williamgilpin
commited on
Delete dysts.py
Browse files
dysts.py
DELETED
@@ -1,228 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""Chaotic Dynamical Systems (Dysts) dataset."""
|
15 |
-
from dataclasses import dataclass
|
16 |
-
|
17 |
-
import pandas as pd
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
|
22 |
-
_CITATION = """\
|
23 |
-
@article{gilpin2023model,
|
24 |
-
title={Model scale versus domain knowledge in statistical forecasting of chaotic systems},
|
25 |
-
author={Gilpin, William},
|
26 |
-
journal={Physical Review Research},
|
27 |
-
volume={5},
|
28 |
-
number={4},
|
29 |
-
pages={043252},
|
30 |
-
year={2023},
|
31 |
-
publisher={APS}
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
A collection of long multivariate time series, each of which comes from a chaotic
|
37 |
-
dynamical system. The subdirectories coarse, medium, and fine each contain 135 .csv
|
38 |
-
files, each of which contains a single multivariate time series of length 10,000. The
|
39 |
-
number of channels varies depending on the specific dynamical system.
|
40 |
-
"""
|
41 |
-
|
42 |
-
_HOMEPAGE = "https://github.com/williamgilpin/dysts"
|
43 |
-
|
44 |
-
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"
|
45 |
-
|
46 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
47 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
48 |
-
# _URLS = {
|
49 |
-
# "h1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsh1.csv",
|
50 |
-
# "h2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsh2.csv",
|
51 |
-
# "m1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsm1.csv",
|
52 |
-
# "m2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/Dysts-small/Dystsm2.csv",
|
53 |
-
# }
|
54 |
-
|
55 |
-
@dataclass
|
56 |
-
class DystsBuilderConfig(datasets.BuilderConfig):
|
57 |
-
"""Dysts builder config."""
|
58 |
-
prediction_length: int = 100
|
59 |
-
multivariate: bool = True
|
60 |
-
|
61 |
-
|
62 |
-
class Dysts(datasets.GeneratorBasedBuilder):
|
63 |
-
"""Chaotic Dynamical Systems (Dysts) dataset"""
|
64 |
-
|
65 |
-
VERSION = datasets.Version("1.0.0")
|
66 |
-
|
67 |
-
# You will be able to load one or the other configurations in the following list with
|
68 |
-
# data = datasets.load_dataset('Dysts', 'h1')
|
69 |
-
# data = datasets.load_dataset('Dysts', 'm2')
|
70 |
-
BUILDER_CONFIGS = [
|
71 |
-
DystsBuilderConfig(
|
72 |
-
name="coarse",
|
73 |
-
version=VERSION,
|
74 |
-
description="Time series sampled at a coarse resolution of 10 points per period.",
|
75 |
-
),
|
76 |
-
DystsBuilderConfig(
|
77 |
-
name="medium",
|
78 |
-
version=VERSION,
|
79 |
-
description="Time series sampled at a coarse resolution of 30 points per period.",
|
80 |
-
),
|
81 |
-
DystsBuilderConfig(
|
82 |
-
name="m2",
|
83 |
-
version=VERSION,
|
84 |
-
description="Time series sampled at a coarse resolution of 100 points per period.",
|
85 |
-
),
|
86 |
-
]
|
87 |
-
|
88 |
-
DEFAULT_CONFIG_NAME = "medium"
|
89 |
-
|
90 |
-
def _info(self):
|
91 |
-
if self.config.multivariate:
|
92 |
-
features = datasets.Features(
|
93 |
-
{
|
94 |
-
"start": datasets.Value("Index"),
|
95 |
-
"target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
96 |
-
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
|
97 |
-
"item_id": datasets.Value("string"),
|
98 |
-
}
|
99 |
-
)
|
100 |
-
else:
|
101 |
-
features = datasets.Features(
|
102 |
-
{
|
103 |
-
"start": datasets.Value("Index"),
|
104 |
-
"target": datasets.Sequence(datasets.Value("float32")),
|
105 |
-
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
|
106 |
-
"feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
107 |
-
"item_id": datasets.Value("string"),
|
108 |
-
}
|
109 |
-
)
|
110 |
-
|
111 |
-
return datasets.DatasetInfo(
|
112 |
-
# This is the description that will appear on the datasets page.
|
113 |
-
description=_DESCRIPTION,
|
114 |
-
# This defines the different columns of the dataset and their types
|
115 |
-
features=features, # Here we define them above because they are different between the two configurations
|
116 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
117 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
118 |
-
# supervised_keys=("sentence", "label"),
|
119 |
-
# Homepage of the dataset for documentation
|
120 |
-
homepage=_HOMEPAGE,
|
121 |
-
# License for the dataset if available
|
122 |
-
license=_LICENSE,
|
123 |
-
# Citation for the dataset
|
124 |
-
citation=_CITATION,
|
125 |
-
)
|
126 |
-
|
127 |
-
def _split_generators(self, dl_manager):
|
128 |
-
# urls = _URLS[self.config.name]
|
129 |
-
# filepath = dl_manager.download_and_extract(urls)
|
130 |
-
filepath = ""
|
131 |
-
|
132 |
-
return [
|
133 |
-
datasets.SplitGenerator(
|
134 |
-
name=datasets.Split.TRAIN,
|
135 |
-
# These kwargs will be passed to _generate_examples
|
136 |
-
gen_kwargs={
|
137 |
-
"filepath": filepath,
|
138 |
-
"split": "train",
|
139 |
-
},
|
140 |
-
),
|
141 |
-
datasets.SplitGenerator(
|
142 |
-
name=datasets.Split.TEST,
|
143 |
-
# These kwargs will be passed to _generate_examples
|
144 |
-
gen_kwargs={
|
145 |
-
"filepath": filepath,
|
146 |
-
"split": "test",
|
147 |
-
},
|
148 |
-
),
|
149 |
-
datasets.SplitGenerator(
|
150 |
-
name=datasets.Split.VALIDATION,
|
151 |
-
# These kwargs will be passed to _generate_examples
|
152 |
-
gen_kwargs={
|
153 |
-
"filepath": filepath,
|
154 |
-
"split": "val",
|
155 |
-
},
|
156 |
-
),
|
157 |
-
]
|
158 |
-
|
159 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
160 |
-
def _generate_examples(self, filepath, split):
|
161 |
-
data = pd.read_csv(filepath, parse_dates=True, index_col=0)
|
162 |
-
# data = np.loadtxt(f"./{granularity}/{equation_name}_{granularity}.csv", delimiter=",", skiprows=1)
|
163 |
-
start_date = data.index.min()
|
164 |
-
|
165 |
-
# if self.config.name in ["m1", "m2"]:
|
166 |
-
# factor = 4 # 15-min frequency
|
167 |
-
# else:
|
168 |
-
# factor = 1 # hourly frequency
|
169 |
-
# train_end_index = 12 * 30 * 24 * factor # 1 year
|
170 |
-
train_end_index = 7000
|
171 |
-
|
172 |
-
if split == "val":
|
173 |
-
end_index = train_end_index + 1500
|
174 |
-
else:
|
175 |
-
end_index = train_end_index + 3000
|
176 |
-
|
177 |
-
if self.config.multivariate:
|
178 |
-
if split in ["test", "val"]:
|
179 |
-
# rolling windows of prediction_length for val and test
|
180 |
-
for i, index in enumerate(
|
181 |
-
range(
|
182 |
-
train_end_index,
|
183 |
-
end_index,
|
184 |
-
self.config.prediction_length,
|
185 |
-
)
|
186 |
-
):
|
187 |
-
yield i, {
|
188 |
-
"start": start_date,
|
189 |
-
"target": data[: index + self.config.prediction_length].values.astype("float32").T,
|
190 |
-
"feat_static_cat": [0],
|
191 |
-
"item_id": "0",
|
192 |
-
}
|
193 |
-
else:
|
194 |
-
yield 0, {
|
195 |
-
"start": start_date,
|
196 |
-
"target": data[:train_end_index].values.astype("float32").T,
|
197 |
-
"feat_static_cat": [0],
|
198 |
-
"item_id": "0",
|
199 |
-
}
|
200 |
-
else:
|
201 |
-
if split in ["test", "val"]:
|
202 |
-
# rolling windows of prediction_length for val and test
|
203 |
-
for i, index in enumerate(
|
204 |
-
range(
|
205 |
-
train_end_index,
|
206 |
-
end_index,
|
207 |
-
self.config.prediction_length,
|
208 |
-
)
|
209 |
-
):
|
210 |
-
target = data[: index + self.config.prediction_length].values.astype("float32")
|
211 |
-
feat_dynamic_real = data[: index + self.config.prediction_length].values.T.astype("float32")
|
212 |
-
yield i, {
|
213 |
-
"start": start_date,
|
214 |
-
"target": target,
|
215 |
-
"feat_dynamic_real": feat_dynamic_real,
|
216 |
-
"feat_static_cat": [0],
|
217 |
-
"item_id": "OT",
|
218 |
-
}
|
219 |
-
else:
|
220 |
-
target = data[:train_end_index].values.astype("float32")
|
221 |
-
feat_dynamic_real = data[:train_end_index].values.T.astype("float32")
|
222 |
-
yield 0, {
|
223 |
-
"start": start_date,
|
224 |
-
"target": target,
|
225 |
-
"feat_dynamic_real": feat_dynamic_real,
|
226 |
-
"feat_static_cat": [0],
|
227 |
-
"item_id": "OT",
|
228 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|