Ashot Vardanian
commited on
Commit
•
e01653e
1
Parent(s):
95669d7
Fix: Vectorizing images and indexing on-demand
Browse files
main.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
from os import listdir, path, PathLike, remove
|
3 |
-
from os.path import isfile, join
|
4 |
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
@@ -9,7 +9,7 @@ from PIL import ImageFile
|
|
9 |
from tqdm import tqdm
|
10 |
|
11 |
from uform import get_model
|
12 |
-
from usearch.index import Index
|
13 |
from usearch.io import save_matrix, load_matrix
|
14 |
|
15 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
@@ -21,7 +21,7 @@ def is_image(path: PathLike) -> bool:
|
|
21 |
try:
|
22 |
Image.open(path)
|
23 |
return True
|
24 |
-
except:
|
25 |
return False
|
26 |
|
27 |
|
@@ -48,22 +48,25 @@ if len(names_to_delete) > 0:
|
|
48 |
for name in names_to_delete:
|
49 |
remove(join('images', name))
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
for name in tqdm(names, desc='Vectorizing images'):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
image_mat = np.concatenate(vectors)
|
61 |
-
save_matrix(image_mat, 'images.fbin')
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
for idx
|
67 |
-
|
68 |
|
69 |
-
index.save('images.usearch')
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
from os import listdir, path, PathLike, remove
|
3 |
+
from os.path import isfile, join, exists
|
4 |
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
|
|
9 |
from tqdm import tqdm
|
10 |
|
11 |
from uform import get_model
|
12 |
+
from usearch.index import Index, MetricKind
|
13 |
from usearch.io import save_matrix, load_matrix
|
14 |
|
15 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
21 |
try:
|
22 |
Image.open(path)
|
23 |
return True
|
24 |
+
except Exception:
|
25 |
return False
|
26 |
|
27 |
|
|
|
48 |
for name in names_to_delete:
|
49 |
remove(join('images', name))
|
50 |
|
51 |
+
if not exists('images.fbin'):
|
52 |
+
model = get_model('unum-cloud/uform-vl-english')
|
53 |
+
vectors = []
|
54 |
|
55 |
+
for name in tqdm(names, desc='Vectorizing images'):
|
56 |
+
image = Image.open(join('images', name + '.jpg'))
|
57 |
+
image_data = model.preprocess_image(image)
|
58 |
+
image_embedding = model.encode_image(image_data).detach().numpy()
|
59 |
+
vectors.append(image_embedding)
|
60 |
|
61 |
+
image_mat = np.concatenate(vectors)
|
62 |
+
save_matrix(image_mat, 'images.fbin')
|
63 |
|
64 |
+
if not exists('images.usearch'):
|
65 |
+
index = Index(ndim=256, metric=MetricKind.Cos)
|
66 |
+
image_mat = load_matrix('images.fbin')
|
67 |
+
count = image_mat.shape[0]
|
68 |
|
69 |
+
for idx in tqdm(range(count), desc='Indexing vectors'):
|
70 |
+
index.add(idx, image_mat[idx, :].flatten())
|
71 |
|
72 |
+
index.save('images.usearch')
|