Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
Dataset for HybRank
You can download preprocessed data from HuggingFace Repo
Note that train_scores.hdf5
of MS MARCO
dataset files are split via
split -d -b 3G train_scores.hdf5 train_scores.hdf5.
Run following command to concatenate these files after all shards have been downloaded
cat train_scores.hdf5.* > train_scores.hdf5
Or you can generate data by yourself via the following steps:
Dependencies
java 11.0.16
maven 3.8.6
anserini 0.14.3
faiss-cpu 1.7.2
pyserini 0.17.1
Natural Questions
1. Download raw data (Refer to DPR for more details of the dataset)
python download_DPR_data.py --resource data.wikipedia_split.psgs_w100
python download_DPR_data.py --resource data.retriever.nq
python download_DPR_data.py --resource data.retriever.qas.nq
mkdir -p raw && mv downloads raw/NQ
2. Convert collections to jsonl format for Pyserini
python convert_NQ_collection_to_jsonl.py --collection-path raw/NQ/data/wikipedia_split/psgs_w100.tsv --output-folder pyserini/collections/NQ
3. Build Lucene indexes via Pyserini
python -m pyserini.index.lucene \
--collection JsonCollection \
--input pyserini/collections/NQ \
--index pyserini/indexes/NQ \
--generator DefaultLuceneDocumentGenerator \
--threads 1 \
--storePositions --storeDocvectors --storeRaw
4. Generate data
RETRIEVERS=("DPR-Multi" "DPR-Single" "ANCE" "FiD-KD" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
for RETRIEVER in ${RETRIEVERS[@]}; do
python generate_NQ_data.py --retriever $RETRIEVER
done
Note that before generate data for retriever RocketQA*
, please generate the retrieval results following the instructions in data/RocketQA_baselines/README.md
. Data for other retrievers can be generated directly.
MS MARCO & TREC 2019/2020
1. Download raw data (Refer to MS MARCO for more details of the dataset)
- Download and uncompress MSMARCO Passage Ranking Collections and Queries collectionandqueries.tar.gz to
data/raw/MSMARCO/
- TREC DL Test Queries and Qrels
- TREC DL-2019
- Download and uncompress msmarco-test2019-queries.tsv
- Download 2019qrels-pass.txt
- TREC DL-2020
- Download and uncompress msmarco-test2019-queries.tsv
- Download 2019qrels-pass.txt
- Put them into
data/raw/TRECDL/
- TREC DL-2019
2. Convert collections to jsonl format for Pyserini
python convert_MSMARCO_collection_to_jsonl.py --collection-path raw/MSMARCO/collection.tsv --output-folder pyserini/collections/MSMARCO
3. Build Lucene indexes via Pyserini
python -m pyserini.index.lucene \
--collection JsonCollection \
--input pyserini/collections/MSMARCO \
--index pyserini/indexes/MSMARCO \
--generator DefaultLuceneDocumentGenerator \
--threads 1 \
--storePositions --storeDocvectors --storeRaw
4. Generate data
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
for RETRIEVER in ${RETRIEVERS[@]}; do
python generate_MSMARCO_data.py --retriever $RETRIEVER
done
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")
SPLITS=("2019" "2020")
for RETRIEVER in ${RETRIEVERS[@]}; do
for SPLIT in ${SPLITS[@]}; do
python generate_TRECDL_data.py --split $SPLIT --retriever $RETRIEVER
done
done
- Downloads last month
- 7