seed
stringlengths 25
1.88k
| seed_api
stringlengths 14
102
| index
int64 0
1.05k
|
---|---|---|
import tensorflow as tf
def resnet_block(x, block_name='ResBlock', channel_nr=64, scale = 1, pad='SAME'):
tmp = conv3d(x, kernel_size=3, filters=channel_nr, padding=pad, activation=None, use_bias=False, initialization=None)
tmp = tf.keras.layers.LeakyReLU(alpha=0.2)(tmp)
tmp = conv3d(tmp, kernel_size=3, filters=channel_nr, padding=pad, activation=None, use_bias=False, initialization=None)
| tensorflow.keras.layers.LeakyReLU | 0 |
import tensorflow as tf
image = self._do_cutout(image, w, h, cutout_size)
return (image, clazz)
(images, classes) = _prepare(images, classes)
dataset = tf.data.Dataset.from_tensor_slices((images, classes)).repeat()
if is_train:
dataset = dataset.apply(tf.data.experimental.map_and_batch(map_func=_preprocess_train, batch_size=batch_size))
else:
dataset = dataset.batch(batch_size)
dataset_itr = dataset.make_initializable_iterator()
(images_batch, classes_batch) = dataset_itr.get_next()
dataset_init_op = dataset_itr.initializer
| tensorflow.data.experimental.map_and_batch | 1 |
import tensorflow as tf
eval_spec = tf.estimator.EvalSpec(read_dataset('valid.csv',
tf.estimator.ModeKeys.EVAL,
512),
steps = None,
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
| tensorflow.estimator.train_and_evaluate | 2 |
from tensorflow.python import debug as tf_debug
hooks = []
if FLAGS.use_hvd:
hooks.append(hvd.BroadcastGlobalVariablesHook(0))
if hvd.rank() == -1: #if debug, set 0
CLIDebugHook = tf_debug.LocalCLIDebugHook(ui_type='readline')
CLIDebugHook.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
hooks.append(CLIDebugHook)
if FLAGS.profile and hvd.rank() == 0:
ProfilerHook = tf.train.ProfilerHook(save_steps=FLAGS.hooking_frequence, output_dir=FLAGS.output_dir, show_dataflow=True, show_memory=True)
| tensorflow.python.debug.LocalCLIDebugHook | 3 |
from tensorflow.python.ops import image_ops
from tensorflow.python.client import session
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import io_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
def _resize_image(image, height, width):
image = array_ops.expand_dims(image, 0)
image = image_ops.resize_bilinear(image, [height, width])
return array_ops.squeeze(image, [0])
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
| tensorflow.python.ops.image_ops.resize_bilinear | 4 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# Block 1
conv1a = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[8, 8], strides=4, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(self.inputs)
conv1b = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1a)
conv1c = Conv2D(padding="same", filters=RNN_SIZE//8, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv1b)
pool1 = MaxPool2D(pool_size=[2,2])(conv1c)
# Block 2
conv2a = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool1)
conv2b = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2a)
conv2c = Conv2D(padding="same", filters=RNN_SIZE//4, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv2b)
pool2 = MaxPool2D(pool_size=[2,2])(conv2c)
# Block 3
conv3a = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool2)
conv3b = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3a)
conv3c = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(conv3b)
pool3 = MaxPool2D(pool_size=[2,2])(conv3c)
| tensorflow.keras.layers.Conv2D | 5 |
import tensorflow as tf
if reduce_fn is None:
scalar = args[i][0]
else:
scalar = reduce_fn(args[i])
with tf.contrib.summary.record_summaries_every_n_global_steps(
100, global_step=step):
tf.contrib.summary.scalar(prefix + name, scalar, step=step)
| tensorflow.contrib.summary.record_summaries_every_n_global_steps | 6 |
import tensorflow as tf
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
return vocab_dist # [batch_size, extended_vsize]
def linear(args, output_size, bias=True, bias_start=0.0, scope=None):
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
if not isinstance(args, (list, tuple)):
args = [args]
| tensorflow.sparse_reduce_sum | 7 |
import tensorflow as tf
self.qnode = qnode
dtype = tf.float32 if tf.keras.backend.floatx() == tf.float32 else tf.float64
| tensorflow.keras.backend.floatx | 8 |
from tensorflow.contrib.learn.python.learn.graph_actions import train
self._check_inputs(features, targets)
train_op, loss_op = self._get_train_ops(features, targets)
return train(
graph=g,
| tensorflow.contrib.learn.python.learn.graph_actions.train | 9 |
import tensorflow as tf
encoder_state = tuple(encoder_state[-1] for _ in range(num_layers))
decoder_cell = attention(encoder_out, seq_lens)
dense_layer = tf.layers.Dense(n_mels * resampled)
| tensorflow.layers.Dense | 10 |
from tensorflow.python.ops import check_ops
raise ValueError("%s.ndims=%d is not 0 (scalar)" %
(x.name, x.get_shape().ndims))
if x_value_static < 0:
raise ValueError("%s.value=%d cannot be negative" %
(x.name, x_value_static))
return x
if self.validate_args:
x = control_flow_ops.with_dependencies([
check_ops.assert_rank(x, 0),
check_ops.assert_non_negative(x)], x)
return x
def _introspect_ndims(self, ndims):
"""Helper to establish some properties of input ndims args."""
if self._is_all_constant_helper(ndims):
return (tensor_util.constant_value(ndims),
| tensorflow.python.ops.check_ops.assert_rank | 11 |
import tensorflow as tf
[layer_input[0]['observation'], layer_input[1]], axis=1)
return tf.keras.layers.Lambda(f)
| tensorflow.keras.layers.Lambda | 12 |
from tensorflow.contrib import losses
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(
target, shape=[array_ops.shape(target)[0], 1])
return losses.hinge_loss(logits, target)
super(_BinarySvmTargetColumn, self).__init__(
| tensorflow.contrib.losses.hinge_loss | 13 |
import tensorflow as tf
A tuple of possible batch sizes
"""
for device in device_lib.list_local_devices():
if tf.DeviceSpec.from_string(device.name).device_type == "GPU":
if "K20" in device.physical_device_desc:
return (16,)
if "P100" in device.physical_device_desc:
return (16, 32, 64)
if tf.DeviceSpec.from_string(device.name).device_type == "TPU":
return (32,)
return (16, 32)
def _force_device_sync(self):
"""Shamelessly copied from `resnet50_test.py`."""
tf.constant(1.).cpu()
| tensorflow.DeviceSpec.from_string | 14 |
import tensorflow as tf
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
| tensorflow.negative | 15 |
import tensorflow as tf
if extra_inputs is None:
extra_inputs = tuple()
last_loss = f_loss(*(tuple(inputs) + extra_inputs))
start_time = time.time()
dataset = BatchDataset(inputs,
self._batch_size,
extra_inputs=extra_inputs)
sess = tf.compat.v1.get_default_session()
for epoch in range(self._max_epochs):
if self._verbose:
logger.log('Epoch {}'.format(epoch))
progbar = pyprind.ProgBar(len(inputs[0]))
for batch in dataset.iterate(update=True):
sess.run(self._train_op,
dict(list(zip(self._input_vars, batch))))
if self._verbose:
| tensorflow.compat.v1.get_default_session | 16 |
from tensorflow.python.ops import variables
yield
def _setupDense(self, is_distributed, dtype):
with self._maybeWithDevice("/job:ps" if is_distributed else None):
var0 = variables.Variable([[0.0, 1.0], [2.0, 3.0]], dtype=dtype)
var1 = variables.Variable([4.0, 5.0], dtype=dtype)
with self._maybeWithDevice("/job:worker" if is_distributed else None):
grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype)
| tensorflow.python.ops.variables.Variable | 17 |
import tensorflow as tf
"""Checks that `perm` is valid."""
with tf.name_scope(name, 'maybe_validate_perm', [perm]):
assertions = []
if not perm.dtype.is_integer:
raise TypeError('`perm` must be integer type')
msg = '`perm` must be a vector.'
if perm.shape.ndims is not None:
if perm.shape.ndims != 1:
raise ValueError(
msg[:-1] + ', saw rank: {}.'.format(perm.shape.ndims))
elif validate_args:
assertions += [tf.compat.v1.assert_rank(perm, 1, message=msg)]
perm_ = tf.get_static_value(perm)
msg = '`perm` must be a valid permutation vector.'
if perm_ is not None:
if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)):
raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_))
elif validate_args:
assertions += [
tf.compat.v1.assert_equal(
tf.sort(perm), tf.range(tf.size(input=perm)), message=msg)
]
return assertions
| tensorflow.get_static_value | 18 |
import tensorflow as tf
assert len(all_vars) == len(all_perturbed_vars)
perturb_ops = []
for var, perturbed_var in zip(all_vars, all_perturbed_vars):
if param_noise_filter_func(perturbed_var):
# Perturb this variable.
operation = tf.assign(perturbed_var,
var + tf.random_normal(shape=tf.shape(var), mean=0.,
stddev=param_noise_scale))
else:
# Do not perturb, just assign.
operation = tf.assign(perturbed_var, var)
perturb_ops.append(operation)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
with tf.variable_scope("adaptive_model", reuse=False):
adaptive_policy = q_func(sess, ob_space, ac_space, 1, 1, None, obs_phs=obs_phs)
perturb_for_adaption = perturb_vars(original_scope="model", perturbed_scope="adaptive_model/model")
kl_loss = tf.reduce_sum(
tf.nn.softmax(policy.q_values) *
(tf.log(tf.nn.softmax(policy.q_values)) - tf.log(tf.nn.softmax(adaptive_policy.q_values))),
axis=-1)
mean_kl = tf.reduce_mean(kl_loss)
| tensorflow.group | 19 |
from tensorflow.python.ops import array_ops
array_ops.size(tensor.shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
array_ops.slice(tensor.shape, expand_dims, [-1])),
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
| tensorflow.python.ops.array_ops.slice | 20 |
import tensorflow as tf
def load_agent_ckpt(ckpt_dir, tf_agent, global_step=None):
if global_step is None:
global_step = tf.compat.v1.train.get_or_create_global_step()
train_checkpointer = common.Checkpointer(
ckpt_dir=ckpt_dir, agent=tf_agent, global_step=global_step)
train_checkpointer.initialize_or_restore().assert_existing_objects_matched()
| tensorflow.compat.v1.train.get_or_create_global_step | 21 |
from tensorflow.contrib.layers.python.layers.layers import _build_variable_getter, _add_variable_to_collections
conv_dims: Optional convolution dimensionality, when set it would use the
corresponding convolution (e.g. 2 for Conv 2D, 3 for Conv 3D, ..). When
leaved to None it would select the convolution dimensionality based on
the input rank (i.e. Conv ND, with N = input_rank - 2).
Returns:
A tensor representing the output of the operation.
Raises:
ValueError: If `data_format` is invalid.
ValueError: Both 'rate' and `stride` are not uniformly 1.
"""
if data_format not in [None, 'NWC', 'NCW', 'NHWC', 'NCHW', 'NDHWC', 'NCDHW']:
raise ValueError('Invalid data_format: %r' % (data_format,))
layer_variable_getter = _build_variable_getter({'bias': 'biases', 'kernel': 'weights'})
with variable_scope.variable_scope(scope, 'Conv', [inputs], reuse=reuse, custom_getter=layer_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
input_rank = inputs.get_shape().ndims
if conv_dims is not None and conv_dims + 2 != input_rank:
raise ValueError('Convolution expects input with rank %d, got %d' % (conv_dims + 2, input_rank))
if input_rank == 3:
layer_class = convolutional_layers.Convolution1D
elif input_rank == 4:
layer_class = MyConv2D
elif input_rank == 5:
| tensorflow.contrib.layers.python.layers.layers._build_variable_getter | 22 |
import tensorflow as tf
with tf.device("/device:CPU:0"):
ds = tf.data.Dataset.from_tensors(tensors).repeat()
return tfe.Iterator(ds)
self._benchmark_eager_train(
"eager_train_dataset_with_defun",
make_iterator,
device_and_data_format(),
defun=True)
if __name__ == "__main__":
tf.enable_eager_execution()
tf.test.main()
| tensorflow.enable_eager_execution | 23 |
import tensorflow as tf
"MSE": mse, "eval_loss": loss,}
elif task_name == "cola":
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Matthew's correlations for STS-B."""
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
# https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
tp, tp_op = tf.metrics.true_positives(
predictions, label_ids, weights=is_real_example)
tn, tn_op = tf.metrics.true_negatives(
predictions, label_ids, weights=is_real_example)
fp, fp_op = tf.metrics.false_positives(
predictions, label_ids, weights=is_real_example)
fn, fn_op = tf.metrics.false_negatives(
predictions, label_ids, weights=is_real_example)
# Compute Matthew's correlation
| tensorflow.metrics.true_negatives | 24 |
import tensorflow as tf
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
| tensorflow.nn.deconv2d | 25 |
from tensorflow.contrib.eager.python.examples.revnet import blocks_test
self.assertEqual(len(g2_all.shape), 1)
degree = blocks_test.compute_degree(g1_all, g2_all)
self.assertLessEqual(degree, 1e0)
| tensorflow.contrib.eager.python.examples.revnet.blocks_test.compute_degree | 26 |
import tensorflow as tf
# loss and optimizer
self.loss = tf.reduce_mean(tf.square(tf.subtract(self.value_estimate, self.target)))
self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
| tensorflow.subtract | 27 |
import tensorflow as tf
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
d2, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, feed_previous=True)
res1 = sess.run(d1)
res2 = sess.run(d2)
res3 = sess.run(d3)
| tensorflow.nn.seq2seq.embedding_attention_seq2seq | 28 |
import tensorflow as tf
dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1])
head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep])
if direction is None:
direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld]
else:
if direction == 'forward':
direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld]
else:
direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld]
# [bs, slh, slh]
rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2))
attn_mask = tf.logical_and(direct_mask, rep_mask_tile) # [bs, slh, sld]
# tensor tile
rep_map_tile = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_head, 1, 1]) # bs,slh,sld,vec
with tf.variable_scope('attention'): # bs,sl,sl,vec
f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
| tensorflow.less | 29 |
from tensorflow.python.ops import math_ops
tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
# Now, we have the implicit threshold, so compute the sensitivity:
return math_ops.div(tp[tf_index],
tp[tf_index] + fn[tf_index] + kepsilon,
name)
| tensorflow.python.ops.math_ops.div | 30 |
import tensorflow as tf
self.validateMoments([10**5], -5.0, 1.0, 2.0, np.infty)
def testSmallStddev(self):
self.validateKolmogorovSmirnov([10**5], 0.0, 0.1, 0.05, 0.10)
class ParameterizedTruncatedNormalGpuTest(ParameterizedTruncatedNormalTest):
_use_gpu = True
# Benchmarking code
def parameterized_vs_naive(shape, num_iters, use_gpu=False):
np.random.seed(1618) # Make it reproducible.
# No CSE/CF.
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
config = tf.ConfigProto(
graph_options=tf.GraphOptions(optimizer_options=optimizer_options))
with tf.Session(config=config) as sess:
with tf.device("/cpu:0" if not use_gpu else None):
param_op = tf.group(random_ops.parameterized_truncated_normal(shape))
naive_op = tf.group(random_ops.truncated_normal(shape))
# Burn-in to avoid session setup costs in the timing.
sess.run(param_op)
sess.run(param_op)
param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters)
sess.run(naive_op)
sess.run(naive_op)
| tensorflow.OptimizerOptions | 31 |
from tensorflow.contrib.learn.python.learn.graph_actions import evaluate
global_step = contrib_framework.create_global_step(g)
features, targets = input_fn()
self._check_inputs(features, targets)
eval_dict = self._get_eval_ops(features, targets, metrics or
self._get_default_metric_functions())
eval_results, _ = evaluate(
graph=g,
output_dir=eval_dir,
checkpoint_path=checkpoint_path,
eval_dict=eval_dict,
| tensorflow.contrib.learn.python.learn.graph_actions.evaluate | 32 |
from tensorflow.contrib.learn.python.learn import ops
from tensorflow.python.platform import test
class OpsTest(test.TestCase):
"""Ops tests."""
def test_softmax_classifier(self):
with self.cached_session() as session:
features = array_ops.placeholder(dtypes.float32, [None, 3])
labels = array_ops.placeholder(dtypes.float32, [None, 2])
weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]])
biases = constant_op.constant([0.2, 0.3])
class_weight = constant_op.constant([0.1, 0.9])
prediction, loss = ops.softmax_classifier(features, labels, weights,
biases, class_weight)
self.assertEqual(prediction.get_shape()[1], 2)
self.assertEqual(loss.get_shape(), [])
value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]})
self.assertAllClose(value, 0.55180627)
def test_embedding_lookup(self):
d_embed = 5
n_embed = 10
ids_shape = (2, 3, 4)
embeds = np.random.randn(n_embed, d_embed)
ids = np.random.randint(0, n_embed, ids_shape)
| tensorflow.contrib.learn.python.learn.ops.softmax_classifier | 33 |
import tensorflow as tf
hparams, tf.estimator.ModeKeys.TRAIN
)
try:
num_target_frames = hparams.video_num_target_frames
except AttributeError:
num_target_frames = 1
target_value_shape_suffix = [num_target_frames]
if distributional_size > 1:
target_value_shape_suffix = [num_target_frames, distributional_size]
features = {
"inputs": observations,
"epoch": tf.constant(epoch + 1),
"input_action": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"input_reward": tf.zeros(obs_shape[:2] + [1], dtype=tf.int32),
"targets": tf.zeros(obs_shape[:1] + [num_target_frames] + obs_shape[2:]),
"target_action": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_reward": tf.zeros(
obs_shape[:1] + [num_target_frames, 1], dtype=tf.int32),
"target_policy": tf.zeros(
obs_shape[:1] + [num_target_frames] + [action_space.n]),
"target_value": tf.zeros(
obs_shape[:1] + target_value_shape_suffix)
}
model.distributional_value_size = max(distributional_size, 1)
model.use_epochs = hparams.use_epochs
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
t2t_model.create_dummy_vars()
(targets, _) = model(features)
target_values = targets["target_value"][:, 0]
| tensorflow.zeros | 34 |
from tensorflow.python.framework import ops
auc = compute_auc(tp, fn, tn, fp, 'value')
update_op = compute_auc(
tp_update_op, fn_update_op, tn_update_op, fp_update_op, 'update_op')
if metrics_collections:
ops.add_to_collections(metrics_collections, auc)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
| tensorflow.python.framework.ops.add_to_collections | 35 |
from tensorflow.python.ops import logging_ops as logging
def after_create_session(self, session, _):
assert self._init_op.graph == ops.get_default_graph()
assert self._is_initialized_op.graph == self._init_op.graph
while True:
try:
if session.run(self._is_initialized_op):
break
elif self._is_chief:
session.run(self._init_op)
else:
time.sleep(1)
except RuntimeError as e:
logging.info(e)
class GMM(estimator.Estimator):
"""An estimator for GMM clustering."""
SCORES = 'scores'
ASSIGNMENTS = 'assignments'
ALL_SCORES = 'all_scores'
def __init__(self,
num_clusters,
model_dir=None,
| tensorflow.python.ops.logging_ops.info | 36 |
import tensorflow as tf
for i in range(0, config.num_clones):
with tf.name_scope(config.clone_scope(i)) as clone_scope:
clone_device = config.clone_device(i)
with tf.device(clone_device):
with tf.variable_scope(tf.get_variable_scope(),
reuse=True if i > 0 else None):
outputs = model_fn(*args, **kwargs)
clones.append(Clone(outputs, clone_scope, clone_device))
| tensorflow.get_variable_scope | 37 |
from tensorflow.python.ops import array_ops
# Use static shape if known.
num_predictions = predictions_2d.get_shape().as_list()[0]
# Otherwise use dynamic shape.
if num_predictions is None:
num_predictions = array_ops.shape(predictions_2d)[0]
thresh_tiled = array_ops.tile(
array_ops.expand_dims(array_ops.constant(thresholds), [1]),
array_ops.pack([1, num_predictions]))
# Tile the predictions after thresholding them across different thresholds.
pred_is_pos = math_ops.greater(
array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]),
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
| tensorflow.python.ops.array_ops.constant | 38 |
import tensorflow as tf
def validation_mapper(byte):
image = tf.image.decode_jpeg(
tf.reshape(byte, shape=[]), 3, **JPEG_OPT)
image = resize_shortest_edge(image, tf.shape(image), 256)
image = center_crop(image, 224)
image = tf.reverse(image, axis=[2]) # to BGR
return image
def training_mapper(byte):
jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc
bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box(
| tensorflow.reverse | 39 |
from tensorflow.contrib.eager.python import tfe
"""Trains model on train_data using optimizer."""
tf.train.get_or_create_global_step()
def model_loss(labels, chars, sequence_length):
predictions = model((chars, sequence_length), training=True)
loss_value = loss(labels, predictions)
tf.contrib.summary.scalar("loss", loss_value)
return loss_value
for (batch, (labels, chars, sequence_length)) in enumerate(
tfe.Iterator(train_data)):
with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval):
batch_model_loss = functools.partial(model_loss, labels, chars,
sequence_length)
optimizer.minimize(
batch_model_loss, global_step=tf.train.get_global_step())
if log_interval and batch % log_interval == 0:
print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss()))
SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv"
| tensorflow.contrib.eager.python.tfe.Iterator | 40 |
from tensorflow.core.util.event_pb2 import SessionLog
logging.info("Saving checkpoints for %d into %s.", step, self._save_path)
self._last_saved_time = time.time()
self._last_saved_step = step
if self._saver is None:
self._scaffold.saver.save(session, self._save_path, global_step=step)
else:
self._saver.save(session, self._save_path, global_step=step)
self._summary_writer.add_session_log(
SessionLog(
status=SessionLog.CHECKPOINT, checkpoint_path=self._save_path),
step)
class StepCounter(EveryN):
"""Steps per second monitor."""
| tensorflow.core.util.event_pb2.SessionLog | 41 |
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
| tensorflow.contrib.slim.python.slim.data.tfexample_decoder.Image | 42 |
import tensorflow as tf
Returns:
a tensor with shape [N, M] representing pairwise iou scores.
"""
intersections = pairwise_intersection(boxlist1, boxlist2)
areas1 = area(boxlist1)
areas2 = area(boxlist2)
unions = (
tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections)
return tf.where(
tf.equal(intersections, 0.0),
tf.zeros_like(intersections), tf.truediv(intersections, unions))
| tensorflow.expand_dims | 43 |
from tensorflow.python.ops import math_ops
def compute_recall(true_positives, false_negatives, name):
return math_ops.select(
math_ops.greater(true_positives + false_negatives, 0),
math_ops.div(true_positives, true_positives + false_negatives),
| tensorflow.python.ops.math_ops.greater | 44 |
import tensorflow as tf
counts.update(_split_string(line))
alphabet = [k for (k, _) in counts.most_common(max_size)]
alphabet.sort()
return np.asarray(alphabet, dtype=np.object)
chars, = tf.py_func(_unique_chars, [filename], [tf.string])
char_to_id = tf.contrib.lookup.index_table_from_tensor(
chars, num_oov_buckets=num_oov_buckets)
id_to_char = tf.contrib.lookup.index_to_string_table_from_tensor(chars, " ")
return char_to_id, id_to_char
| tensorflow.contrib.lookup.index_table_from_tensor | 45 |
import tensorflow as tf
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
with sv.managed_session(config=config_proto) as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
| tensorflow.train.Supervisor | 46 |
import tensorflow as tf
sync_lp_time = stop - start
print(f"Got {len(sync_lp_observations)} observations in {sync_lp_time:.2f}s")
# %% [markdown]
# ## Comparison
# To compare outcomes of sync and async runs, let's plot their respective regrets side by side, and print out the running time. For this toy problem we expect async scenario to run a little bit faster on machines with multiple CPU.
# %%
from util.plotting import plot_regret
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2)
sync_lp_min_idx = tf.squeeze(tf.argmin(sync_lp_observations, axis=0))
async_lp_min_idx = tf.squeeze(tf.argmin(async_lp_observations, axis=0))
plot_regret(
sync_lp_observations.numpy(), ax[0], num_init=len(initial_data), idx_best=sync_lp_min_idx
)
ax[0].set_yscale("log")
ax[0].set_ylabel("Regret")
ax[0].set_ylim(0.0000001, 100)
ax[0].set_xlabel("# evaluations")
ax[0].set_title(f"Sync LP, {len(sync_lp_observations)} points, time {sync_lp_time:.2f}")
plot_regret(
async_lp_observations.numpy(), ax[1], num_init=len(initial_data), idx_best=async_lp_min_idx
)
ax[1].set_yscale("log")
| tensorflow.argmin | 47 |
import tensorflow as tf
hparams = imagetransformer_latent_tiny()
hparams.mode = tf.estimator.ModeKeys.TRAIN
block_dim = int(hparams.hidden_size // hparams.num_blocks)
block_v_size = 2**(hparams.bottleneck_bits /
(hparams.num_residuals * hparams.num_blocks))
block_v_size = int(block_v_size)
means = tf.get_variable(
name="means",
shape=[hparams.num_residuals,
hparams.num_blocks,
block_v_size,
block_dim],
initializer=tf.uniform_unit_scaling_initializer())
hparams.bottleneck = functools.partial(
discretization.discrete_bottleneck,
hidden_size=hparams.hidden_size,
z_size=hparams.bottleneck_bits,
filter_size=hparams.filter_size,
startup_steps=hparams.startup_steps,
bottleneck_kind=hparams.bottleneck_kind,
num_blocks=hparams.num_blocks,
num_residuals=hparams.num_residuals,
reshape_method=hparams.reshape_method,
beta=hparams.vq_beta,
| tensorflow.uniform_unit_scaling_initializer | 48 |
from tensorflow.python.ops import math_ops
tuple.
"""
predictions, labels = tensor_util.remove_squeezable_dimensions(
predictions, labels)
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
radial_diffs = math_ops.mul(predictions, labels)
radial_diffs = math_ops.reduce_sum(radial_diffs,
reduction_indices=[dim,],
keep_dims=True)
mean_distance, update_op = streaming_mean(radial_diffs, weights,
None,
None,
name or 'mean_cosine_distance')
mean_distance = math_ops.sub(1.0, mean_distance)
update_op = math_ops.sub(1.0, update_op)
if metrics_collections:
ops.add_to_collections(metrics_collections, mean_distance)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
return mean_distance, update_op
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_percentage_less(values, threshold, ignore_mask=None, weights=None,
metrics_collections=None,
| tensorflow.python.ops.math_ops.sub | 49 |
from tensorflow.contrib.rnn.python.ops import lstm_ops
(config_name, self._GetConfigDesc(config)))
def benchmarkTfRNNLSTMBlockCellTraining(self):
test_configs = self._GetTestConfig()
for config_name, config in test_configs.items():
num_layers = config["num_layers"]
num_units = config["num_units"]
batch_size = config["batch_size"]
seq_length = config["seq_length"]
with ops.Graph().as_default(), ops.device("/device:GPU:0"):
inputs = seq_length * [
array_ops.zeros([batch_size, num_units], dtypes.float32)
]
cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
gradients = gradients_impl.gradients([outputs, final_state],
trainable_variables)
training_op = control_flow_ops.group(*gradients)
self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" %
(config_name, self._GetConfigDesc(config)))
| tensorflow.contrib.rnn.python.ops.lstm_ops.LSTMBlockCell | 50 |
from tensorflow.python.training import checkpoint_utils
# decrease with training.
summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0]
events = summary_test_util.events_from_file(summary_file)
train_losses = [event.summary.value[0].simple_value for event in events
if event.summary.value
and event.summary.value[0].tag == "train/loss"]
self.assertEqual(config.epochs, len(train_losses))
self.assertLess(train_losses[-1], train_losses[0])
# 5. Verify that checkpoints exist and contains all the expected variables.
self.assertTrue(glob.glob(os.path.join(config.logdir, "ckpt*")))
ckpt_variable_names = [
item[0] for item in checkpoint_utils.list_variables(config.logdir)]
self.assertIn("global_step", ckpt_variable_names)
for v in trainer.variables:
variable_name = v.name[:v.name.index(":")] if ":" in v.name else v.name
self.assertIn(variable_name, ckpt_variable_names)
class EagerSpinnSNLIClassifierBenchmark(test.Benchmark):
def benchmarkEagerSpinnSNLIClassifier(self):
test_device = "gpu:0" if tfe.num_gpus() else "cpu:0"
with tf.device(test_device):
| tensorflow.python.training.checkpoint_utils.list_variables | 51 |
import tensorflow as tf
logits = tf.log([1.0 - self._relabel_prob, self._relabel_prob])
mask = tf.squeeze(
tf.random.categorical(
logits[None], num_samples=self._sample_batch_size))
| tensorflow.random.categorical | 52 |
import tensorflow.contrib.eager as tfe
dataset = random_dataset()
if defun:
model.call = tfe.defun(model.call)
with tf.device(device()):
| tensorflow.contrib.eager.defun | 53 |
from tensorflow.python.ops import gen_nn_ops
name: A name for the operation (optional).
Returns:
A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
softmax cross entropy loss.
"""
# The second output tensor contains the gradients. We use it in
# _CrossEntropyGrad() in nn_grad but not here.
cost, unused_backprop = gen_nn_ops._softmax_cross_entropy_with_logits(
logits, labels, name=name)
return cost
def sparse_softmax_cross_entropy_with_logits(logits, labels, name=None):
"""Computes sparse softmax cross entropy between `logits` and `labels`.
| tensorflow.python.ops.gen_nn_ops._softmax_cross_entropy_with_logits | 54 |
from tensorflow.contrib.learn.python.learn.estimators import head as head_lib
config=config,
params={
"head":
head_lib._regression_head( # pylint: disable=protected-access
label_dimension=label_dimension,
weight_column_name=weight_column_name,
| tensorflow.contrib.learn.python.learn.estimators.head._regression_head | 55 |
import tensorflow as tf
input_shape = [batch_size, image_size, image_size, input_nchan]
images = tf.truncated_normal(
input_shape,
dtype=input_data_type,
stddev=1e-1,
name='synthetic_images')
labels = tf.random_uniform(
[batch_size],
minval=1,
maxval=nclass,
dtype=tf.int32,
name='synthetic_labels')
# Note: This results in a H2D copy, but no computation
# Note: This avoids recomputation of the random values, but still
# results in a H2D copy.
images = tf.contrib.framework.local_variable(images, name='images')
labels = tf.contrib.framework.local_variable(labels, name='labels')
# Change to 0-based (don't use background class like Inception does)
labels -= 1
if num_compute_devices == 1:
images_splits = [images]
labels_splits = [labels]
else:
images_splits = tf.split(images, num_compute_devices, 0)
labels_splits = tf.split(labels, num_compute_devices, 0)
return nclass, images_splits, labels_splits
def create_config_proto():
config = tf.ConfigProto()
| tensorflow.contrib.framework.local_variable | 56 |
import tensorflow as tf
else:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def, name='')
tf.io.write_graph(graph_def, '/tmp/', 'optimized_graph.pb',as_text=False)
return graph
| tensorflow.io.write_graph | 57 |
from tensorflow.python.ops import gen_math_ops
\\\\(y = |x|\\\\).
See [`tf.complex_abs()`](#tf_complex_abs) to compute the absolute value of a complex
number.
Args:
x: A `Tensor` of type `float`, `double`, `int32`, or `int64`.
name: A name for the operation (optional).
Returns:
A `Tensor` the same size and type as `x` with absolute values.
"""
with ops.op_scope([x], name, "Abs") as name:
x = ops.convert_to_tensor(x, name="x")
if x.dtype == types.complex64:
return gen_math_ops.complex_abs(x, name=name)
return gen_math_ops._abs(x, name=name)
def pow(x, y, name=None):
"""Computes the power of one value to another.
Given a tensor `x` and a tensor `y`, this operation computes \\\\(x^y\\\\) for
corresponding elements in `x` and `y`. For example:
```
# tensor 'x' is [[2, 2]], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
| tensorflow.python.ops.gen_math_ops.complex_abs | 58 |
from tensorflow.python.framework import ops
if not inputs or not isinstance(inputs, (list, tuple)):
raise ValueError("inputs must be a list of at least one Tensor with the "
"same dtype and shape")
inputs = ops.convert_n_to_tensor_or_indexed_slices(inputs)
if not all(isinstance(x, ops.Tensor) for x in inputs):
raise ValueError("inputs must be a list of at least one Tensor with the "
| tensorflow.python.framework.ops.convert_n_to_tensor_or_indexed_slices | 59 |
import tensorflow as tf
import numpy as np
import tvm
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
import keras
import tensorflow as tf
from tensorflow import keras as tf_keras
# prevent Keras from using up all gpu memory
if tf.executing_eagerly():
gpus = tf.config.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
else:
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))
def pytest_generate_tests(metafunc):
| tensorflow.config.list_physical_devices | 60 |
import tensorflow as tf
rl_advantage = rl_reward - rl_baseline
rl_empirical_loss = -tf.stop_gradient(rl_advantage) * log_prob
rl_entropy_loss = -rl_entropy_regularization * rl_entropy
enable_rl_optimizer = tf.cast(
tf.greater_equal(target_global_step, FLAGS.first_pretrain_steps),
tf.float32)
rl_learning_rate = FLAGS.rl_learning_rate * enable_rl_optimizer
rl_learning_rate = tf.train.piecewise_constant(
target_global_step, [800,],
[rl_learning_rate, rl_learning_rate * 0.1])
optimizer = tf.train.AdamOptimizer(rl_learning_rate)
target_train_op = optimizer.minimize(
rl_empirical_loss,
target_global_step,
var_list=tf.trainable_variables(rl_scope.name))
| tensorflow.train.piecewise_constant | 61 |
import tensorflow as tf
tf.add_to_collection(self._initial_state_name, state_tuple.c)
tf.add_to_collection(self._initial_state_name, state_tuple.h)
for state_tuple in self._final_state:
tf.add_to_collection(self._final_state_name, state_tuple.c)
tf.add_to_collection(self._final_state_name, state_tuple.h)
def import_state_tuples(self, state_tuples, name, num_replicas):
restored = []
for i in range(len(state_tuples) * num_replicas):
c = tf.get_collection_ref(name)[2 * i + 0]
h = tf.get_collection_ref(name)[2 * i + 1]
restored.append(tf.contrib.rnn.LSTMStateTuple(c, h))
return tuple(restored)
def import_ops(self):
if self._is_training:
self._train_op = tf.get_collection_ref('train_op')[0]
self._lr = tf.get_collection_ref('lr')[0]
self._new_lr = tf.get_collection_ref('new_lr')[0]
self._lr_update = tf.get_collection_ref('lr_update')[0]
rnn_params = tf.get_collection_ref('rnn_params')
if self._cell and rnn_params:
| tensorflow.contrib.rnn.LSTMStateTuple | 62 |
import tensorflow as tf
# optimizer & gradients
optimizer_base = tf.train.MomentumOptimizer(lrn_rate, FLAGS.momentum)
if not FLAGS.enbl_multi_gpu:
optimizer = optimizer_base
else:
optimizer = mgw.DistributedOptimizer(optimizer_base)
grads_origin = optimizer.compute_gradients(loss, self.trainable_vars)
grads_pruned = self.__calc_grads_pruned(grads_origin)
# TF operations & model saver
self.sess_train = sess
with tf.control_dependencies(self.update_ops):
self.train_op = optimizer.apply_gradients(grads_pruned, global_step=self.global_step)
self.summary_op = tf.summary.merge_all()
self.log_op = [lrn_rate, loss, pr_trainable, pr_maskable] + list(metrics.values())
self.log_op_names = ['lr', 'loss', 'pr_trn', 'pr_msk'] + list(metrics.keys())
self.init_op = tf.variables_initializer(self.vars)
self.init_opt_op = tf.variables_initializer(optimizer_base.variables())
if FLAGS.enbl_multi_gpu:
self.bcast_op = mgw.broadcast_global_variables(0)
self.saver_train = tf.train.Saver(self.vars)
def __build_eval(self):
"""Build the evaluation graph."""
with tf.Graph().as_default():
# create a TF session for the current graph
| tensorflow.summary.merge_all | 63 |
import tensorflow as tf
self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1))
batch_size = tf.shape(self.X)[0]
seq_lens = tf.count_nonzero(tf.reduce_sum(self.decoder_inputs, -1), 1, dtype=tf.int32) + 1
def cells(reuse=False):
return tf.contrib.rnn.DropoutWrapper(
tf.nn.rnn_cell.LSTMCell(
size_layers, initializer=tf.orthogonal_initializer(), reuse=reuse
),
state_keep_prob=dropout,
output_keep_prob=dropout,
)
def attention(encoder_out, seq_len, reuse=False):
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units=size_layers, memory=encoder_out, memory_sequence_length=seq_len
)
return tf.contrib.seq2seq.AttentionWrapper(
cell=tf.nn.rnn_cell.MultiRNNCell([cells(reuse) for _ in range(num_layers)]),
attention_mechanism=attention_mechanism,
attention_layer_size=size_layers,
alignment_history=True,
)
encoder_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)])
encoder_out, encoder_state = tf.nn.dynamic_rnn(
cell=encoder_cells, inputs=forward, sequence_length=seq_lens, dtype=tf.float32
)
| tensorflow.contrib.seq2seq.LuongAttention | 64 |
import tensorflow as tf
# train the model using Adam
def train(self, sess, generator,
learning_rate=.001, training_iters=50000,
batch_size=64, display_step=10,weight_save_step=100, save_weights_path= None,
generator_function= None, training_weights_path = None):
# train with gradient clipping
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
grads = optimizer.compute_gradients(self.loss)
clipped_grads = [(tf.clip_by_norm(grad, 1.0), var)
if grad is not None else (grad, var)
for grad, var in grads]
# add vanishing gradient regularizer
#out, test = self.dOmega_dWrec()
#clipped_grads[0] = (tf.add(out[0], clipped_grads[0][0]), clipped_grads[0][1])
#clipped_grads[0] = (tf.Print(clipped_grads[0][0], [clipped_grads[0][0]], "gw_rec"), clipped_grads[0][1])
optimize = optimizer.apply_gradients(clipped_grads)
| tensorflow.clip_by_norm | 65 |
from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined
gradient_multipliers=(
dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access
| tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined._extract_embedding_lr_multipliers | 66 |
import tensorflow as tf
# strides = np.asarray(self.pool_strides)
# strides[1:] *= len(self.ff_conv_k)
# kernels = np.asarray(self.pooling_kernel)
# kernels[1:] *= len(self.ff_conv_k)
# return tf.layers.conv3d_transpose(
# inputs=x,
# strides=strides,
# padding=self.padding,
# filters=y_size[-1],
# kernel_size=kernels,
# trainable=self.train,
# use_bias=use_bias,
# activation=self.ff_nl)
resized = tf.nn.conv3d_transpose(
value=x,
filter=kernel,
output_shape=y_size,
strides=[1] + strides + [1],
padding=self.padding,
name='resize_x_to_y')
resized = tf.nn.bias_add(
resized,
bias)
resized = self.ff_nl(resized)
return resized
elif mode == 'replicate_n_transpose':
| tensorflow.nn.conv3d_transpose | 67 |
import tensorflow as tf
env_floor=0) for i in range(N_WORKER)]
# 觀察者
# workers.append(Worker(envpath='./ObstacleTower/obstacletower.exe',
# wid=N_WORKER + 1,
# retro=False,
# realtime_mode=True,
# env_seed=0,
# env_floor=0))
GLOBAL_UPDATE_COUNTER, GLOBAL_EP = 0, 0
GLOBAL_RUNNING_R = []
COORD = tf.train.Coordinator()
# 宣告共用記憶體
QUEUE = queue.Queue()
threads = []
for worker in workers: # worker threads
t = threading.Thread(target=worker.work, args=())
t.start() # training
threads.append(t)
# 建立模型更新的執行緒
threads.append(threading.Thread(target=GLOBAL_KPRUN.update, ))
threads[-1].start()
COORD.join(threads)
| tensorflow.train.Coordinator | 68 |
import tensorflow as tf
total_loss, learning_rate, num_train_steps, num_warmup_steps,
use_tpu, optimizer)
output_spec = contrib_tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
if task_name not in ["sts-b", "cola"]:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions,
weights=is_real_example)
loss = tf.metrics.mean(
values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
elif task_name == "sts-b":
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
"""Compute Pearson correlations for STS-B."""
# Display labels and predictions
concat1 = contrib_metrics.streaming_concat(logits)
concat2 = contrib_metrics.streaming_concat(label_ids)
# Compute Pearson correlation
pearson = contrib_metrics.streaming_pearson_correlation(
| tensorflow.metrics.mean | 69 |
import tensorflow as tf
shape = control_flow_ops.with_dependencies([rank_assertions[i]],
tf.shape(image))
| tensorflow.shape | 70 |
import tensorflow as tf
def clip_logits(logits, config):
logits_clip = getattr(config, "logits_clip", 0.)
if logits_clip > 0:
min_logit = tf.reduce_min(logits)
return tf.minimum(logits - min_logit, logits_clip)
else:
| tensorflow.reduce_min | 71 |
import tensorflow as tf
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV3(pred, tgt, margin=1.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV4(pred, tgt):
# 50*50
# Step-wise contrastive loss
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(pred, even)
pred2 = tf.gather(pred, odd)
tgt1 = tf.gather(tgt, even)
| tensorflow.where | 72 |
from tensorflow.python.training import training_ops
def __init__(self, learning_rate, use_locking=False, name="GradientDescent"):
"""Construct a new gradient descent optimizer.
Args:
learning_rate: A Tensor or a floating point value. The learning
rate to use.
use_locking: If True use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "GradientDescent".
"""
super(GradientDescentOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
def _apply_dense(self, grad, var):
return training_ops.apply_gradient_descent(
var,
self._learning_rate_tensor,
grad,
use_locking=self._use_locking).op
def _apply_sparse(self, grad, var):
delta = ops.IndexedSlices(grad.values * self._learning_rate_tensor,
grad.indices, grad.dense_shape)
return var.scatter_sub(delta, use_locking=self._use_locking)
def _prepare(self):
self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,
name="learning_rate")
| tensorflow.python.training.training_ops.apply_gradient_descent | 73 |
from tensorflow.python.client import device_lib
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
gpus = [
x.name for x in device_lib.list_local_devices() if x.device_type == "GPU"
]
if FLAGS.num_gpus > len(gpus):
raise ValueError(
"Your machine has only %d gpus "
"which is less than the requested --num_gpus=%d."
| tensorflow.python.client.device_lib.list_local_devices | 74 |
import tensorflow as tf
try:
if not tf.io.gfile.exists(a.crop_dir):
tf.io.gfile.makedirs(a.crop_dir)
except Exception as e:
| tensorflow.io.gfile.makedirs | 75 |
import tensorflow as tf
# execute at test time
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon)
return tf.cond(train, func1, func2)
def average_gradients(tower_grads):
| tensorflow.cond | 76 |
from tensorflow.python.ops import nn_ops
w_c: [1,1, attention_vec_size]
coverage: [batch_size, passage_len]
'''
with variable_scope.variable_scope("Attention"):
# Equation (11) in the paper
state_features = linear(decoder_state, attention_vec_size, True) # [batch_size, attention_vec_size]
state_features = tf.expand_dims(state_features, 1) # [batch_size, 1, attention_vec_size]
all_features = encoder_features + state_features # [batch_size,passage_len,attention_vec_size]
if use_coverage and coverage is not None:
coverage_features = tf.expand_dims(coverage, axis=-1) * w_c # [batch_size, passage_len, attention_vec_size]
all_features += coverage_features
e = tf.reduce_sum(v * tf.tanh(all_features), axis=-1) # [batch_size, passage_len]
attn_dist = nn_ops.softmax(e) # [batch_size, passage_len]
attn_dist *= passage_mask
if coverage is not None: # Update coverage vector
coverage += attn_dist
else: # first step of training
coverage = attn_dist
# Calculate the context vector from attn_dist and encoder_states
# shape (batch_size, attn_size).
context_vector = tf.reduce_sum(tf.expand_dims(attn_dist, axis=-1) * encoder_states, axis=1) # [batch_size, encoder_dim]
return context_vector, attn_dist, coverage
| tensorflow.python.ops.nn_ops.softmax | 77 |
from tensorflow.python.ops import math_ops
def _log_prob(self, x):
x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if
self.validate_args else [], x)
return (self.alpha * math_ops.log(self.beta) -
math_ops.lgamma(self.alpha) -
(self.alpha + 1.) * math_ops.log(x) - self.beta / x)
def _prob(self, x):
return math_ops.exp(self._log_prob(x))
| tensorflow.python.ops.math_ops.log | 78 |
import tensorflow as tf
'fast_rcnn_box_loss', tf.reduce_mean(fast_rcnn_box_loss),
step=global_step)
if params['include_mask']:
tf.contrib.summary.scalar(
'mask_loss', tf.reduce_mean(mask_loss), step=global_step)
tf.contrib.summary.scalar(
'learning_rate', tf.reduce_mean(learning_rate),
step=global_step)
return tf.contrib.summary.all_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
| tensorflow.contrib.summary.all_summary_ops | 79 |
from tensorflow.python.framework import tensor_util
if input_shape.ndims is None:
return [tensor_shape.unknown_shape()]
elif input_shape.ndims <= 1:
return [tensor_shape.scalar()]
dimension = tensor_util.ConstantValue(op.inputs[1])
if dimension is None:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims - 1)]
elif 0 <= dimension and dimension < input_shape.ndims:
returned_shape = []
| tensorflow.python.framework.tensor_util.ConstantValue | 80 |
import tensorflow as tf
out = tf.matmul(l1, self.w2)+self.b2
return out
def test_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
out = tf.matmul(l1, self.w2)+self.b2
| tensorflow.cast | 81 |
import tensorflow as tf
cols[3] / height,
cols[2] / width], axis=1)
# add batch dimension (assume batch_size==1)
#assert image.get_shape()[0] == 1
boxes = tf.expand_dims(boxes, dim=0)
image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth
return tf.summary.image('ground_truth', image)
def _add_act_summary(self, tensor):
tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor)
tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction',
tf.nn.zero_fraction(tensor))
def _add_score_summary(self, key, tensor):
tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor)
def _add_train_summary(self, var):
tf.summary.histogram('TRAIN/' + var.op.name, var)
# Custom Layers #
def _reshape_layer(self, bottom, num_dim, name):
input_shape = tf.shape(bottom)
with tf.variable_scope(name):
| tensorflow.nn.zero_fraction | 82 |
import tensorflow as tf
hparams["type"] = "natural_exp_decay"
hparams["kwargs"] = {
"decay_steps": 1,
"decay_rate": 0.5
}
ned_lr_decay_fn = opt.get_learning_rate_decay_fn(hparams)
ned_lr = ned_lr_decay_fn(learning_rate=1., global_step=global_step)
ned_lr_true = tf.train.natural_exp_decay(
1., global_step-hparams["start_decay_step"],
hparams["kwargs"]["decay_steps"], hparams["kwargs"]["decay_rate"])
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
pc_lr_, pc_lr_true_, ned_lr_, ned_lr_true_ = sess.run(
| tensorflow.train.natural_exp_decay | 83 |
from tensorflow.python.training import summary_io
# TODO(mdan): This line looks redundant.
if self._summary_writer is None:
self._summary_writer = summary_io.SummaryWriter(estimator.model_dir)
| tensorflow.python.training.summary_io.SummaryWriter | 84 |
import tensorflow as tf
centroids_mask = None
centroids, lookup = get_unique(weights)
num_centroids = tf.size(centroids)
if self.preserve_sparsity:
sparsity_mask = tf.math.divide_no_nan(weights, weights)
zero_idx = tf.argmin(tf.abs(centroids), axis=-1)
centroids_mask = 1.0 - tf.one_hot(zero_idx, num_centroids)
result = {SPARSITY_MASK: sparsity_mask}
| tensorflow.math.divide_no_nan | 85 |
from tensorflow.python.ops import array_ops
array_ops.expand_dims(array_ops.constant(thresholds), [1]),
array_ops.pack([1, num_predictions]))
# Tile the predictions after thresholding them across different thresholds.
pred_is_pos = math_ops.greater(
array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]),
thresh_tiled)
pred_is_neg = math_ops.logical_not(pred_is_pos)
# Tile labels by number of thresholds
label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1])
label_is_neg = math_ops.logical_not(label_is_pos)
true_positives = _create_local('true_positives', shape=[num_thresholds])
false_negatives = _create_local('false_negatives', shape=[num_thresholds])
true_negatives = _create_local('true_negatives', shape=[num_thresholds])
false_positives = _create_local('false_positives', shape=[num_thresholds])
is_true_positive = math_ops.to_float(
math_ops.logical_and(label_is_pos, pred_is_pos))
| tensorflow.python.ops.array_ops.tile | 86 |
import tensorflow as tf
def _create_model(self, train_triples):
# Count unique items to determine embedding matrix sizes
entity_cnt = len(set(train_triples[:,0]).union(train_triples[:,2]))
rel_cnt = len(set(train_triples[:,1]))
init_sd = 1.0 / np.sqrt(self.embedding_size)
# Embedding variables
entity_var_shape = [entity_cnt, self.embedding_size]
rel_var_shape = [rel_cnt, self.embedding_size]
entity_init = tf.truncated_normal(entity_var_shape, stddev=init_sd)
rel_init = tf.truncated_normal(rel_var_shape, stddev=init_sd)
# Ensure maxnorm constraints are initially satisfied
entity_init = dense_maxnorm(entity_init, self.maxnorm)
self.entity_embedding_vars = tf.Variable(entity_init)
self.rel_embedding_vars = tf.Variable(rel_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.head_input)
tail_embed = tf.nn.embedding_lookup(self.entity_embedding_vars, self.tail_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
# Relationship vector acts as a translation in entity embedding space
| tensorflow.truncated_normal | 87 |
from tensorflow.contrib.eager.python.examples.spinn import data
logdir=os.path.join(self._temp_data_dir, "logdir"),
inference_sentences=("( foo ( bar . ) )", None))
with self.assertRaises(ValueError):
spinn.train_or_infer_spinn(embed, word2index, None, None, None, config)
def testTrainSpinn(self):
"""Test with fake toy SNLI data and GloVe vectors."""
# 1. Create and load a fake SNLI data file and a fake GloVe embedding file.
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
fake_train_file = self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
train_data = data.SnliData(fake_train_file, word2index)
dev_data = data.SnliData(fake_train_file, word2index)
test_data = data.SnliData(fake_train_file, word2index)
# 2. Create a fake config.
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"))
# 3. Test training of a SPINN model.
trainer = spinn.train_or_infer_spinn(
| tensorflow.contrib.eager.python.examples.spinn.data.load_word_vectors | 88 |
import tensorflow as tf
name='logits_rl_w',
initializer=tf.initializers.zeros(),
| tensorflow.initializers.zeros | 89 |
from tensorflow.contrib.framework import deprecated
def _at_k_name(name, k=None, class_id=None):
if k is not None:
name = '%s_at_%d' % (name, k)
else:
name = '%s_at_k' % (name)
if class_id is not None:
name = '%s_class%d' % (name, class_id)
return name
@deprecated('2016-11-08', 'Please use `streaming_sparse_recall_at_k`, '
'and reshape labels from [batch_size] to [batch_size, 1].')
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_recall_at_k(predictions, labels, k, ignore_mask=None,
weights=None, metrics_collections=None,
updates_collections=None, name=None):
"""Computes the recall@k of the predictions with respect to dense labels.
The `streaming_recall_at_k` function creates two local variables, `total` and
`count`, that are used to compute the recall@k frequency. This frequency is
ultimately returned as `recall_at_<k>`: an idempotent operation that simply
| tensorflow.contrib.framework.deprecated | 90 |
import tensorflow as tf
tf.logging.info("removing {}".format(src_ckpt))
tf.gfile.Remove(src_ckpt)
| tensorflow.gfile.Remove | 91 |
from tensorflow.python.platform import tf_logging as logging
def every_n_step_begin(self, step):
super(NanLoss, self).every_n_step_begin(step)
return [self._loss_tensor]
def every_n_step_end(self, step, outputs):
super(NanLoss, self).every_n_step_end(step, outputs)
if np.isnan(_extract_output(outputs, self._loss_tensor)):
failure_message = "Model diverged with loss = NaN."
if self._fail_on_nan_loss:
logging.error(failure_message)
raise NanLossDuringTrainingError
else:
logging.warning(failure_message)
# We don't raise an error but we return "should stop" so we stop, but
# without an exception.
return True
class RunHookAdapterForMonitors(session_run_hook.SessionRunHook):
| tensorflow.python.platform.tf_logging.error | 92 |
import tensorflow as tf
save_dir = self._TestDir("abs_paths")
abs_path = os.path.join(save_dir, "model-0")
ckpt = tf.train.generate_checkpoint_state_proto(save_dir, abs_path)
self.assertEqual(ckpt.model_checkpoint_path, abs_path)
self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path))
self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path)
def testRelPath(self):
train_dir = "train"
model = os.path.join(train_dir, "model-0")
# model_checkpoint_path should have no "train" directory part.
new_rel_path = "model-0"
ckpt = tf.train.generate_checkpoint_state_proto(train_dir, model)
self.assertEqual(ckpt.model_checkpoint_path, new_rel_path)
self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], new_rel_path)
def testAllModelCheckpointPaths(self):
save_dir = self._TestDir("all_models_test")
abs_path = os.path.join(save_dir, "model-0")
for paths in [None, [], ["model-2"]]:
ckpt = tf.train.generate_checkpoint_state_proto(
save_dir,
abs_path,
all_model_checkpoint_paths=paths)
| tensorflow.train.generate_checkpoint_state_proto | 93 |
import tensorflow as tf
self.mu = self.mu * action_bound[1];
self.sigma = self.sigma + 1e-4
# get action from distribution
self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma)
self.action = tf.squeeze(self.normal_dist.sample(1),axis=0);
self.action = tf.clip_by_value(self.action, action_bound[0], action_bound[1])
# Loss and train op
self.loss = -self.normal_dist.log_prob(self.a_his) * self.target
# Add cross entropy cost to encourage exploration
self.loss -= entropy_beta * self.normal_dist.entropy()
self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
self.grads_and_vars = self.optimizer.compute_gradients(self.loss)
self.grads=[];
self.vars=[];
for i in range(len(self.grads_and_vars)):
self.grads.append(self.grads_and_vars[i][0]);
self.vars.append(self.grads_and_vars[i][1]);
self.grads=self.grads[-1*NUM_VARS:];
self.vars=self.vars[-1*NUM_VARS:];
self.train_op = self.optimizer.apply_gradients(
self.grads_and_vars, global_step=tf.contrib.framework.get_global_step())
| tensorflow.train.AdamOptimizer | 94 |
import tensorflow as tf
self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path))
self.assertEqual(
len(ckpt.all_model_checkpoint_paths), len(paths) if paths else 1)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path)
def testUpdateCheckpointState(self):
save_dir = self._TestDir("update_checkpoint_state")
os.chdir(save_dir)
# Make a temporary train directory.
train_dir = "train"
os.mkdir(train_dir)
abs_path = os.path.join(save_dir, "model-0")
rel_path = "train/model-2"
tf.train.update_checkpoint_state(
train_dir,
rel_path,
all_model_checkpoint_paths=[abs_path, rel_path])
ckpt = tf.train.get_checkpoint_state(train_dir)
self.assertEqual(ckpt.model_checkpoint_path, rel_path)
self.assertEqual(len(ckpt.all_model_checkpoint_paths), 2)
self.assertEqual(ckpt.all_model_checkpoint_paths[-1], rel_path)
self.assertEqual(ckpt.all_model_checkpoint_paths[0], abs_path)
class MetaGraphTest(tf.test.TestCase):
| tensorflow.train.update_checkpoint_state | 95 |
import tensorflow as tf
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
| tensorflow.contrib.framework.get_or_create_global_step | 96 |
import tensorflow as tf
Returns
-------
A tensor.
"""
if axis < 0:
dims = get_ndim(tensors[0])
if dims:
axis = axis % dims
else:
axis = 0
try:
return tf.concat_v2([x for x in tensors], axis)
except AttributeError:
return tf.concat(axis=axis, values=[x for x in tensors])
def _normalize_axis(axis, ndim):
if isinstance(axis, tuple):
axis = list(axis)
if isinstance(axis, list):
for i, a in enumerate(axis):
if a is not None and a < 0:
axis[i] = a % ndim
| tensorflow.concat_v2 | 97 |
from tensorflow.contrib.layers.python.layers import utils
def build_no_ops():
return (tf.no_op(), tf.no_op())
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_second_moment_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
| tensorflow.contrib.layers.python.layers.utils.constant_value | 98 |
from tensorflow.python.framework import ops
default_name = _at_k_name('false_negative', k, class_id=class_id)
with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope:
| tensorflow.python.framework.ops.name_scope | 99 |