Datasets:
Tasks:
Text Classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
fake-news-detection
License:
File size: 5,159 Bytes
1fb0ff9 8a71987 1fb0ff9 8a71987 1fb0ff9 f3432f3 774b8ae c1068b3 247e49f 07a31b8 f3432f3 1fb0ff9 774b8ae 1fb0ff9 774b8ae 1fb0ff9 2366ff7 1fb0ff9 2366ff7 f3432f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: liar
pretty_name: LIAR
tags:
- fake-news-detection
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'false'
'1': half-true
'2': mostly-true
'3': 'true'
'4': barely-true
'5': pants-fire
- name: statement
dtype: string
- name: subject
dtype: string
- name: speaker
dtype: string
- name: job_title
dtype: string
- name: state_info
dtype: string
- name: party_affiliation
dtype: string
- name: barely_true_counts
dtype: float32
- name: false_counts
dtype: float32
- name: half_true_counts
dtype: float32
- name: mostly_true_counts
dtype: float32
- name: pants_on_fire_counts
dtype: float32
- name: context
dtype: string
splits:
- name: train
num_bytes: 2730651
num_examples: 10269
- name: test
num_bytes: 341414
num_examples: 1283
- name: validation
num_bytes: 341592
num_examples: 1284
download_size: 1013571
dataset_size: 3413657
train-eval-index:
- config: default
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
statement: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://sites.cs.ucsb.edu/~william/
- **Repository:**
- **Paper:** https://arxiv.org/abs/1705.00648
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@hugoabonizio](https://github.com/hugoabonizio) for adding this dataset. |