Ashot Vardanian commited on
Commit
854043f
1 Parent(s): 21a709d

Add: Script to generate data URIs in `.txt`

Browse files
Files changed (1) hide show
  1. main.py +28 -3
main.py CHANGED
@@ -1,6 +1,8 @@
1
  #!/usr/bin/env python3
2
- from os import listdir, path, PathLike, remove
3
  from os.path import isfile, join, exists
 
 
4
 
5
  import pandas as pd
6
  import numpy as np
@@ -25,6 +27,17 @@ def is_image(path: PathLike) -> bool:
25
  return False
26
 
27
 
 
 
 
 
 
 
 
 
 
 
 
28
  def trim_extension(filename: str) -> str:
29
  return filename.rsplit('.', 1)[0]
30
 
@@ -32,7 +45,7 @@ def trim_extension(filename: str) -> str:
32
  names = sorted(f for f in listdir('images') if is_image(join('images', f)))
33
  names = [trim_extension(f) for f in names]
34
 
35
- table = pd.read_table('images.tsv') if path.exists(
36
  'images.tsv') else pd.read_table('images.csv')
37
  table = table[table['photo_id'].isin(names)]
38
  table = table.sort_values('photo_id')
@@ -42,6 +55,7 @@ table.to_csv('images.csv', index=False)
42
  names = list(set(table['photo_id']).intersection(names))
43
  names_to_delete = [f for f in listdir(
44
  'images') if trim_extension(f) not in names]
 
45
 
46
  if len(names_to_delete) > 0:
47
  print(f'Plans to delete: {len(names_to_delete)} images without metadata')
@@ -52,7 +66,7 @@ if not exists('images.fbin'):
52
  model = get_model('unum-cloud/uform-vl-english')
53
  vectors = []
54
 
55
- for name in tqdm(list(table["photo_id"]), desc='Vectorizing images'):
56
  image = Image.open(join('images', name + '.jpg'))
57
  image_data = model.preprocess_image(image)
58
  image_embedding = model.encode_image(image_data).detach().numpy()
@@ -61,6 +75,17 @@ if not exists('images.fbin'):
61
  image_mat = np.vstack(vectors)
62
  save_matrix(image_mat, 'images.fbin')
63
 
 
 
 
 
 
 
 
 
 
 
 
64
  if not exists('images.usearch'):
65
  image_mat = load_matrix('images.fbin')
66
  count = image_mat.shape[0]
 
1
  #!/usr/bin/env python3
2
+ from os import PathLike, listdir, remove
3
  from os.path import isfile, join, exists
4
+ from mimetypes import guess_type
5
+ from base64 import b64encode
6
 
7
  import pandas as pd
8
  import numpy as np
 
27
  return False
28
 
29
 
30
+ def image_to_data(path: PathLike) -> str:
31
+ """Convert a file (specified by a path) into a data URI."""
32
+ if not exists(path):
33
+ raise FileNotFoundError
34
+ mime, _ = guess_type(path)
35
+ with open(path, 'rb') as fp:
36
+ data = fp.read()
37
+ data64 = b64encode(data).decode('utf-8')
38
+ return f'data:{mime}/jpg;base64,{data64}'
39
+
40
+
41
  def trim_extension(filename: str) -> str:
42
  return filename.rsplit('.', 1)[0]
43
 
 
45
  names = sorted(f for f in listdir('images') if is_image(join('images', f)))
46
  names = [trim_extension(f) for f in names]
47
 
48
+ table = pd.read_table('images.tsv') if exists(
49
  'images.tsv') else pd.read_table('images.csv')
50
  table = table[table['photo_id'].isin(names)]
51
  table = table.sort_values('photo_id')
 
55
  names = list(set(table['photo_id']).intersection(names))
56
  names_to_delete = [f for f in listdir(
57
  'images') if trim_extension(f) not in names]
58
+ names = list(table['photo_id'])
59
 
60
  if len(names_to_delete) > 0:
61
  print(f'Plans to delete: {len(names_to_delete)} images without metadata')
 
66
  model = get_model('unum-cloud/uform-vl-english')
67
  vectors = []
68
 
69
+ for name in tqdm(names, desc='Vectorizing images'):
70
  image = Image.open(join('images', name + '.jpg'))
71
  image_data = model.preprocess_image(image)
72
  image_embedding = model.encode_image(image_data).detach().numpy()
 
75
  image_mat = np.vstack(vectors)
76
  save_matrix(image_mat, 'images.fbin')
77
 
78
+ if not exists('images.txt'):
79
+
80
+ datas = []
81
+ for name in tqdm(names, desc='Encoding images'):
82
+ data = image_to_data(join('images', name + '.jpg'))
83
+ datas.append(data)
84
+
85
+ with open('images.txt', 'w') as f:
86
+ f.write('\n'.join(datas))
87
+
88
+
89
  if not exists('images.usearch'):
90
  image_mat = load_matrix('images.fbin')
91
  count = image_mat.shape[0]