# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import os | |
import sys | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"voxceleb": "https://public-dataset-model-store.awsdev.asapp.com/users/sshon/public/slue/slue-voxceleb_v0.2_blind.zip" | |
} | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class SLUEVoxceleb(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="voxceleb", version=VERSION, description="This part of my dataset covers a first domain"), | |
] | |
#DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "voxceleb": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
# get the current split | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"normalized_text": datasets.Value("string"), | |
"speaker_id": datasets.Value("int32"), | |
"split": datasets.Value("string"), | |
"sentiment": datasets.Value("string"), | |
"start_second": datasets.Value("float32"), | |
"end_second": datasets.Value("float32"), | |
"audio_path": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_fine-tune.tsv"), | |
"split": "fine-tune", | |
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "fine-tune_raw"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_dev.tsv"), | |
"split": "dev", | |
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "dev_raw"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, "slue-voxceleb", "slue-voxceleb_test_blind.tsv"), | |
"split": "test-blind", | |
"audio_dir": os.path.join(data_dir, "slue-voxceleb", "test_raw"), | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split, audio_dir): | |
# read tsv file by rows | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
for row in reader: | |
speaker_id = row["speaker_id"] | |
if not speaker_id.isdigit(): | |
speaker_id = -1 | |
else: | |
speaker_id = int(speaker_id) | |
audio_file = f"{row['id']}.flac" | |
if split == "test-blind": | |
yield row["id"], { | |
"id": row["id"], | |
"normalized_text": None, | |
"speaker_id": speaker_id, | |
"split": split, | |
"sentiment": None, | |
"start_second": float(row["start_second"]), | |
"end_second": float(row["end_second"]), | |
"audio_path": os.path.join(audio_dir, audio_file), | |
} | |
elif split == "fine-tune" or split == "dev": | |
yield row["id"], { | |
"id": row["id"], | |
"normalized_text": row["normalized_text"], | |
"speaker_id": speaker_id, | |
"split": split, | |
"sentiment": row["sentiment"], | |
"start_second": float(row["start_second"]), | |
"end_second": float(row["end_second"]), | |
"audio_path": os.path.join(audio_dir, audio_file), | |
} | |