slue / voxceleb /voxceleb.py
Vladislav Sokolovskii
Debug file creation was deleted
e472375
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import sys
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"voxceleb": "https://public-dataset-model-store.awsdev.asapp.com/users/sshon/public/slue/slue-voxceleb_v0.2_blind.zip"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class SLUEVoxceleb(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="voxceleb", version=VERSION, description="This part of my dataset covers a first domain"),
]
#DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "voxceleb": # This is the name of the configuration selected in BUILDER_CONFIGS above
# get the current split
features = datasets.Features(
{
"id": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"speaker_id": datasets.Value("int32"),
"split": datasets.Value("string"),
"sentiment": datasets.Value("string"),
"start_second": datasets.Value("float32"),
"end_second": datasets.Value("float32"),
"audio_path": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_fine-tune.tsv"),
"split": "fine-tune",
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "fine-tune_raw"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_dev.tsv"),
"split": "dev",
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "dev_raw"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_test_blind.tsv"),
"split": "test-blind",
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "test_raw"),
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split, audio_dir):
# read tsv file by rows
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
speaker_id = row["speaker_id"]
if not speaker_id.isdigit():
speaker_id = -1
else:
speaker_id = int(speaker_id)
audio_file = f"{row['id']}.flac"
if split == "test-blind":
yield row["id"], {
"id": row["id"],
"normalized_text": None,
"speaker_id": speaker_id,
"split": split,
"sentiment": None,
"start_second": float(row["start_second"]),
"end_second": float(row["end_second"]),
"audio_path": os.path.join(audio_dir, audio_file),
}
elif split == "fine-tune" or split == "dev":
yield row["id"], {
"id": row["id"],
"normalized_text": row["normalized_text"],
"speaker_id": speaker_id,
"split": split,
"sentiment": row["sentiment"],
"start_second": float(row["start_second"]),
"end_second": float(row["end_second"]),
"audio_path": os.path.join(audio_dir, audio_file),
}