farewell/farewell.lv", "farewell/farewell.en"),
|
326 |
-
),
|
327 |
-
SubDataset(
|
328 |
-
name="paracrawl_v1",
|
329 |
-
target="en",
|
330 |
-
sources={"cs", "de", "et", "fi", "ru"},
|
331 |
-
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-{src}.zipporah0-dedup-clean.tgz", # TODO(QL): use gzip for streaming
|
332 |
-
path=(
|
333 |
-
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.{src}",
|
334 |
-
"paracrawl-release1.en-{src}.zipporah0-dedup-clean.en",
|
335 |
-
),
|
336 |
-
),
|
337 |
-
SubDataset(
|
338 |
-
name="paracrawl_v1_ru",
|
339 |
-
target="en",
|
340 |
-
sources={"ru"},
|
341 |
-
url="https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz", # TODO(QL): use gzip for streaming
|
342 |
-
path=(
|
343 |
-
"paracrawl-release1.en-ru.zipporah0-dedup-clean.ru",
|
344 |
-
"paracrawl-release1.en-ru.zipporah0-dedup-clean.en",
|
345 |
-
),
|
346 |
-
),
|
347 |
-
SubDataset(
|
348 |
-
name="paracrawl_v3",
|
349 |
-
target="en", # fr-de pair in paracrawl_v3_frde
|
350 |
-
sources={"cs", "de", "fi", "lt"},
|
351 |
-
url="https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-{src}.bicleaner07.tmx.gz",
|
352 |
-
path="",
|
353 |
-
),
|
354 |
-
SubDataset(
|
355 |
-
name="paracrawl_v3_frde",
|
356 |
-
target="de",
|
357 |
-
sources={"fr"},
|
358 |
-
url=(
|
359 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.de.gz",
|
360 |
-
"https://huggingface.co/datasets/wmt/wmt19/resolve/main/translation-task/fr-de/bitexts/de-fr.bicleaner07.fr.gz",
|
361 |
-
),
|
362 |
-
path=("", ""),
|
363 |
-
),
|
364 |
-
SubDataset(
|
365 |
-
name="rapid_2016",
|
366 |
-
target="en",
|
367 |
-
sources={"de", "et", "fi"},
|
368 |
-
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main-zip/translation-task/rapid2016.zip",
|
369 |
-
path=("rapid2016.{0}-{1}.{src}", "rapid2016.{0}-{1}.en"),
|
370 |
-
),
|
371 |
-
SubDataset(
|
372 |
-
name="rapid_2016_ltfi",
|
373 |
-
target="en",
|
374 |
-
sources={"fi", "lt"},
|
375 |
-
url="https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-{src}.tmx.zip",
|
376 |
-
path="rapid2016.en-{src}.tmx",
|
377 |
-
),
|
378 |
-
SubDataset(
|
379 |
-
name="rapid_2019",
|
380 |
-
target="en",
|
381 |
-
sources={"de"},
|
382 |
-
url="https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.zip",
|
383 |
-
path=("rapid2019.de-en.de", "rapid2019.de-en.en"),
|
384 |
-
),
|
385 |
-
SubDataset(
|
386 |
-
name="setimes_2",
|
387 |
-
target="en",
|
388 |
-
sources={"ro", "tr"},
|
389 |
-
url="https://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-{src}.tmx.gz",
|
390 |
-
path="",
|
391 |
-
),
|
392 |
-
SubDataset(
|
393 |
-
name="uncorpus_v1",
|
394 |
-
target="en",
|
395 |
-
sources={"ru", "zh"},
|
396 |
-
url="https://huggingface.co/datasets/wmt/uncorpus/resolve/main-zip/UNv1.0.en-{src}.zip",
|
397 |
-
path=("en-{src}/UNv1.0.en-{src}.{src}", "en-{src}/UNv1.0.en-{src}.en"),
|
398 |
-
),
|
399 |
-
SubDataset(
|
400 |
-
name="wikiheadlines_fi",
|
401 |
-
target="en",
|
402 |
-
sources={"fi"},
|
403 |
-
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip",
|
404 |
-
path="wiki/fi-en/titles.fi-en",
|
405 |
-
),
|
406 |
-
SubDataset(
|
407 |
-
name="wikiheadlines_hi",
|
408 |
-
target="en",
|
409 |
-
sources={"hi"},
|
410 |
-
url="https://huggingface.co/datasets/wmt/wmt14/resolve/main-zip/wiki-titles.zip",
|
411 |
-
path="wiki/hi-en/wiki-titles.hi-en",
|
412 |
-
),
|
413 |
-
SubDataset(
|
414 |
-
# Verified that wmt14 and wmt15 files are identical.
|
415 |
-
name="wikiheadlines_ru",
|
416 |
-
target="en",
|
417 |
-
sources={"ru"},
|
418 |
-
url="https://huggingface.co/datasets/wmt/wmt15/resolve/main-zip/wiki-titles.zip",
|
419 |
-
path="wiki/ru-en/wiki.ru-en",
|
420 |
-
),
|
421 |
-
SubDataset(
|
422 |
-
name="wikititles_v1",
|
423 |
-
target="en",
|
424 |
-
sources={"cs", "de", "fi", "gu", "kk", "lt", "ru", "zh"},
|
425 |
-
url="https://huggingface.co/datasets/wmt/wikititles/resolve/main/v1/wikititles-v1.{src}-en.tsv.gz",
|
426 |
-
path="",
|
427 |
-
),
|
428 |
-
SubDataset(
|
429 |
-
name="yandexcorpus",
|
430 |
-
target="en",
|
431 |
-
sources={"ru"},
|
432 |
-
url="https://translate.yandex.ru/corpus?lang=en",
|
433 |
-
manual_dl_files=["1mcorpus.zip"],
|
434 |
-
path=("corpus.en_ru.1m.ru", "corpus.en_ru.1m.en"),
|
435 |
-
),
|
436 |
-
# pylint:enable=line-too-long
|
437 |
-
] + [
|
438 |
-
SubDataset( # pylint:disable=g-complex-comprehension
|
439 |
-
name=ss,
|
440 |
-
target="en",
|
441 |
-
sources={"zh"},
|
442 |
-
url="https://huggingface.co/datasets/wmt/wmt18/resolve/main/cwmt-wmt/%s.zip" % ss,
|
443 |
-
path=("%s/*_c[hn].txt" % ss, "%s/*_en.txt" % ss),
|
444 |
-
)
|
445 |
-
for ss in CWMT_SUBSET_NAMES
|
446 |
-
]
|
447 |
-
|
448 |
-
_DEV_SUBSETS = [
|
449 |
-
SubDataset(
|
450 |
-
name="euelections_dev2019",
|
451 |
-
target="de",
|
452 |
-
sources={"fr"},
|
453 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
454 |
-
path=("dev/euelections_dev2019.fr-de.src.fr", "dev/euelections_dev2019.fr-de.tgt.de"),
|
455 |
-
),
|
456 |
-
SubDataset(
|
457 |
-
name="newsdev2014",
|
458 |
-
target="en",
|
459 |
-
sources={"hi"},
|
460 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
461 |
-
path=("dev/newsdev2014.hi", "dev/newsdev2014.en"),
|
462 |
-
),
|
463 |
-
SubDataset(
|
464 |
-
name="newsdev2015",
|
465 |
-
target="en",
|
466 |
-
sources={"fi"},
|
467 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
468 |
-
path=("dev/newsdev2015-fien-src.{src}.sgm", "dev/newsdev2015-fien-ref.en.sgm"),
|
469 |
-
),
|
470 |
-
SubDataset(
|
471 |
-
name="newsdiscussdev2015",
|
472 |
-
target="en",
|
473 |
-
sources={"ro", "tr"},
|
474 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
475 |
-
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
476 |
-
),
|
477 |
-
SubDataset(
|
478 |
-
name="newsdev2016",
|
479 |
-
target="en",
|
480 |
-
sources={"ro", "tr"},
|
481 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
482 |
-
path=("dev/newsdev2016-{src}en-src.{src}.sgm", "dev/newsdev2016-{src}en-ref.en.sgm"),
|
483 |
-
),
|
484 |
-
SubDataset(
|
485 |
-
name="newsdev2017",
|
486 |
-
target="en",
|
487 |
-
sources={"lv", "zh"},
|
488 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
489 |
-
path=("dev/newsdev2017-{src}en-src.{src}.sgm", "dev/newsdev2017-{src}en-ref.en.sgm"),
|
490 |
-
),
|
491 |
-
SubDataset(
|
492 |
-
name="newsdev2018",
|
493 |
-
target="en",
|
494 |
-
sources={"et"},
|
495 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
496 |
-
path=("dev/newsdev2018-{src}en-src.{src}.sgm", "dev/newsdev2018-{src}en-ref.en.sgm"),
|
497 |
-
),
|
498 |
-
SubDataset(
|
499 |
-
name="newsdev2019",
|
500 |
-
target="en",
|
501 |
-
sources={"gu", "kk", "lt"},
|
502 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
503 |
-
path=("dev/newsdev2019-{src}en-src.{src}.sgm", "dev/newsdev2019-{src}en-ref.en.sgm"),
|
504 |
-
),
|
505 |
-
SubDataset(
|
506 |
-
name="newsdiscussdev2015",
|
507 |
-
target="en",
|
508 |
-
sources={"fr"},
|
509 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
510 |
-
path=("dev/newsdiscussdev2015-{src}en-src.{src}.sgm", "dev/newsdiscussdev2015-{src}en-ref.en.sgm"),
|
511 |
-
),
|
512 |
-
SubDataset(
|
513 |
-
name="newsdiscusstest2015",
|
514 |
-
target="en",
|
515 |
-
sources={"fr"},
|
516 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
517 |
-
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
518 |
-
),
|
519 |
-
SubDataset(
|
520 |
-
name="newssyscomb2009",
|
521 |
-
target="en",
|
522 |
-
sources={"cs", "de", "es", "fr"},
|
523 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
524 |
-
path=("dev/newssyscomb2009.{src}", "dev/newssyscomb2009.en"),
|
525 |
-
),
|
526 |
-
SubDataset(
|
527 |
-
name="newstest2008",
|
528 |
-
target="en",
|
529 |
-
sources={"cs", "de", "es", "fr", "hu"},
|
530 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
531 |
-
path=("dev/news-test2008.{src}", "dev/news-test2008.en"),
|
532 |
-
),
|
533 |
-
SubDataset(
|
534 |
-
name="newstest2009",
|
535 |
-
target="en",
|
536 |
-
sources={"cs", "de", "es", "fr"},
|
537 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
538 |
-
path=("dev/newstest2009.{src}", "dev/newstest2009.en"),
|
539 |
-
),
|
540 |
-
SubDataset(
|
541 |
-
name="newstest2010",
|
542 |
-
target="en",
|
543 |
-
sources={"cs", "de", "es", "fr"},
|
544 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
545 |
-
path=("dev/newstest2010.{src}", "dev/newstest2010.en"),
|
546 |
-
),
|
547 |
-
SubDataset(
|
548 |
-
name="newstest2011",
|
549 |
-
target="en",
|
550 |
-
sources={"cs", "de", "es", "fr"},
|
551 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
552 |
-
path=("dev/newstest2011.{src}", "dev/newstest2011.en"),
|
553 |
-
),
|
554 |
-
SubDataset(
|
555 |
-
name="newstest2012",
|
556 |
-
target="en",
|
557 |
-
sources={"cs", "de", "es", "fr", "ru"},
|
558 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
559 |
-
path=("dev/newstest2012.{src}", "dev/newstest2012.en"),
|
560 |
-
),
|
561 |
-
SubDataset(
|
562 |
-
name="newstest2013",
|
563 |
-
target="en",
|
564 |
-
sources={"cs", "de", "es", "fr", "ru"},
|
565 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
566 |
-
path=("dev/newstest2013.{src}", "dev/newstest2013.en"),
|
567 |
-
),
|
568 |
-
SubDataset(
|
569 |
-
name="newstest2014",
|
570 |
-
target="en",
|
571 |
-
sources={"cs", "de", "es", "fr", "hi", "ru"},
|
572 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
573 |
-
path=("dev/newstest2014-{src}en-src.{src}.sgm", "dev/newstest2014-{src}en-ref.en.sgm"),
|
574 |
-
),
|
575 |
-
SubDataset(
|
576 |
-
name="newstest2015",
|
577 |
-
target="en",
|
578 |
-
sources={"cs", "de", "fi", "ru"},
|
579 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
580 |
-
path=("dev/newstest2015-{src}en-src.{src}.sgm", "dev/newstest2015-{src}en-ref.en.sgm"),
|
581 |
-
),
|
582 |
-
SubDataset(
|
583 |
-
name="newsdiscusstest2015",
|
584 |
-
target="en",
|
585 |
-
sources={"fr"},
|
586 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
587 |
-
path=("dev/newsdiscusstest2015-{src}en-src.{src}.sgm", "dev/newsdiscusstest2015-{src}en-ref.en.sgm"),
|
588 |
-
),
|
589 |
-
SubDataset(
|
590 |
-
name="newstest2016",
|
591 |
-
target="en",
|
592 |
-
sources={"cs", "de", "fi", "ro", "ru", "tr"},
|
593 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
594 |
-
path=("dev/newstest2016-{src}en-src.{src}.sgm", "dev/newstest2016-{src}en-ref.en.sgm"),
|
595 |
-
),
|
596 |
-
SubDataset(
|
597 |
-
name="newstestB2016",
|
598 |
-
target="en",
|
599 |
-
sources={"fi"},
|
600 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
601 |
-
path=("dev/newstestB2016-enfi-ref.{src}.sgm", "dev/newstestB2016-enfi-src.en.sgm"),
|
602 |
-
),
|
603 |
-
SubDataset(
|
604 |
-
name="newstest2017",
|
605 |
-
target="en",
|
606 |
-
sources={"cs", "de", "fi", "lv", "ru", "tr", "zh"},
|
607 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
608 |
-
path=("dev/newstest2017-{src}en-src.{src}.sgm", "dev/newstest2017-{src}en-ref.en.sgm"),
|
609 |
-
),
|
610 |
-
SubDataset(
|
611 |
-
name="newstestB2017",
|
612 |
-
target="en",
|
613 |
-
sources={"fi"},
|
614 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
615 |
-
path=("dev/newstestB2017-fien-src.fi.sgm", "dev/newstestB2017-fien-ref.en.sgm"),
|
616 |
-
),
|
617 |
-
SubDataset(
|
618 |
-
name="newstest2018",
|
619 |
-
target="en",
|
620 |
-
sources={"cs", "de", "et", "fi", "ru", "tr", "zh"},
|
621 |
-
url="https://huggingface.co/datasets/wmt/wmt19/resolve/main-zip/translation-task/dev.zip",
|
622 |
-
path=("dev/newstest2018-{src}en-src.{src}.sgm", "dev/newstest2018-{src}en-ref.en.sgm"),
|
623 |
-
),
|
624 |
-
]
|
625 |
-
|
626 |
-
DATASET_MAP = {dataset.name: dataset for dataset in _TRAIN_SUBSETS + _DEV_SUBSETS}
|
627 |
-
|
628 |
-
_CZENG17_FILTER = SubDataset(
|
629 |
-
name="czeng17_filter",
|
630 |
-
target="en",
|
631 |
-
sources={"cs"},
|
632 |
-
url="http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip",
|
633 |
-
path="convert_czeng16_to_17.pl",
|
634 |
-
)
|
635 |
-
|
636 |
-
|
637 |
-
class WmtConfig(datasets.BuilderConfig):
|
638 |
-
"""BuilderConfig for WMT."""
|
639 |
-
|
640 |
-
def __init__(self, url=None, citation=None, description=None, language_pair=(None, None), subsets=None, **kwargs):
|
641 |
-
"""BuilderConfig for WMT.
|
642 |
-
|
643 |
-
Args:
|
644 |
-
url: The reference URL for the dataset.
|
645 |
-
citation: The paper citation for the dataset.
|
646 |
-
description: The description of the dataset.
|
647 |
-
language_pair: pair of languages that will be used for translation. Should
|
648 |
-
contain 2 letter coded strings. For example: ("en", "de").
|
649 |
-
configuration for the `datasets.features.text.TextEncoder` used for the
|
650 |
-
`datasets.features.text.Translation` features.
|
651 |
-
subsets: Dict[split, list[str]]. List of the subset to use for each of the
|
652 |
-
split. Note that WMT subclasses overwrite this parameter.
|
653 |
-
**kwargs: keyword arguments forwarded to super.
|
654 |
-
"""
|
655 |
-
name = "%s-%s" % (language_pair[0], language_pair[1])
|
656 |
-
if "name" in kwargs: # Add name suffix for custom configs
|
657 |
-
name += "." + kwargs.pop("name")
|
658 |
-
|
659 |
-
super(WmtConfig, self).__init__(name=name, description=description, **kwargs)
|
660 |
-
|
661 |
-
self.url = url or "http://www.statmt.org"
|
662 |
-
self.citation = citation
|
663 |
-
self.language_pair = language_pair
|
664 |
-
self.subsets = subsets
|
665 |
-
|
666 |
-
# TODO(PVP): remove when manual dir works
|
667 |
-
# +++++++++++++++++++++
|
668 |
-
if language_pair[1] in ["cs", "hi", "ru"]:
|
669 |
-
assert NotImplementedError(f"The dataset for {language_pair[1]}-en is currently not fully supported.")
|
670 |
-
# +++++++++++++++++++++
|
671 |
-
|
672 |
-
|
673 |
-
class Wmt(datasets.GeneratorBasedBuilder):
|
674 |
-
"""WMT translation dataset."""
|
675 |
-
|
676 |
-
BUILDER_CONFIG_CLASS = WmtConfig
|
677 |
-
|
678 |
-
def __init__(self, *args, **kwargs):
|
679 |
-
super(Wmt, self).__init__(*args, **kwargs)
|
680 |
-
|
681 |
-
@property
|
682 |
-
def _subsets(self):
|
683 |
-
"""Subsets that make up each split of the dataset."""
|
684 |
-
raise NotImplementedError("This is a abstract method")
|
685 |
-
|
686 |
-
@property
|
687 |
-
def subsets(self):
|
688 |
-
"""Subsets that make up each split of the dataset for the language pair."""
|
689 |
-
source, target = self.config.language_pair
|
690 |
-
filtered_subsets = {}
|
691 |
-
subsets = self._subsets if self.config.subsets is None else self.config.subsets
|
692 |
-
for split, ss_names in subsets.items():
|
693 |
-
filtered_subsets[split] = []
|
694 |
-
for ss_name in ss_names:
|
695 |
-
dataset = DATASET_MAP[ss_name]
|
696 |
-
if dataset.target != target or source not in dataset.sources:
|
697 |
-
logger.info("Skipping sub-dataset that does not include language pair: %s", ss_name)
|
698 |
-
else:
|
699 |
-
filtered_subsets[split].append(ss_name)
|
700 |
-
logger.info("Using sub-datasets: %s", filtered_subsets)
|
701 |
-
return filtered_subsets
|
702 |
-
|
703 |
-
def _info(self):
|
704 |
-
src, target = self.config.language_pair
|
705 |
-
return datasets.DatasetInfo(
|
706 |
-
description=_DESCRIPTION,
|
707 |
-
features=datasets.Features(
|
708 |
-
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
709 |
-
),
|
710 |
-
supervised_keys=(src, target),
|
711 |
-
homepage=self.config.url,
|
712 |
-
citation=self.config.citation,
|
713 |
-
)
|
714 |
-
|
715 |
-
def _vocab_text_gen(self, split_subsets, extraction_map, language):
|
716 |
-
for _, ex in self._generate_examples(split_subsets, extraction_map, with_translation=False):
|
717 |
-
yield ex[language]
|
718 |
-
|
719 |
-
def _split_generators(self, dl_manager):
|
720 |
-
source, _ = self.config.language_pair
|
721 |
-
manual_paths_dict = {}
|
722 |
-
urls_to_download = {}
|
723 |
-
for ss_name in itertools.chain.from_iterable(self.subsets.values()):
|
724 |
-
if ss_name == "czeng_17":
|
725 |
-
# CzEng1.7 is CzEng1.6 with some blocks filtered out. We must download
|
726 |
-
# the filtering script so we can parse out which blocks need to be
|
727 |
-
# removed.
|
728 |
-
urls_to_download[_CZENG17_FILTER.name] = _CZENG17_FILTER.get_url(source)
|
729 |
-
|
730 |
-
# get dataset
|
731 |
-
dataset = DATASET_MAP[ss_name]
|
732 |
-
if dataset.get_manual_dl_files(source):
|
733 |
-
# TODO(PVP): following two lines skip configs that are incomplete for now
|
734 |
-
# +++++++++++++++++++++
|
735 |
-
logger.info("Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
|
736 |
-
continue
|
737 |
-
# +++++++++++++++++++++
|
738 |
-
|
739 |
-
manual_dl_files = dataset.get_manual_dl_files(source)
|
740 |
-
manual_paths = [
|
741 |
-
os.path.join(os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), fname)
|
742 |
-
for fname in manual_dl_files
|
743 |
-
]
|
744 |
-
assert all(
|
745 |
-
os.path.exists(path) for path in manual_paths
|
746 |
-
), f"For {dataset.name}, you must manually download the following file(s) from {dataset.get_url(source)} and place them in {dl_manager.manual_dir}: {', '.join(manual_dl_files)}"
|
747 |
-
|
748 |
-
# set manual path for correct subset
|
749 |
-
manual_paths_dict[ss_name] = manual_paths
|
750 |
-
else:
|
751 |
-
urls_to_download[ss_name] = dataset.get_url(source)
|
752 |
-
|
753 |
-
# Download and extract files from URLs.
|
754 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
755 |
-
# Extract manually downloaded files.
|
756 |
-
manual_files = dl_manager.extract(manual_paths_dict)
|
757 |
-
extraction_map = dict(downloaded_files, **manual_files)
|
758 |
-
|
759 |
-
for language in self.config.language_pair:
|
760 |
-
self._vocab_text_gen(self.subsets[datasets.Split.TRAIN], extraction_map, language)
|
761 |
-
|
762 |
-
return [
|
763 |
-
datasets.SplitGenerator( # pylint:disable=g-complex-comprehension
|
764 |
-
name=split, gen_kwargs={"split_subsets": split_subsets, "extraction_map": extraction_map}
|
765 |
-
)
|
766 |
-
for split, split_subsets in self.subsets.items()
|
767 |
-
]
|
768 |
-
|
769 |
-
def _generate_examples(self, split_subsets, extraction_map, with_translation=True):
|
770 |
-
"""Returns the examples in the raw (text) form."""
|
771 |
-
source, _ = self.config.language_pair
|
772 |
-
|
773 |
-
def _get_local_paths(dataset, extract_dirs):
|
774 |
-
rel_paths = dataset.get_path(source)
|
775 |
-
if len(extract_dirs) == 1:
|
776 |
-
extract_dirs = extract_dirs * len(rel_paths)
|
777 |
-
return [
|
778 |
-
os.path.join(ex_dir, rel_path) if rel_path else ex_dir
|
779 |
-
for ex_dir, rel_path in zip(extract_dirs, rel_paths)
|
780 |
-
]
|
781 |
-
|
782 |
-
def _get_filenames(dataset):
|
783 |
-
rel_paths = dataset.get_path(source)
|
784 |
-
urls = dataset.get_url(source)
|
785 |
-
if len(urls) == 1:
|
786 |
-
urls = urls * len(rel_paths)
|
787 |
-
return [rel_path if rel_path else os.path.basename(url) for url, rel_path in zip(urls, rel_paths)]
|
788 |
-
|
789 |
-
for ss_name in split_subsets:
|
790 |
-
# TODO(PVP) remove following five lines when manual data works
|
791 |
-
# +++++++++++++++++++++
|
792 |
-
dataset = DATASET_MAP[ss_name]
|
793 |
-
source, _ = self.config.language_pair
|
794 |
-
if dataset.get_manual_dl_files(source):
|
795 |
-
logger.info(f"Skipping {dataset.name} for now. Incomplete dataset for {self.config.name}")
|
796 |
-
continue
|
797 |
-
# +++++++++++++++++++++
|
798 |
-
|
799 |
-
logger.info("Generating examples from: %s", ss_name)
|
800 |
-
dataset = DATASET_MAP[ss_name]
|
801 |
-
extract_dirs = extraction_map[ss_name]
|
802 |
-
files = _get_local_paths(dataset, extract_dirs)
|
803 |
-
filenames = _get_filenames(dataset)
|
804 |
-
|
805 |
-
sub_generator_args = tuple(files)
|
806 |
-
|
807 |
-
if ss_name.startswith("czeng"):
|
808 |
-
if ss_name.endswith("16pre"):
|
809 |
-
sub_generator = functools.partial(_parse_tsv, language_pair=("en", "cs"))
|
810 |
-
sub_generator_args += tuple(filenames)
|
811 |
-
elif ss_name.endswith("17"):
|
812 |
-
filter_path = _get_local_paths(_CZENG17_FILTER, extraction_map[_CZENG17_FILTER.name])[0]
|
813 |
-
sub_generator = functools.partial(_parse_czeng, filter_path=filter_path)
|
814 |
-
else:
|
815 |
-
sub_generator = _parse_czeng
|
816 |
-
elif ss_name == "hindencorp_01":
|
817 |
-
sub_generator = _parse_hindencorp
|
818 |
-
elif len(files) == 2:
|
819 |
-
if ss_name.endswith("_frde"):
|
820 |
-
sub_generator = _parse_frde_bitext
|
821 |
-
else:
|
822 |
-
sub_generator = _parse_parallel_sentences
|
823 |
-
sub_generator_args += tuple(filenames)
|
824 |
-
elif len(files) == 1:
|
825 |
-
fname = filenames[0]
|
826 |
-
# Note: Due to formatting used by `download_manager`, the file
|
827 |
-
# extension may not be at the end of the file path.
|
828 |
-
if ".tsv" in fname:
|
829 |
-
sub_generator = _parse_tsv
|
830 |
-
sub_generator_args += tuple(filenames)
|
831 |
-
elif (
|
832 |
-
ss_name.startswith("newscommentary_v14")
|
833 |
-
or ss_name.startswith("europarl_v9")
|
834 |
-
or ss_name.startswith("wikititles_v1")
|
835 |
-
):
|
836 |
-
sub_generator = functools.partial(_parse_tsv, language_pair=self.config.language_pair)
|
837 |
-
sub_generator_args += tuple(filenames)
|
838 |
-
elif "tmx" in fname or ss_name.startswith("paracrawl_v3"):
|
839 |
-
sub_generator = _parse_tmx
|
840 |
-
elif ss_name.startswith("wikiheadlines"):
|
841 |
-
sub_generator = _parse_wikiheadlines
|
842 |
-
else:
|
843 |
-
raise ValueError("Unsupported file format: %s" % fname)
|
844 |
-
else:
|
845 |
-
raise ValueError("Invalid number of files: %d" % len(files))
|
846 |
-
|
847 |
-
for sub_key, ex in sub_generator(*sub_generator_args):
|
848 |
-
if not all(ex.values()):
|
849 |
-
continue
|
850 |
-
# TODO(adarob): Add subset feature.
|
851 |
-
# ex["subset"] = subset
|
852 |
-
key = f"{ss_name}/{sub_key}"
|
853 |
-
if with_translation is True:
|
854 |
-
ex = {"translation": ex}
|
855 |
-
yield key, ex
|
856 |
-
|
857 |
-
|
858 |
-
def _parse_parallel_sentences(f1, f2, filename1, filename2):
|
859 |
-
"""Returns examples from parallel SGML or text files, which may be gzipped."""
|
860 |
-
|
861 |
-
def _parse_text(path, original_filename):
|
862 |
-
"""Returns the sentences from a single text file, which may be gzipped."""
|
863 |
-
split_path = original_filename.split(".")
|
864 |
-
|
865 |
-
if split_path[-1] == "gz":
|
866 |
-
lang = split_path[-2]
|
867 |
-
|
868 |
-
def gen():
|
869 |
-
with open(path, "rb") as f, gzip.GzipFile(fileobj=f) as g:
|
870 |
-
for line in g:
|
871 |
-
yield line.decode("utf-8").rstrip()
|
872 |
-
|
873 |
-
return gen(), lang
|
874 |
-
|
875 |
-
if split_path[-1] == "txt":
|
876 |
-
# CWMT
|
877 |
-
lang = split_path[-2].split("_")[-1]
|
878 |
-
lang = "zh" if lang in ("ch", "cn", "c[hn]") else lang
|
879 |
-
else:
|
880 |
-
lang = split_path[-1]
|
881 |
-
|
882 |
-
def gen():
|
883 |
-
with open(path, "rb") as f:
|
884 |
-
for line in f:
|
885 |
-
yield line.decode("utf-8").rstrip()
|
886 |
-
|
887 |
-
return gen(), lang
|
888 |
-
|
889 |
-
def _parse_sgm(path, original_filename):
|
890 |
-
"""Returns sentences from a single SGML file."""
|
891 |
-
lang = original_filename.split(".")[-2]
|
892 |
-
# Note: We can't use the XML parser since some of the files are badly
|
893 |
-
# formatted.
|
894 |
-
seg_re = re.compile(r"<seg id=\"\d+\">(.*)</seg>")
|
895 |
-
|
896 |
-
def gen():
|
897 |
-
with open(path, encoding="utf-8") as f:
|
898 |
-
for line in f:
|
899 |
-
seg_match = re.match(seg_re, line)
|
900 |
-
if seg_match:
|
901 |
-
assert len(seg_match.groups()) == 1
|
902 |
-
yield seg_match.groups()[0]
|
903 |
-
|
904 |
-
return gen(), lang
|
905 |
-
|
906 |
-
parse_file = _parse_sgm if os.path.basename(f1).endswith(".sgm") else _parse_text
|
907 |
-
|
908 |
-
# Some datasets (e.g., CWMT) contain multiple parallel files specified with
|
909 |
-
# a wildcard. We sort both sets to align them and parse them one by one.
|
910 |
-
f1_files = sorted(glob.glob(f1))
|
911 |
-
f2_files = sorted(glob.glob(f2))
|
912 |
-
|
913 |
-
assert f1_files and f2_files, "No matching files found: %s, %s." % (f1, f2)
|
914 |
-
assert len(f1_files) == len(f2_files), "Number of files do not match: %d vs %d for %s vs %s." % (
|
915 |
-
len(f1_files),
|
916 |
-
len(f2_files),
|
917 |
-
f1,
|
918 |
-
f2,
|
919 |
-
)
|
920 |
-
|
921 |
-
for f_id, (f1_i, f2_i) in enumerate(zip(sorted(f1_files), sorted(f2_files))):
|
922 |
-
l1_sentences, l1 = parse_file(f1_i, filename1)
|
923 |
-
l2_sentences, l2 = parse_file(f2_i, filename2)
|
924 |
-
|
925 |
-
for line_id, (s1, s2) in enumerate(zip(l1_sentences, l2_sentences)):
|
926 |
-
key = f"{f_id}/{line_id}"
|
927 |
-
yield key, {l1: s1, l2: s2}
|
928 |
-
|
929 |
-
|
930 |
-
def _parse_frde_bitext(fr_path, de_path):
|
931 |
-
with open(fr_path, encoding="utf-8") as fr_f:
|
932 |
-
with open(de_path, encoding="utf-8") as de_f:
|
933 |
-
for line_id, (s1, s2) in enumerate(zip(fr_f, de_f)):
|
934 |
-
yield line_id, {"fr": s1.rstrip(), "de": s2.rstrip()}
|
935 |
-
|
936 |
-
|
937 |
-
def _parse_tmx(path):
|
938 |
-
"""Generates examples from TMX file."""
|
939 |
-
|
940 |
-
def _get_tuv_lang(tuv):
|
941 |
-
for k, v in tuv.items():
|
942 |
-
if k.endswith("}lang"):
|
943 |
-
return v
|
944 |
-
raise AssertionError("Language not found in `tuv` attributes.")
|
945 |
-
|
946 |
-
def _get_tuv_seg(tuv):
|
947 |
-
segs = tuv.findall("seg")
|
948 |
-
assert len(segs) == 1, "Invalid number of segments: %d" % len(segs)
|
949 |
-
return segs[0].text
|
950 |
-
|
951 |
-
with open(path, "rb") as f:
|
952 |
-
# Workaround due to: https://github.com/tensorflow/tensorflow/issues/33563
|
953 |
-
utf_f = codecs.getreader("utf-8")(f)
|
954 |
-
for line_id, (_, elem) in enumerate(ElementTree.iterparse(utf_f)):
|
955 |
-
if elem.tag == "tu":
|
956 |
-
yield line_id, {_get_tuv_lang(tuv): _get_tuv_seg(tuv) for tuv in elem.iterfind("tuv")}
|
957 |
-
elem.clear()
|
958 |
-
|
959 |
-
|
960 |
-
def _parse_tsv(path, filename, language_pair=None):
|
961 |
-
"""Generates examples from TSV file."""
|
962 |
-
if language_pair is None:
|
963 |
-
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])\.tsv", filename)
|
964 |
-
assert lang_match is not None, "Invalid TSV filename: %s" % filename
|
965 |
-
l1, l2 = lang_match.groups()
|
966 |
-
else:
|
967 |
-
l1, l2 = language_pair
|
968 |
-
with open(path, encoding="utf-8") as f:
|
969 |
-
for j, line in enumerate(f):
|
970 |
-
cols = line.split("\t")
|
971 |
-
if len(cols) != 2:
|
972 |
-
logger.warning("Skipping line %d in TSV (%s) with %d != 2 columns.", j, path, len(cols))
|
973 |
-
continue
|
974 |
-
s1, s2 = cols
|
975 |
-
yield j, {l1: s1.strip(), l2: s2.strip()}
|
976 |
-
|
977 |
-
|
978 |
-
def _parse_wikiheadlines(path):
|
979 |
-
"""Generates examples from Wikiheadlines dataset file."""
|
980 |
-
lang_match = re.match(r".*\.([a-z][a-z])-([a-z][a-z])$", path)
|
981 |
-
assert lang_match is not None, "Invalid Wikiheadlines filename: %s" % path
|
982 |
-
l1, l2 = lang_match.groups()
|
983 |
-
with open(path, encoding="utf-8") as f:
|
984 |
-
for line_id, line in enumerate(f):
|
985 |
-
s1, s2 = line.split("|||")
|
986 |
-
yield line_id, {l1: s1.strip(), l2: s2.strip()}
|
987 |
-
|
988 |
-
|
989 |
-
def _parse_czeng(*paths, **kwargs):
|
990 |
-
"""Generates examples from CzEng v1.6, with optional filtering for v1.7."""
|
991 |
-
filter_path = kwargs.get("filter_path", None)
|
992 |
-
if filter_path:
|
993 |
-
re_block = re.compile(r"^[^-]+-b(\d+)-\d\d[tde]")
|
994 |
-
with open(filter_path, encoding="utf-8") as f:
|
995 |
-
bad_blocks = {blk for blk in re.search(r"qw{([\s\d]*)}", f.read()).groups()[0].split()}
|
996 |
-
logger.info("Loaded %d bad blocks to filter from CzEng v1.6 to make v1.7.", len(bad_blocks))
|
997 |
-
|
998 |
-
for path in paths:
|
999 |
-
for gz_path in sorted(glob.glob(path)):
|
1000 |
-
with open(gz_path, "rb") as g, gzip.GzipFile(fileobj=g) as f:
|
1001 |
-
filename = os.path.basename(gz_path)
|
1002 |
-
for line_id, line in enumerate(f):
|
1003 |
-
line = line.decode("utf-8") # required for py3
|
1004 |
-
if not line.strip():
|
1005 |
-
continue
|
1006 |
-
id_, unused_score, cs, en = line.split("\t")
|
1007 |
-
if filter_path:
|
1008 |
-
block_match = re.match(re_block, id_)
|
1009 |
-
if block_match and block_match.groups()[0] in bad_blocks:
|
1010 |
-
continue
|
1011 |
-
sub_key = f"{filename}/{line_id}"
|
1012 |
-
yield sub_key, {
|
1013 |
-
"cs": cs.strip(),
|
1014 |
-
"en": en.strip(),
|
1015 |
-
}
|
1016 |
-
|
1017 |
-
|
1018 |
-
def _parse_hindencorp(path):
|
1019 |
-
with open(path, encoding="utf-8") as f:
|
1020 |
-
for line_id, line in enumerate(f):
|
1021 |
-
split_line = line.split("\t")
|
1022 |
-
if len(split_line) != 5:
|
1023 |
-
logger.warning("Skipping invalid HindEnCorp line: %s", line)
|
1024 |
-
continue
|
1025 |
-
yield line_id, {"translation": {"en": split_line[3].strip(), "hi": split_line[4].strip()}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|