Datasets:
File size: 9,122 Bytes
1ceed21 ae322ad 78512b7 421609d 78512b7 c2d7658 ae322ad 7009309 ae322ad 39b5f97 63209c7 39b5f97 75ec0e2 1ceed21 7009309 1ceed21 c69db12 1ceed21 c69db12 1ceed21 3e26ab6 1ceed21 63209c7 7009309 1ceed21 2a6294e 1ceed21 3e26ab6 1ceed21 7009309 1ceed21 c69db12 1ceed21 7009309 1ceed21 3e26ab6 1ceed21 63209c7 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 2a6294e 1ceed21 3e26ab6 1ceed21 c69db12 1ceed21 7009309 3e26ab6 1ceed21 3e26ab6 1ceed21 7009309 1ceed21 3e26ab6 1ceed21 7009309 c69db12 7009309 c69db12 7009309 1ceed21 3e26ab6 1ceed21 c69db12 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 7009309 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 7009309 63209c7 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 7009309 1ceed21 3e26ab6 1ceed21 3e26ab6 1ceed21 39b5f97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: null
pretty_name: Reddit Webis-TLDR-17
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- summarization
task_ids: []
train-eval-index:
- config: default
task: summarization
task_id: summarization
splits:
train_split: train
col_mapping:
content: text
summary: target
metrics:
- type: rouge
name: Rouge
tags:
- reddit-posts-summarization
dataset_info:
features:
- name: author
dtype: string
- name: body
dtype: string
- name: normalizedBody
dtype: string
- name: subreddit
dtype: string
- name: subreddit_id
dtype: string
- name: id
dtype: string
- name: content
dtype: string
- name: summary
dtype: string
splits:
- name: train
num_bytes: 18940542951
num_examples: 3848330
download_size: 3141854161
dataset_size: 18940542951
---
# Dataset Card for Reddit Webis-TLDR-17
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://webis.de/data/webis-tldr-17.html](https://webis.de/data/webis-tldr-17.html)
- **Repository:** [https://github.com/webis-de/webis-tldr-17-corpus](https://github.com/webis-de/webis-tldr-17-corpus)
- **Paper:** [https://aclanthology.org/W17-4508]
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 3.14 GB
- **Size of the generated dataset:** 18.94 GB
- **Total amount of disk used:** 22.08 GB
### Dataset Summary
This corpus contains preprocessed posts from the Reddit dataset (Webis-TLDR-17).
The dataset consists of 3,848,330 posts with an average length of 270 words for content,
and 28 words for the summary.
Features includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.
Content is used as document and summary is used as summary.
### Supported Tasks and Leaderboards
Summarization (abstractive)
Known ROUGE scores achieved for the Webis-TLDR-17:
| Model | ROUGE-1 | ROUGE-2 | ROUGE-L | Paper/Source |
|-------|-------|-------|-------|------:|
| Transformer + Copy (Gehrmann et al., 2019) | 22 | 6 | 17 | Generating Summaries with Finetuned Language Models |
| Unified VAE + PGN (Choi et al., 2019) | 19 | 4 | 15 | VAE-PGN based Abstractive Model in Multi-stage Architecture for Text Summarization |
(Source: https://github.com/sebastianruder/NLP-progress/blob/master/english/summarization.md)
### Languages
English
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 3.14 GB
- **Size of the generated dataset:** 18.94 GB
- **Total amount of disk used:** 22.08 GB
An example of 'train' looks as follows.
```
{
"author": "me",
"body": "<>",
"content": "input document.",
"id": "1",
"normalizedBody": "",
"subreddit": "machinelearning",
"subreddit_id": "2",
"summary": "output summary."
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `author`: a `string` feature.
- `body`: a `string` feature.
- `normalizedBody`: a `string` feature.
- `subreddit`: a `string` feature.
- `subreddit_id`: a `string` feature.
- `id`: a `string` feature.
- `content`: a `string` feature.
- `summary`: a `string` feature.
### Data Splits
| name | train |
|-------|------:|
|default|3848330|
This corpus does not contain a separate test set. Thus it is up to the users to divide the corpus into appropriate training, validation and test sets.
## Dataset Creation
### Curation Rationale
In the scope of the task of absractive summarization the creators of the Webis-TLDR-17 propose mining social media for author-provided summaries and taking advantage of the common practice of appending a "TL;DR" to long posts. A large Reddit crawl was used to yield the Webis-TLDR-17 corpus. This dataset intends to complement the existing summarization corpora primarily from the news genre.
### Source Data
Reddit subreddits posts (submissions & comments) containing "TL;DR" from 2006 to 2016. Multiple subreddits are included.
#### Initial Data Collection and Normalization
Initial data: a set of 286 million submissions and 1.6 billion comments posted to Reddit between 2006 and 2016.
Then a five-step pipeline of consecutive filtering steps was applied.
#### Who are the source language producers?
The contents of the dataset are produced by human authors, bot-generated content was eliminated by filtering out all bot accounts with the help of an extensive list provided by the Reddit community, as well as manual inspection of cases where the user name contained the substring "bot."
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
This dataset has been created to serve as a source of large-scale summarization training data. It is primarily geared towards the automatic abstractive summarization task, that can be considered one of the most challenging variants of automatic summarization. It also aims to tackle the lack of genre diversity in the summarization datasets (most are news-related).
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
Reddit users write TL;DRs with various intentions, such as providing a “true” summary, asking questions or for help, or forming judgments and conclusions. As noted in the paper introducing the dataset, although the first kind of TL;DR posts are most important for training summarization models, yet, the latter allow for various alternative summarization-related tasks.
Although filtering was performed abusive language maybe still be present.
## Additional Information
### Dataset Curators
Michael Völske, Martin Potthast, Shahbaz Syed, Benno Stein
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{volske-etal-2017-tl,
title = "{TL};{DR}: Mining {R}eddit to Learn Automatic Summarization",
author = {V{"o}lske, Michael and
Potthast, Martin and
Syed, Shahbaz and
Stein, Benno},
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4508",
doi = "10.18653/v1/W17-4508",
pages = "59--63",
abstract = "Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.",
}
```
### Contributions
Thanks to [@mariamabarham](https://github.com/mariamabarham), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |