wangyi111 commited on
Commit
b7694cc
·
verified ·
1 Parent(s): 116d632

Delete example_raw/ssl4eo_s_dataset.py

Browse files
Files changed (1) hide show
  1. example_raw/ssl4eo_s_dataset.py +0 -234
example_raw/ssl4eo_s_dataset.py DELETED
@@ -1,234 +0,0 @@
1
- import os
2
- import gzip
3
- import json
4
- import numpy as np
5
- import rasterio
6
- import re
7
- from torch.utils.data import Dataset, DataLoader
8
- import torch
9
- #from cvtorchvision import cvtransforms
10
- from kornia.augmentation import AugmentationSequential
11
- import kornia
12
- import argparse
13
-
14
-
15
- class SSL4EO_S(Dataset):
16
- def __init__(self, fnames_path, root_dir, modality=['s1_grd', 's2_toa', 's3_olci', 's5p_co', 's5p_no2', 's5p_so2', 's5p_o3', 'dem'], transform_s1=None, transform_s2=None, transform_s3=None, transform_s5p=None, transform_dem=None):
17
- with gzip.open(fnames_path, 'rt', encoding='utf-8') as gz_file:
18
- self.fnames_json = json.load(gz_file)
19
- self.grid_ids = list(self.fnames_json.keys())
20
- self.root_dir = root_dir
21
- self.transform_s1 = transform_s1
22
- self.transform_s2 = transform_s2
23
- self.transform_s3 = transform_s3
24
- self.transform_s5p = transform_s5p
25
- self.transform_dem = transform_dem
26
- self.modality = modality
27
-
28
- def __len__(self):
29
- return len(self.grid_ids)
30
-
31
- def get_s1_s2(self,grid_id,modality):
32
- arrays = []
33
- meta_data = []
34
- local_grids = list(self.fnames_json[grid_id][modality].keys())
35
- grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
36
- for local_grid in local_grids:
37
- local_fpaths = self.fnames_json[grid_id][modality][local_grid]
38
- imgs = []
39
- meta = []
40
- for local_fpath in local_fpaths:
41
- with rasterio.open(os.path.join(self.root_dir, local_fpath)) as src:
42
- img = src.read()
43
- if modality=='s1_grd' and self.transform_s1:
44
- #img = self.transform_s1(np.transpose(img, (1, 2, 0)))
45
- img = torch.from_numpy(img).unsqueeze(0)
46
- img = self.transform_s1(img).squeeze(0)
47
- elif modality=='s2_toa' and self.transform_s2:
48
- #img = self.transform_s2(np.transpose(img.astype(np.int16), (1, 2, 0)))
49
- img = torch.from_numpy(img.astype(np.int16)).unsqueeze(0)
50
- img = self.transform_s2(img.to(torch.float16)).squeeze(0)
51
- imgs.append(img)
52
- fname = local_fpath.split('/')[-1]
53
- date = re.search(r'(\d{8})T', fname).group(1)
54
- meta_info = f"{grid_id_coord}/{local_grid}/{date}"
55
- meta.append(meta_info)
56
- arrays.append(imgs)
57
- meta_data.append(meta)
58
- return arrays, meta_data
59
-
60
- def get_s3(self,grid_id):
61
- arrays = []
62
- meta_data = []
63
- fpaths = self.fnames_json[grid_id]['s3_olci']
64
- grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
65
- for fpath in fpaths:
66
- with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
67
- img = src.read()
68
- if self.transform_s3:
69
- #img = self.transform_s3(np.transpose(img, (1, 2, 0)))
70
- img = torch.from_numpy(img).unsqueeze(0)
71
- img = self.transform_s3(img).squeeze(0)
72
- arrays.append(img)
73
- fname = fpath.split('/')[-1]
74
- date = re.search(r'(\d{8})T', fname).group(1)
75
- meta_info = f"{grid_id_coord}/{date}"
76
- meta_data.append(meta_info)
77
- return arrays, meta_data
78
-
79
- def get_s5p(self,grid_id,modality):
80
- arrays = []
81
- meta_data = []
82
- fpaths = self.fnames_json[grid_id][modality]
83
- grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
84
- for fpath in fpaths:
85
- with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
86
- img = src.read()
87
- if self.transform_s5p:
88
- #img = self.transform_s5p(np.transpose(img, (1, 2, 0)))
89
- img = torch.from_numpy(img).unsqueeze(0)
90
- img = self.transform_s5p(img).squeeze(0)
91
- arrays.append(img)
92
- fname = fpath.split('/')[-1]
93
- match = re.search(r'(\d{4})-(\d{2})-(\d{2})', fname)
94
- date = f"{match.group(1)}{match.group(2)}{match.group(3)}"
95
- meta_info = f"{grid_id_coord}/{date}"
96
- meta_data.append(meta_info)
97
- return arrays, meta_data
98
-
99
- def get_dem(self,grid_id):
100
- fpath = self.fnames_json[grid_id]['dem'][0]
101
- with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
102
- img = src.read()
103
- if self.transform_dem:
104
- #img = self.transform_dem(np.transpose(img, (1, 2, 0)))
105
- img = torch.from_numpy(img).unsqueeze(0)
106
- img = self.transform_dem(img).squeeze(0)
107
- return img
108
-
109
- def __getitem__(self, idx):
110
- grid_id = self.grid_ids[idx]
111
- grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
112
- sample = {}
113
- meta_data = {}
114
- # s1
115
- if 's1_grd' in self.modality:
116
- arr_s1, meta_s1 = self.get_s1_s2(grid_id,'s1_grd')
117
- sample['s1_grd'] = arr_s1
118
- meta_data['s1_grd'] = meta_s1
119
- # s2
120
- if 's2_toa' in self.modality:
121
- arr_s2, meta_s2 = self.get_s1_s2(grid_id,'s2_toa')
122
- sample['s2_toa'] = arr_s2
123
- meta_data['s2_toa'] = meta_s2
124
- # s3
125
- if 's3_olci' in self.modality:
126
- arr_s3, meta_s3 = self.get_s3(grid_id)
127
- sample['s3_olci'] = arr_s3
128
- meta_data['s3_olci'] = meta_s3
129
- # s5p_co
130
- if 's5p_co' in self.modality:
131
- arr_s5p_co, meta_s5p_co = self.get_s5p(grid_id,'s5p_co')
132
- sample['s5p_co'] = arr_s5p_co
133
- meta_data['s5p_co'] = meta_s5p_co
134
- # s5p_no2
135
- if 's5p_no2' in self.modality:
136
- arr_s5p_no2, meta_s5p_no2 = self.get_s5p(grid_id,'s5p_no2')
137
- sample['s5p_no2'] = arr_s5p_no2
138
- meta_data['s5p_no2'] = meta_s5p_no2
139
- # s5p_o3
140
- if 's5p_o3' in self.modality:
141
- arr_s5p_o3, meta_s5p_o3 = self.get_s5p(grid_id,'s5p_o3')
142
- sample['s5p_o3'] = arr_s5p_o3
143
- meta_data['s5p_o3'] = meta_s5p_o3
144
- # s5p_so2
145
- if 's5p_so2' in self.modality:
146
- arr_s5p_so2, meta_s5p_so2 = self.get_s5p(grid_id,'s5p_so2')
147
- sample['s5p_so2'] = arr_s5p_so2
148
- meta_data['s5p_so2'] = meta_s5p_so2
149
- # dem
150
- if 'dem' in self.modality:
151
- arr_dem = self.get_dem(grid_id)
152
- sample['dem'] = arr_dem
153
- meta_data['dem'] = grid_id_coord
154
-
155
- return sample, meta_data
156
-
157
-
158
- if __name__ == '__main__':
159
- parser = argparse.ArgumentParser()
160
- parser.add_argument('--fnames_path', type=str, default='data_loading/fnames.json.gz')
161
- parser.add_argument('--root_dir', type=str, default='data_loading/data')
162
- args = parser.parse_args()
163
-
164
- # transform_s1 = cvtransforms.Compose([
165
- # cvtransforms.CenterCrop(224),
166
- # cvtransforms.ToTensor()
167
- # ])
168
- # transform_s2 = cvtransforms.Compose([
169
- # cvtransforms.CenterCrop(224),
170
- # cvtransforms.ToTensor()
171
- # ])
172
- # transform_s3 = cvtransforms.Compose([
173
- # cvtransforms.CenterCrop(96),
174
- # cvtransforms.ToTensor()
175
- # ])
176
- # transform_s5p = cvtransforms.Compose([
177
- # cvtransforms.CenterCrop(28),
178
- # cvtransforms.ToTensor()
179
- # ])
180
- # transform_dem = cvtransforms.Compose([
181
- # cvtransforms.CenterCrop(960),
182
- # cvtransforms.ToTensor()
183
- # ])
184
- transform_s1 = AugmentationSequential(
185
- #kornia.augmentation.SmallestMaxSize(264),
186
- kornia.augmentation.CenterCrop(224),
187
- )
188
- transform_s2 = AugmentationSequential(
189
- #kornia.augmentation.SmallestMaxSize(264),
190
- kornia.augmentation.CenterCrop(224),
191
- )
192
- transform_s3 = AugmentationSequential(
193
- kornia.augmentation.SmallestMaxSize(96),
194
- kornia.augmentation.CenterCrop(96),
195
- )
196
- transform_s5p = AugmentationSequential(
197
- kornia.augmentation.SmallestMaxSize(28),
198
- kornia.augmentation.CenterCrop(28),
199
- )
200
- transform_dem = AugmentationSequential(
201
- kornia.augmentation.SmallestMaxSize(960),
202
- kornia.augmentation.CenterCrop(960),
203
- )
204
-
205
-
206
- ssl4eo_s = SSL4EO_S(args.fnames_path, args.root_dir, transform_s1=transform_s1, transform_s2=transform_s2, transform_s3=transform_s3, transform_s5p=transform_s5p, transform_dem=transform_dem)
207
- dataloader = DataLoader(ssl4eo_s, batch_size=1, shuffle=True, num_workers=0) # batch size can only be 1 because of varying number of images per grid
208
-
209
- for i, (sample, meta_data) in enumerate(dataloader):
210
- #print(i)
211
- print('Grid ID:', meta_data['dem'][0])
212
- print(sample.keys())
213
- print(meta_data.keys())
214
-
215
-
216
- print('### S1 GRD ###')
217
- print('Number of s1 local patches:', len(meta_data['s1_grd']), ' ', 'Number of time stamps for first local patch:', len(meta_data['s1_grd'][0]))
218
- print('Example for one image:', sample['s1_grd'][0][0].shape, meta_data['s1_grd'][0][0])
219
- print('### S2 TOA ###')
220
- print('Number of s2 local patches:', len(meta_data['s2_toa']), ' ', 'Number of time stamps for first local patch:', len(meta_data['s2_toa'][0]))
221
- print('Example for one image:', sample['s2_toa'][0][0].shape, meta_data['s2_toa'][0][0])
222
- print('### S3 OLCI ###')
223
- print('Number of s3 time stamps:', len(meta_data['s3_olci']))
224
- print('Example for one image:', sample['s3_olci'][0].shape, meta_data['s3_olci'][0])
225
- print('### S5P ###')
226
- print('Number of s5p time stamps for CO/NO2/O3/SO2:', len(meta_data['s5p_co']), len(meta_data['s5p_no2']), len(meta_data['s5p_o3']), len(meta_data['s5p_so2']))
227
- print('Example for one CO image:', sample['s5p_co'][0].shape, meta_data['s5p_co'][0])
228
- print('Example for one NO2 image:', sample['s5p_no2'][0].shape, meta_data['s5p_no2'][0])
229
- print('Example for one O3 image:', sample['s5p_o3'][0].shape, meta_data['s5p_o3'][0])
230
- print('Example for one SO2 image:', sample['s5p_so2'][0].shape, meta_data['s5p_so2'][0])
231
- print('### DEM ###')
232
- print('One DEM image for the grid:', sample['dem'].shape, meta_data['dem'][0])
233
-
234
- break