|
|
|
"""LSOIE: A Large-Scale Dataset for Supervised Open Information Extraction.""" |
|
import os |
|
import datasets |
|
from datasets.info import SupervisedKeysData |
|
from zipfile import ZipFile |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{lsoie-2021, |
|
title={{LSOIE}: A Large-Scale Dataset for Supervised Open Information Extraction}, |
|
author={{Solawetz}, Jacob and {Larson}, Stefan}, |
|
journal={arXiv preprint arXiv:2101.11177}, |
|
year={2019}, |
|
url="https://arxiv.org/pdf/2101.11177.pdf" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The Large Scale Open Information Extraction Dataset (LSOIE), is a dataset 20 |
|
times larger than the next largest human-annotated Open Information Extraction |
|
(OIE) dataset. LSOIE is a built upon the QA-SRL 2.0 dataset. |
|
""" |
|
|
|
_URL = "https://github.com/Jacobsolawetz/large-scale-oie/" |
|
_URLS = { |
|
"zip": _URL+"raw/master/dataset_creation/lsoie_data/lsoie_data.zip" |
|
} |
|
_ARCHIVE_FILES = [ |
|
"lsoie_science_train.conll", |
|
"lsoie_science_dev.conll", |
|
"lsoie_science_test.conll", |
|
"lsoie_wiki_train.conll", |
|
"lsoie_wiki_dev.conll", |
|
"lsoie_wiki_test.conll", |
|
] |
|
|
|
|
|
class LsoieConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for LSOIE.""" |
|
|
|
def __init__(self,subset="wiki", **kwargs): |
|
"""BuilderConfig for LSOIE. |
|
Args: |
|
subset: str - either "wiki" or "science" |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LsoieConfig, self).__init__(**kwargs) |
|
self.subset=subset |
|
|
|
|
|
class Lsoie(datasets.GeneratorBasedBuilder): |
|
"""LSOIE: A Large-Scale Dataset for Supervised Open Information Extraction""" |
|
|
|
BUILDER_CONFIGS = [ |
|
LsoieConfig( |
|
name="wiki", |
|
description="LSOIE dataset from wikipedia and wikinews", |
|
subset="wiki", |
|
), |
|
LsoieConfig( |
|
name="sci", |
|
description="LSOIE dataset build over scientific domain", |
|
subset="science", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "wiki" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"word_ids": datasets.Sequence(datasets.Value("int16")), |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"pred": datasets.Value("string"), |
|
"pred_ids": datasets.Sequence(datasets.Value("int16")), |
|
"head_pred_id": datasets.Value("int16"), |
|
"sent_id": datasets.Value("int16"), |
|
"run_id": datasets.Value("int16"), |
|
"label": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
supervised_keys=SupervisedKeysData(input="word_ids",output="label"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_archive = dl_manager.download(_URLS)['zip'] |
|
|
|
name_pre="lsoie_"+self.config.subset+"_" |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive_path": downloaded_archive, |
|
"file_name": name_pre+"train.conll", |
|
}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive_path": downloaded_archive, |
|
"file_name": name_pre+"dev.conll", |
|
}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"archive_path": downloaded_archive, |
|
"file_name": name_pre+"test.conll", |
|
}), |
|
] |
|
|
|
def _generate_examples(self,archive_path,file_name): |
|
"""This functions returns the samples in a raw format""" |
|
logger.info("generating examples from archive:{}".format(archive_path)) |
|
columns={'word_ids':int, |
|
'words':str, |
|
'pred':str, |
|
'pred_ids':lambda x: [ num for num in x.strip('[]').split(',')], |
|
'head_pred_id': int, |
|
'sent_id':int, |
|
'run_id': int, |
|
'label':str} |
|
list_columns=["word_ids","words","label"] |
|
sep="\t" |
|
key=0 |
|
sentence=dict() |
|
for column in list_columns: |
|
sentence[column]=[] |
|
with ZipFile(archive_path) as zipfile: |
|
with zipfile.open('lsoie_data/'+file_name,mode='r') as file: |
|
for line in file: |
|
line=line.decode("utf-8").strip('\n').split(sep=sep) |
|
if line[0]=='': |
|
yield key, sentence |
|
key+=1 |
|
for column in list_columns: |
|
sentence[column]=[] |
|
continue |
|
for column, val in zip(columns.keys(),line): |
|
val=columns[column](val) |
|
if column in list_columns: |
|
sentence[column].append(val) |
|
else: |
|
sentence[column]=val |