text
stringlengths
13
181
Q8NFJ9 Q9NUT2
Q06055 Q9H6D7
Q96ES7 Q9NVR5
O75419 Q14683
P67809 Q9UKK6
P01137 Q8N2Z9
Q14683 Q96CS2
P37231 Q16649
P56381 Q9Y230
O75152 Q14137
P61244 Q9H9Q2
O00541 Q9H9F9
A5X5Y0 P12107
P28370 Q587J8
P05496 Q9Y4A8
P51587 P56385
P56134 Q9UJJ9
P15382 Q9BRG1
Q9UHN1 Q9UJA5
P57054 Q9BPX6
Q86YV9 Q9NUP1
P39656 Q08211
P63272 P98198
O75486 P27918
O75964 Q14209
O94927 P14867
Q9BVC4 Q9C005
Q9BXF3 Q9Y4R8
P13498 Q96ST3
P01850 P12259
K9M1U5 P49959
P52655 Q6PI98
Q96RL1 Q9NV88
P01860 Q92466
O75444 P02708
O60506 Q9H1B4
Q14186 Q8IYB8
P41208 P51787
Q16576 Q9C005
Q13098 Q8NEZ2
Q69YN4 Q9BSQ5
Q86U42 Q9NRG0
P15407 Q00839
P14678 Q92878
O60244 Q7Z4G4
P16234 Q96RK4
P49841 Q9NXR8
P54105 Q96MF7
O75444 P26006
O15553 P30049
Q86TJ2 Q9NWA0
P20963 Q93050
P01861 Q13156
Q53TQ3 Q9H900
P40938 Q96FT9
P62805 Q96SY0
O95295 Q9NRF9
Q9UL03 Q9Y4A5
O95983 P05109
Q96MG7 Q9BW62
O75152 P60709
P05121 Q07001
Q16526 Q9BTP7
O75964 Q8IX21
P04908 Q9Y468
Q13505 Q9P2L0
P04843 P25054
P0C0L5 P62495
P15313 P35269
Q15904 Q9UPM8
Q8IUR0 Q9BQI6
Q7RTV0 Q9UJW3
P02462 Q13131
O75449 Q9UQE7
P54098 Q9H6Q4
Q8WUX9 Q9GZL7
P25054 P25208
P39656 Q13114
P15509 Q8ND04
P62495 Q92905
P02008 P06702
Q9H4I9 Q9H6Q4
Q09161 Q9UK53
O94905 Q08334
Q9H7L9 Q9HCE5
Q13098 Q9BY43
P07766 Q9Y3C7
Q05195 Q9NV56
P42285 Q96BN2
O75445 Q8NI35
O00255 O76071
P55072 Q96LB4
Q13224 Q5TA45
P51172 Q96JC1
P07686 Q96MF7
A6NGQ2 Q8WYH8
P27449 P56381
P38570 Q9Y6D9
Q6STE5 Q8WYB5
P01848 Q9BY43

CF/MS Elution Profile PPI Dataset

Proteins are the functional basis of life, but it is often their interactions with other proteins which gives rise to said functions. Therefore, we are often interested in whether two proteins participate in the same protein complex, or if they 'co-complex'. Co-fractionation mass spectrometry (CF/MS) is a high-throughput method for determining whether proteins form complexes. If they do, both proteins will typically separate out into the same fractions, or 'co-elute', during column chromatography experiments. As a result, their abundances will be highly correlated across all the fractions measured. CF/MS leverages this fact to identify new protein complexes by attempting to statistically correlate the elution profiles of groups of proteins. Typically, we use Pearson correlation coefficient to determine correlation between protein pairs. While this often works quite well, Pearson is a linear function. Current research is exploring whether there are non-linear, higher-order signals between these elution profiles that might have better predictive power than Pearson. As deep learning models excel at estimating non-linear relationships in data, the goal of this dataset is to act as training data for such models, especially Siamese networks.

This dataset includes processed data from several Homo sapiens protein co-fractionation mass spectrometry (CF/MS) experiments, as well as positive/negative protein-protein interaction (PPI) labels for each pair.

Collated, maintained by Drew Lab at University of Illinois at Chicago

Drew Lab webpage

File formats

  • The .elut file: A .elut file is a TSV-like format containing raw count data from a chromatographic fractionation experiment. Each row in a .elut file shows the abundance of a single protein across the collected fractions (columns). Generally speaking, these fractions are collected over time. However, different chromatographic columns can separate proteins along different axes. For example, Size-eclusion chromatography (SEC) will mostly separate proteins into fractions according to their size; Ion-exchange chromatography (IEX) will separate them into fractions according to their charge. Each file in this dataset comes from one of these two column separation methods and is named accordingly ('...xx_SEC_xx...' / '...xx_IEX_xx...'). We refer to a given protein's (row's) count data across all fractions (columns) as that protein's elution trace or elution profile. To summarize:
    • A given row contains count data for a specific protein
    • A row's first column contains its associated protein ID
    • A row's subsequent columns contain that protein's count data from the fractionation experiment
    • Note: The user may notice that the first row in a .elut file is one column longer than subsequent rows. This is because the first row contains row names (protein IDs), and the first column contains column names (fraction IDs). Therefore, cell 'A0' is empty.

File structure

  • The .elut files each contain a collection elution traces for proteins from a given CF/MS experiment. These can be paired to make sample data. A complete list of data sources can be found at the bottom of this README
  • The .txt files contain line-wise specification of protein complexes used to generate positive/negative labels. These can be used to direct the pairing of elution traces into data points.
    • intact_complex_merge_20230309.train_ppis.txt: List of positive PPIs for training data
    • intact_complex_merge_20230309.test_ppis.txt: List of positive PPIs for testing data
    • intact_complex_merge_20230309.neg_train_ppis.txt: List of negative PPIs for training data
    • intact_complex_merge_20230309.neg_test_ppis.txt: List of negative PPIs for testing data
    • intact_complex_merge_20230309.train.txt Line-wise list of protein complexes

List of publications/experiments from which this dataset was assembled:

Connelly, K. E., Hedrick, V., Paschoal Sobreira, T. J., Dykhuizen, E. C., & Aryal, U. K. (2018). Analysis of Human Nuclear Protein Complexes by Quantitative Mass Spectrometry Profiling. Proteomics, 18(11), e1700427. https://doi.org/10.1002/pmic.201700427

  • T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio1.elut
  • T98G_glioblastoma_multiforme_cells_SEC_Conelly_2018_Bio2.elut

Kirkwood, K. J., Ahmad, Y., Larance, M., & Lamond, A. I. (2013). Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Molecular & cellular proteomics : MCP, 12(12), 3851–3873. https://doi.org/10.1074/mcp.M113.032367

  • U2OS_cells_SEC_Kirkwood_2013_rep1.elut
  • U2OS_cells_SEC_Kirkwood_2013_rep2.elut
  • U2OS_cells_SEC_Kirkwood_2013_rep3.elut

Larance, M., Kirkwood, K. J., Tinti, M., Brenes Murillo, A., Ferguson, M. A., & Lamond, A. I. (2016). Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular & cellular proteomics : MCP, 15(7), 2476–2490. https://doi.org/10.1074/mcp.O115.055467

  • U2OS_cells_SEC_Larance_2016_PT3281S1.elut
  • U2OS_cells_SEC_Larance_2016_PT3441S1.elut
  • U2OS_cells_SEC_Larance_2016_PT3442S1.elut
  • U2OS_cells_SEC_Larance_2016_PT3701S1.elut
  • U2OS_cells_SEC_Larance_2016_PTSS3801.elut
  • U2OS_cells_SEC_Larance_2016_PTSS3802.elut

Mallam, A. L., Sae-Lee, W., Schaub, J. M., Tu, F., Battenhouse, A., Jang, Y. J., Kim, J., Wallingford, J. B., Finkelstein, I. J., Marcotte, E. M., & Drew, K. (2019). Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell reports, 29(5), 1351–1368.e5. https://doi.org/10.1016/j.celrep.2019.09.060

  • HEK_293_T_cells_SEC_Mallam_2019_C1.elut
  • HEK_293_T_cells_SEC_Mallam_2019_C2.elut

Moutaoufik, M. T., Malty, R., Amin, S., Zhang, Q., Phanse, S., Gagarinova, A., Zilocchi, M., Hoell, L., Minic, Z., Gagarinova, M., Aoki, H., Stockwell, J., Jessulat, M., Goebels, F., Broderick, K., Scott, N. E., Vlasblom, J., Musso, G., Prasad, B., Lamantea, E., … Babu, M. (2019). Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis. iScience, 19, 1114–1132. https://doi.org/10.1016/j.isci.2019.08.057

  • NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R1.elut
  • NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_2_R2.elut
  • NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R1.elut
  • NTera2_embryonal_carcinoma_stem_cells_IEX_Moutaoufik_2019_R2.elut
  • NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R1.elut
  • NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_2_R2.elut
  • NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R1.elut
  • NTera2_embryonal_carcinoma_stem_cells_SEC_Moutaoufik_2019_R2.elut

Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., Xiong, X., Kagan, O., Kwan, J., Bezginov, A., Chessman, K., Pal, S., Cromar, G., Papoulas, O., Ni, Z., Boutz, D. R., Stoilova, S., Havugimana, P. C., Guo, X., Malty, R. H., … Emili, A. (2015). Panorama of ancient metazoan macromolecular complexes. Nature, 525(7569), 339–344. https://doi.org/10.1038/nature14877

  • CB660_neural_stem_cell_IEX_Wan_2015.elut
  • G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_2.elut
  • G166_glioma_stem_cell_IEX_Wan_2015_Hs_HCW_3.elut
  • IEX_Wan_2015_Hs_HCW_4.elut
  • IEX_Wan_2015_Hs_HCW_5.elut
  • IEX_Wan_2015_Hs_HCW_6.elut
  • IEX_Wan_2015_Hs_HCW_7.elut
  • IEX_Wan_2015_Hs_HCW_8.elut
  • IEX_Wan_2015_Hs_HCW_9.elut
  • IEX_Wan_2015_Hs_IEX_1.elut
  • IEX_Wan_2015_Hs_IEX_2.elut
Downloads last month
112