The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset for HybRank

You can download preprocessed data from HuggingFace Repo

Note that train_scores.hdf5 of MS MARCO dataset files are split via

split -d -b 3G train_scores.hdf5 train_scores.hdf5.

Run following command to concatenate these files after all shards have been downloaded

cat train_scores.hdf5.* > train_scores.hdf5

Or you can generate data by yourself via the following steps:

Dependencies

java 11.0.16
maven 3.8.6
anserini 0.14.3
faiss-cpu 1.7.2
pyserini 0.17.1

Natural Questions

1. Download raw data (Refer to DPR for more details of the dataset)

python download_DPR_data.py --resource data.wikipedia_split.psgs_w100
python download_DPR_data.py --resource data.retriever.nq
python download_DPR_data.py --resource data.retriever.qas.nq
mkdir -p raw && mv downloads raw/NQ

2. Convert collections to jsonl format for Pyserini

python convert_NQ_collection_to_jsonl.py --collection-path raw/NQ/data/wikipedia_split/psgs_w100.tsv --output-folder pyserini/collections/NQ

3. Build Lucene indexes via Pyserini

python -m pyserini.index.lucene \
--collection JsonCollection \
--input pyserini/collections/NQ \
--index pyserini/indexes/NQ \
--generator DefaultLuceneDocumentGenerator \
--threads 1 \
--storePositions --storeDocvectors --storeRaw

4. Generate data

RETRIEVERS=("DPR-Multi" "DPR-Single" "ANCE" "FiD-KD" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")

for RETRIEVER in ${RETRIEVERS[@]}; do
  python generate_NQ_data.py --retriever $RETRIEVER
done

Note that before generate data for retriever RocketQA*, please generate the retrieval results following the instructions in data/RocketQA_baselines/README.md. Data for other retrievers can be generated directly.

MS MARCO & TREC 2019/2020

1. Download raw data (Refer to MS MARCO for more details of the dataset)

2. Convert collections to jsonl format for Pyserini

python convert_MSMARCO_collection_to_jsonl.py --collection-path raw/MSMARCO/collection.tsv --output-folder pyserini/collections/MSMARCO

3. Build Lucene indexes via Pyserini

python -m pyserini.index.lucene \
  --collection JsonCollection \
  --input pyserini/collections/MSMARCO \
  --index pyserini/indexes/MSMARCO \
  --generator DefaultLuceneDocumentGenerator \
  --threads 1 \
  --storePositions --storeDocvectors --storeRaw

4. Generate data

RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")

for RETRIEVER in ${RETRIEVERS[@]}; do
  python generate_MSMARCO_data.py --retriever $RETRIEVER
done
RETRIEVERS=("ANCE" "DistilBERT-KD" "TAS-B" "TCT-ColBERT-v1" "TCT-ColBERT-v2" "RocketQA-retriever" "RocketQAv2-retriever" "RocketQA-reranker" "RocketQAv2-reranker")

SPLITS=("2019" "2020")

for RETRIEVER in ${RETRIEVERS[@]}; do
  for SPLIT in ${SPLITS[@]}; do
    python generate_TRECDL_data.py --split $SPLIT --retriever $RETRIEVER
  done
done
Downloads last month
7